Superscalar processors can achieve increased performance by issuing instructions Out-of-Order (OoO) from the original instruction stream. Implementing an OoO instruction scheme requires a hardware mechanism to prevent incorrectly executed instructions from updating registers values. In addition, performance decreases if data dependencies, a branch or a trap among instructions appears. To this end we propose a new mechanism named Dynamic Fast Issue (DFI) mechanism to issue instructions in an OoO fashion to multiple parallel functional units without considerable hardware complexity. The above system, which will be implemented in our Superscalar Functional Assignments Register Microprocessor(FARM), solves data dependencies, supports precise interrupt and branch prediction, which are the main problems associated with the dynamic scheduling of instructions in superscalar machines. Results are written only once,Write-once, directly into the register file (RF). To ensure that results are written in order in their appropriate output registers, a record of instruction order and state is maintained by a status buffer (STB). A 64 entries integrated register file is implemented to hold both renamed and logical registers. To recover the processor state from an interrupt or a branch miss-prediction, a status buffer (STB) and a recovery list table (RLT) are implemented. Novel aspects of the above system architecture as well as the principle underlying this process and the constraints that must be met is presented. Performance evaluation results are performed through full-pipelined-level architectural simulator and SPECint95 benchmark programs.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Abderazek BEN ABDALLAH, Mudar SAREM, Masahiro SOWA, "Dynamic Fast Issue (DFI) Mechanism for Dynamic Scheduled Processors" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 12, pp. 2417-2425, December 2000, doi: .
Abstract: Superscalar processors can achieve increased performance by issuing instructions Out-of-Order (OoO) from the original instruction stream. Implementing an OoO instruction scheme requires a hardware mechanism to prevent incorrectly executed instructions from updating registers values. In addition, performance decreases if data dependencies, a branch or a trap among instructions appears. To this end we propose a new mechanism named Dynamic Fast Issue (DFI) mechanism to issue instructions in an OoO fashion to multiple parallel functional units without considerable hardware complexity. The above system, which will be implemented in our Superscalar Functional Assignments Register Microprocessor(FARM), solves data dependencies, supports precise interrupt and branch prediction, which are the main problems associated with the dynamic scheduling of instructions in superscalar machines. Results are written only once,Write-once, directly into the register file (RF). To ensure that results are written in order in their appropriate output registers, a record of instruction order and state is maintained by a status buffer (STB). A 64 entries integrated register file is implemented to hold both renamed and logical registers. To recover the processor state from an interrupt or a branch miss-prediction, a status buffer (STB) and a recovery list table (RLT) are implemented. Novel aspects of the above system architecture as well as the principle underlying this process and the constraints that must be met is presented. Performance evaluation results are performed through full-pipelined-level architectural simulator and SPECint95 benchmark programs.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_12_2417/_p
Copy
@ARTICLE{e83-a_12_2417,
author={Abderazek BEN ABDALLAH, Mudar SAREM, Masahiro SOWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Dynamic Fast Issue (DFI) Mechanism for Dynamic Scheduled Processors},
year={2000},
volume={E83-A},
number={12},
pages={2417-2425},
abstract={Superscalar processors can achieve increased performance by issuing instructions Out-of-Order (OoO) from the original instruction stream. Implementing an OoO instruction scheme requires a hardware mechanism to prevent incorrectly executed instructions from updating registers values. In addition, performance decreases if data dependencies, a branch or a trap among instructions appears. To this end we propose a new mechanism named Dynamic Fast Issue (DFI) mechanism to issue instructions in an OoO fashion to multiple parallel functional units without considerable hardware complexity. The above system, which will be implemented in our Superscalar Functional Assignments Register Microprocessor(FARM), solves data dependencies, supports precise interrupt and branch prediction, which are the main problems associated with the dynamic scheduling of instructions in superscalar machines. Results are written only once,Write-once, directly into the register file (RF). To ensure that results are written in order in their appropriate output registers, a record of instruction order and state is maintained by a status buffer (STB). A 64 entries integrated register file is implemented to hold both renamed and logical registers. To recover the processor state from an interrupt or a branch miss-prediction, a status buffer (STB) and a recovery list table (RLT) are implemented. Novel aspects of the above system architecture as well as the principle underlying this process and the constraints that must be met is presented. Performance evaluation results are performed through full-pipelined-level architectural simulator and SPECint95 benchmark programs.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - Dynamic Fast Issue (DFI) Mechanism for Dynamic Scheduled Processors
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2417
EP - 2425
AU - Abderazek BEN ABDALLAH
AU - Mudar SAREM
AU - Masahiro SOWA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2000
AB - Superscalar processors can achieve increased performance by issuing instructions Out-of-Order (OoO) from the original instruction stream. Implementing an OoO instruction scheme requires a hardware mechanism to prevent incorrectly executed instructions from updating registers values. In addition, performance decreases if data dependencies, a branch or a trap among instructions appears. To this end we propose a new mechanism named Dynamic Fast Issue (DFI) mechanism to issue instructions in an OoO fashion to multiple parallel functional units without considerable hardware complexity. The above system, which will be implemented in our Superscalar Functional Assignments Register Microprocessor(FARM), solves data dependencies, supports precise interrupt and branch prediction, which are the main problems associated with the dynamic scheduling of instructions in superscalar machines. Results are written only once,Write-once, directly into the register file (RF). To ensure that results are written in order in their appropriate output registers, a record of instruction order and state is maintained by a status buffer (STB). A 64 entries integrated register file is implemented to hold both renamed and logical registers. To recover the processor state from an interrupt or a branch miss-prediction, a status buffer (STB) and a recovery list table (RLT) are implemented. Novel aspects of the above system architecture as well as the principle underlying this process and the constraints that must be met is presented. Performance evaluation results are performed through full-pipelined-level architectural simulator and SPECint95 benchmark programs.
ER -