The redundancy allocation problem for a series-parallel system is a well known as one of NP-hard combinatorial problems and it generally belongs to the class of nonlinear integer programming (nIP) problem. Many researchers have developed the various methods which can be roughly categorized into exact solution methods, approximate methods, and heuristic methods. Though each method has both advantages and disadvantage, the heuristic methods have been received much attention since other methods involve more computation effort and usually require larger computer memory. Genetic algorithm (GA) as one of heuristic optimization techniques is a robust evolutionary optimization search technique with very few restrictions concerning with the various design problems. However, GAs cannot guarantee the optimality and sometimes can suffer from the premature convergence situation of its solution, because it has some unknown parameters and it neither uses a priori knowledge nor exploits the local search information. To improve these problems in GA, this paper proposes an effective hybrid genetic algorithm based on, 1) fuzzy logic controller (FLC) to automatically regulate GA parameters and 2) incorporation of the iterative hill climbing method to perform local exploitation around the near optimum solution for solving redundancy allocation problem. The effectiveness of this proposed method is demonstrated by comparison results with other conventional methods on two different types of redundancy allocation problems.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
ChangYoon LEE, YoungSu YUN, Mitsuo GEN, "Reliability Optimization Design for Complex Systems by Hybrid GA with Fuzzy Logic Control and Local Search" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 4, pp. 880-891, April 2002, doi: .
Abstract: The redundancy allocation problem for a series-parallel system is a well known as one of NP-hard combinatorial problems and it generally belongs to the class of nonlinear integer programming (nIP) problem. Many researchers have developed the various methods which can be roughly categorized into exact solution methods, approximate methods, and heuristic methods. Though each method has both advantages and disadvantage, the heuristic methods have been received much attention since other methods involve more computation effort and usually require larger computer memory. Genetic algorithm (GA) as one of heuristic optimization techniques is a robust evolutionary optimization search technique with very few restrictions concerning with the various design problems. However, GAs cannot guarantee the optimality and sometimes can suffer from the premature convergence situation of its solution, because it has some unknown parameters and it neither uses a priori knowledge nor exploits the local search information. To improve these problems in GA, this paper proposes an effective hybrid genetic algorithm based on, 1) fuzzy logic controller (FLC) to automatically regulate GA parameters and 2) incorporation of the iterative hill climbing method to perform local exploitation around the near optimum solution for solving redundancy allocation problem. The effectiveness of this proposed method is demonstrated by comparison results with other conventional methods on two different types of redundancy allocation problems.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_4_880/_p
Copy
@ARTICLE{e85-a_4_880,
author={ChangYoon LEE, YoungSu YUN, Mitsuo GEN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Reliability Optimization Design for Complex Systems by Hybrid GA with Fuzzy Logic Control and Local Search},
year={2002},
volume={E85-A},
number={4},
pages={880-891},
abstract={The redundancy allocation problem for a series-parallel system is a well known as one of NP-hard combinatorial problems and it generally belongs to the class of nonlinear integer programming (nIP) problem. Many researchers have developed the various methods which can be roughly categorized into exact solution methods, approximate methods, and heuristic methods. Though each method has both advantages and disadvantage, the heuristic methods have been received much attention since other methods involve more computation effort and usually require larger computer memory. Genetic algorithm (GA) as one of heuristic optimization techniques is a robust evolutionary optimization search technique with very few restrictions concerning with the various design problems. However, GAs cannot guarantee the optimality and sometimes can suffer from the premature convergence situation of its solution, because it has some unknown parameters and it neither uses a priori knowledge nor exploits the local search information. To improve these problems in GA, this paper proposes an effective hybrid genetic algorithm based on, 1) fuzzy logic controller (FLC) to automatically regulate GA parameters and 2) incorporation of the iterative hill climbing method to perform local exploitation around the near optimum solution for solving redundancy allocation problem. The effectiveness of this proposed method is demonstrated by comparison results with other conventional methods on two different types of redundancy allocation problems.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Reliability Optimization Design for Complex Systems by Hybrid GA with Fuzzy Logic Control and Local Search
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 880
EP - 891
AU - ChangYoon LEE
AU - YoungSu YUN
AU - Mitsuo GEN
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2002
AB - The redundancy allocation problem for a series-parallel system is a well known as one of NP-hard combinatorial problems and it generally belongs to the class of nonlinear integer programming (nIP) problem. Many researchers have developed the various methods which can be roughly categorized into exact solution methods, approximate methods, and heuristic methods. Though each method has both advantages and disadvantage, the heuristic methods have been received much attention since other methods involve more computation effort and usually require larger computer memory. Genetic algorithm (GA) as one of heuristic optimization techniques is a robust evolutionary optimization search technique with very few restrictions concerning with the various design problems. However, GAs cannot guarantee the optimality and sometimes can suffer from the premature convergence situation of its solution, because it has some unknown parameters and it neither uses a priori knowledge nor exploits the local search information. To improve these problems in GA, this paper proposes an effective hybrid genetic algorithm based on, 1) fuzzy logic controller (FLC) to automatically regulate GA parameters and 2) incorporation of the iterative hill climbing method to perform local exploitation around the near optimum solution for solving redundancy allocation problem. The effectiveness of this proposed method is demonstrated by comparison results with other conventional methods on two different types of redundancy allocation problems.
ER -