A new blind restoration method applying Real-coded genetic algorithm (RcGA) will be proposed, and this method will be proven valid for the blurred image restoration with unidentified degradation in the experiments. In this restoration method, the degraded and blurred image is going to get restricted to the images possible to be expressed in the point spread function (PSF), then the restoration filter for this degraded image, which is also the 2-dimentional inverse filter, will be searched among several points applying RcGA. The method will enable to seek efficiently among vast solution space consists of numeral coefficient filters. And perceiving the essential features of the spectrum in the frequency space, an evaluation function will be proposed. Also, it will be proposed to apply the Rolling-ball transform succeeding an appropriate Gaussian degrade function against the dual degraded image with blur convoluting impulse noise. By above stated features of this restoration method, it will enable to restore the degraded image closer to the original within a practical processing time. Computer simulations verify this method for image restoration problem when the factors causing image distortions are not identified.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hideto NISHIKADO, Hiroyuki MURATA, Motonori YAMAJI, Hironori YAMAUCHI, "Blurred Image Restoration by Using Real-Coded Genetic Algorithm" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 9, pp. 2118-2126, September 2002, doi: .
Abstract: A new blind restoration method applying Real-coded genetic algorithm (RcGA) will be proposed, and this method will be proven valid for the blurred image restoration with unidentified degradation in the experiments. In this restoration method, the degraded and blurred image is going to get restricted to the images possible to be expressed in the point spread function (PSF), then the restoration filter for this degraded image, which is also the 2-dimentional inverse filter, will be searched among several points applying RcGA. The method will enable to seek efficiently among vast solution space consists of numeral coefficient filters. And perceiving the essential features of the spectrum in the frequency space, an evaluation function will be proposed. Also, it will be proposed to apply the Rolling-ball transform succeeding an appropriate Gaussian degrade function against the dual degraded image with blur convoluting impulse noise. By above stated features of this restoration method, it will enable to restore the degraded image closer to the original within a practical processing time. Computer simulations verify this method for image restoration problem when the factors causing image distortions are not identified.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_9_2118/_p
Copy
@ARTICLE{e85-a_9_2118,
author={Hideto NISHIKADO, Hiroyuki MURATA, Motonori YAMAJI, Hironori YAMAUCHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Blurred Image Restoration by Using Real-Coded Genetic Algorithm},
year={2002},
volume={E85-A},
number={9},
pages={2118-2126},
abstract={A new blind restoration method applying Real-coded genetic algorithm (RcGA) will be proposed, and this method will be proven valid for the blurred image restoration with unidentified degradation in the experiments. In this restoration method, the degraded and blurred image is going to get restricted to the images possible to be expressed in the point spread function (PSF), then the restoration filter for this degraded image, which is also the 2-dimentional inverse filter, will be searched among several points applying RcGA. The method will enable to seek efficiently among vast solution space consists of numeral coefficient filters. And perceiving the essential features of the spectrum in the frequency space, an evaluation function will be proposed. Also, it will be proposed to apply the Rolling-ball transform succeeding an appropriate Gaussian degrade function against the dual degraded image with blur convoluting impulse noise. By above stated features of this restoration method, it will enable to restore the degraded image closer to the original within a practical processing time. Computer simulations verify this method for image restoration problem when the factors causing image distortions are not identified.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Blurred Image Restoration by Using Real-Coded Genetic Algorithm
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2118
EP - 2126
AU - Hideto NISHIKADO
AU - Hiroyuki MURATA
AU - Motonori YAMAJI
AU - Hironori YAMAUCHI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2002
AB - A new blind restoration method applying Real-coded genetic algorithm (RcGA) will be proposed, and this method will be proven valid for the blurred image restoration with unidentified degradation in the experiments. In this restoration method, the degraded and blurred image is going to get restricted to the images possible to be expressed in the point spread function (PSF), then the restoration filter for this degraded image, which is also the 2-dimentional inverse filter, will be searched among several points applying RcGA. The method will enable to seek efficiently among vast solution space consists of numeral coefficient filters. And perceiving the essential features of the spectrum in the frequency space, an evaluation function will be proposed. Also, it will be proposed to apply the Rolling-ball transform succeeding an appropriate Gaussian degrade function against the dual degraded image with blur convoluting impulse noise. By above stated features of this restoration method, it will enable to restore the degraded image closer to the original within a practical processing time. Computer simulations verify this method for image restoration problem when the factors causing image distortions are not identified.
ER -