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PAPER
Good Group Sparsity Prior for Light Field Interpolation

Shu FUJITA†a), Keita TAKAHASHI†b), Members, and Toshiaki FUJII†c), Fellow

SUMMARY A light field, which is equivalent to a dense set of multi-
view images, has various applications such as depth estimation and 3D
display. One of the essential problems in light field applications is light
field interpolation, i.e., view interpolation. The interpolation accuracy is
enhanced by exploiting an inherent property of a light field. One exam-
ple is that an epipolar plane image (EPI), which is a 2D subset of the 4D
light field, consists of many lines, and these lines have almost the same
slope in a local region. This structure induces a sparse representation in
the frequency domain, where most of the energy resides on a line passing
through the origin. On the basis of this observation, we propose a group
sparsity prior suitable for light fields to exploit their line structure fully for
interpolation. Specifically, we designed the directional groups in the dis-
crete Fourier transform (DFT) domain so that the groups can represent the
concentration of the energy, and we thereby formulated an LF interpolation
problem as an overlapping group lasso. We also introduce several tech-
niques to improve the interpolation accuracy such as applying a window
function, determining group weights, expanding processing blocks, and
merging blocks. Our experimental results show that the proposed method
can achieve better or comparable quality as compared to state-of-the-art LF
interpolation methods such as convolutional neural network (CNN)-based
methods.
key words: light field reconstruction, group sparsity, discrete Fourier
transform, epipolar plane image, line structure

1. Introduction

A light field (LF) [1], [2], which is equivalent to a set of
multi-view images, is a useful data representation for both
computer vision and graphics applications such as depth
estimation [3], [4], digital refocusing [5], [6], and 3D dis-
plays [7], [8]. 3D visual information can be represented as
a 4D LF signal with spatial (u, v) and angular (s, t) coordi-
nates at/with which light rays pass a reference plane. Thus,
to capture the LF signals, we can use camera arrays [9] and
lenslet cameras [5], [10]. However, they have issues in terms
of hardware such as extensive setting costs and a trade-off
between the spatial and angular resolutions. As a result, the
resolution of the captured LFs has a limit.

One of the solutions for this issue is LF interpola-
tion [11]–[17], which is obtaining sufficiently dense views
from the sparser views. As an example, Fig. 1(a) shows a 4D
LF on (u, v, s, t) and its subspace. A section of the original
LF with a fixed (v, t) is called an epipolar plane image (EPI).
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As shown in Fig. 1(b), EPIs consist of many slanted lines
that have almost the same slope in a local region. The line
structure is one of the inherent properties of EPIs. Inter-
polation of an LF, i.e., view interpolation, can be regarded
as the problem of reconstructing the latent EPIs (Fig. 1(b))
from sparsely sampled EPIs shown in Fig. 1(c). In doing so,
exploiting the line structure of an LF would help predict the
missing samples. Technically speaking, the line structure in-
duces a sparse representation in the frequency domain, where
most of the energy concentrates on a line passing through
the origin [18], as shown on the left of Fig. 1(d). The line
of energy concentration in the frequency domain is orthog-
onal to the dominant slanted angle in the corresponding EPI
block.

On the basis of this observation, we propose a novel
prior suitable for LFs, a group sparsity prior, to exploit their
line structure fully for LF interpolation. We focus on the
energy concentration in the frequency domain like the ones
shown on the left of Fig. 1(d). This energy concentration
can be represented with a group sparsity if we define a set
of directional groups in the frequency domain as shown on
the right of Fig. 1(d). This sparsity model is applied to small
EPI blocks, because they often have almost constant slopes,
resulting in good energy concentration in the frequency do-
main, and discrete Fourier transform (DFT) is adopted for
the frequency representation. However, the DFT-based
reconstruction often suffers from windowing effects, which
degrade the interpolation accuracy. Hence, we also introduce
several implementation techniques tomitigate the effects and
to increase the accuracy: block expansion, a window func-
tion, group weights, and block merging. Our experimental
results show that our method has good interpolation accu-
racy and is comparable or superior to the state-of-the-art
convolutional neural network (CNN)-based method [17].

The preliminary discussion of our group sparsity prior
has been presented in [19]. In the present paper, we improved
the interpolation accuracy by introducing several additional
implementation techniques. Moreover, we exhaustively eval-
uated the performance of our method.

The remainder of this paper is organized as follows.
Section 2 describes the background of our method including
the related LF interpolationmethods and a signal reconstruc-
tion framework using sparsity and group sparsity. In Sect. 3,
we apply this framework to the problem of LF interpolation
and derive a group sparsity prior that is suitable for LFs.
The proposed prior is experimentally validated in Sect. 4,
followed by the conclusion in Sect. 5.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Light field structure and concept of our group sparsity prior. DFT and IDFT mean discrete
Fourier transform and inverse DFT. In the DFT domain, most of the energy of the line structured signals
concentrates on a few directional groups.

2. Background

2.1 Light Field Interpolation

The trade-off between the spatial and angular resolutions is
an essential issue in capturing LFs. To tackle this issue, sev-
eral methods have been studied to increase the spatial and
angular resolutions [4], [20], [21]. In this paper, we particu-
larly focus on the view interpolation methods to increase the
angular resolution.

The major approach to interpolate the views is to es-
timate depth maps and then to synthesize new views based
on the estimated depth. Fortunately, state-of-the-art meth-
ods [3], [4], [22]–[25] have been developed to estimate
the accurate depth maps. However, these depth-based ap-
proaches [3], [4], [22]–[25] suffer from artifacts, e.g., ghost-
ing and tearing effects, in occluded and textureless regions.
Kalantari et al. [16] proposed a learning-based reconstruc-
tion method using two sequential CNNs to further increase
the interpolation accuracy. The two CNNs were designed
for depth estimation and view synthesis, respectively, and
they were simultaneously trained so that the errors between
synthesized and ground truth images are minimized. As a
result, the CNN-based method achieved high-quality view
interpolation for real scenes.

Another approach uses prior knowledge of LFs effec-
tively to interpolate the views directly. One of the represen-
tatives is a prior described in the frequency domain. Levin
and Durand [11] assumed a Lambertian model and utilized
Gaussian priors based on the dimensionality gap [6] that
4D LFs are essentially bounded within a 3D subspace in
the frequency domain. Shi et al. [13] focused on the fact
that LFs are extremely sparse in the continuous Fourier do-
main and used them to interpolate LFs. Vagharshakyan et
al. [14] and Sahin et al. [15] found that EPIs become sparse
in the shearlet domain [26], and they formulated LF inter-
polation as sparse coding. In addition, several priors other
than frequency-domain based ones are also discussed. Mi-
tra and Veeraraghavan [21] introduced a Gaussian mixture
model (GMM) prior based on roughly estimated disparities

tomodel LF patches. Heber and Pock [27] formulated a prior
that EPIs become low-rank when they are sheared adaptively
according to their slopes.

Recently, Wu et al. [17] have proposed a CNN-based
method on the EPI domain, which achieves the best inter-
polation quality among the recent interpolation methods.
Although this CNN-based method is successful in produc-
ing high-quality results, it lacks scalability, i.e., the CNNs
should be retrained for each condition; if the scaling factor
is changed, the networks should be retrained.

2.2 Sparsity and Group Sparsity

Here, we describe a reconstruction framework of a general
signal using sparsity and group sparsity, which is well known
as sparse coding. An extension to the case of LF signals is
discussed in 3.

Let x ∈ RN be a target signal, and let y ∈ RN be
the observation from which x should be reconstructed. The
observation model is given by

y = Φx, (1)

where Φ ∈ RN×N is an observation matrix, which depends
on the types of reconstruction such as super-resolution and
denoising. We assume that x is represented using a linear
combination of M column vectors a1, . . . , aM ∈ R

N and the
coefficients z1, . . . , zM , and that it is written as

x = Az, (2)

where z = (z1, . . . , zM )T is the coefficient vector, and A =
(a1, . . . , aM ) is generally called a basis or frame.

A key assumption in sparse coding is that vector z
should be sparse; only a few elements take non-zero values.
With convex relaxation of this sparsity prior, a sparse vector
ẑ can be derived by solving a lasso problem [28] as follows.

ẑ = arg min
z
| |y −ΦAz | |22 + λ | |z | |

1
1, (3)

where λ is a non-negative parameter, andwhere ‖·‖1 and ‖·‖2
are l1 and l2 norms, respectively. For further introducing a
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group structure to the sparsity, Eq. (3) is extended using a
group norm term ‖ · ‖G to

ẑ = arg min
z
| |y −ΦAz | |22 + λ | |z | |

1
1 + η | |z | |G (4)

| |z | |G =
∑
gi ∈G

wi | |zgi | |
1
2, (5)

where η is a non-negative parameter. Vector zgi includes all
the elements of z that belong to the i-th group. The set of gi
is described as G = {g1, . . . , g |G | }, where |G| is the number
of groups. Symbol wi is the weight for the i-th group. This
problem written as Eq. (4) is called a sparse group lasso [29]
or an overlapping group lasso [30], [31] depending on the
existence of overlapped coefficients between groups.

3. Group Sparsity Prior

In this section, we propose a group sparsity prior suitable for
light fields to fully exploit their line structure for the problem
of LF interpolation. Furthermore, we also introduce several
implementation techniques to increase the interpolation ac-
curacy: block expansion, a window function, group weights,
and block merging.

3.1 Basic Formulation

3.1.1 Notation

We apply the aforementioned sparsity and group sparsity to
the LF interpolation problem by interpreting the notations
used in Sect. 2.2 as follows. Vectors x and y are latent and
observed LF signals. In this paper, the processing unit for
the LF is a 2D block extracted from a 2D EPI; therefore, it
is reshaped from 2D to 1D to yield a vector representation
used as x or y. The observation matrixΦ is a sub-sampling
operator in the angular domain in the case of view inter-
polation, but it can be adapted to other applications. For
example, Φ is an identity matrix in the case of denoising
and is a spatial down-sampling operator in the case of spatial
super-resolution. In other words, we can process various
reconstructions by controlling the observation matrix.

The design of A is important because it determines the
domain where the sparsity and group sparsity are consid-
ered. A learned dictionary [24], [32], weighted discrete co-
sine transform basis [33], and shearlet frame [14], [15] have
been used for sparse representations of LFs. Meanwhile,
we use the discrete Fourier transform (DFT) basis because
it enables us to represent the line structure of an LF signal
sparsely, as shown in Fig. 1. Note that the DFT coefficients
are complex. In this paper, we simply replace ‖ z‖11 with
‖Re(z)‖11+‖Im(z)‖11 , whereRe(z) and Im(z) are the real and
imaginary parts, respectively. Another possible implemen-
tation (which is not adopted in this paper due to the complex-
ity) is to replace |z |11 with

∑M
k=1

√
‖Re(zk )‖21 + ‖Im(zk )‖21 ,

where Re(zk ) and Im(zk ) are grouped together to impose a
joint sparsity constraint on the real and imaginary parts of

each zk .

3.1.2 Group Design

As shown in Fig. 1, the line structure in the spatial domain
leads to sparse coefficients in the DFT domain. More-
over, these coefficients mostly concentrate on a line passing
through the origin, and the direction of which is perpendic-
ular to that of the lines in the spatial domain. On the basis of
this observation, we designed the group and group weights
that are suitable for representing EPIs.

Figure 1(d) illustrates the basic concept of our group
design, where the DFT coefficients are divided into a set
of groups in accordance with the directions. The aforemen-
tioned observation reveals that the non-zeroDFT coefficients
will exist in only a few groups. In other words, the DFT co-
efficients will be group sparse over the aforementioned set
of groups. This concept is practically implemented as fol-
lows. First, the lower frequency components are gathered in a
group regardless of the directions because these components
are likely to exist in any EPI. These frequency components
are assigned to the first group g1, and only the remaining
coefficients are assigned to other groups gi (i = 2, . . . , |G|).
Second, we only consider the upper hemisphere in the fre-
quency domain because the DFT coefficients that are sym-
metric with respect to the origin are complex conjugate.
Therefore, the angle between 0 and π is equally divided into
the |G| − 1 sub-angles, and the principal direction of the
group gi is determined by

θi =
(i − 2)π
|G| − 1

, i = 2, . . . , |G|. (6)

Finally, we allow the coefficients to overlap between the ad-
jacent groups because the coefficients are defined over only
the discrete set of frequencies, while the direction is contin-
uous in nature. Basically, each of the DFT coefficients is
assigned to the group that is nearest in terms of the direction.
However, the DFT coefficients that saddle on two adjacent
directions are assigned to both of the groups. An example
of the groups is shown in Fig. 2. Here, the dotted black
lines indicate the approximate boundaries for the directional
groups, where the discrete DFT coefficients are assigned to
the groups approximately in accordance with Eq. (6).

Fig. 2 Example of group design in DFT domain.
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3.2 Implementation

Our method consists of block-wise operations because it
is designed for relatively small processing units (2D EPI
blocks), e.g., 17 × 17 and 9 × 9 pixels. These EPI blocks
are extracted from the input LF Y , interpolated using our
DFT-based group sparsity prior, and are written back to
the corresponding position of the output LF X . However,
the block-wise operation causes annoying window effects,
which disturb the sparseness and group structure in the fre-
quency domain. Furthermore, sub-sampled EPIs blocks like
the ones shown in Fig. 1(c) are subject to aliasing effects
in the frequency domain, and these effects also disturb the
frequency structure of EPIs. Thus, we introduce four imple-
mentation techniques to increase the interpolation quality:
expanding EPI blocks, applying a window function to the
EPI blocks, determining group weights, and merging blocks
into the complete EPI considering the window functions.

3.2.1 Expanding EPI Blocks

The interpolated signal tends to be distorted if both ends of
the signal take different values because DFT assumes the
periodicity for the input signal. It causes severe ghosting
effects, especially in blocks having step edges. To suppress
these effects, we expand the block by one pixel in both the
spatial and angular directions. When the expanded pixels
around the original block have no information in the original
LF Y , the pixel values are set to 0. We also expand the
observation matrix, setting 0 to the entries that correspond to
the extended pixels. After interpolation using the expanded
blocks, we retain only the pixels that are included in the
original block.

3.2.2 Applying a Window Function

To suppress the negative effects caused by the window ef-
fects, we also apply a window function to the observed EPI
signal y after the mean µ of the non-zero elements of y is
subtracted:

y ′ = W (y − µ), (7)

where W ∈ RN×N is a diagonal matrix encoding the Kaiser
window function, the tails of which are set to non-zero values
to make W invertible†. Instead of y itself, y ′ is used as
the observation signal for reconstruction, from which the
optimal ẑ is derived. Consequently, the interpolated LF is
obtained as:

x̂ = W−1Aẑ + µ. (8)

†We can use zero-tails window functions as well if we care for
the division by zero in Eq. (8). In this case, the boundary pixels are
finally nullified in Eq. (15).

3.2.3 Determining Group Weights

The sub-sampled EPI signal y ′ often contains aliasing arti-
facts due to the reduced sampling rate on the angular domain.
The aliasing effects produce DFT coefficients on different di-
rections from those of the sufficiently sampled EPI signal.
The group weights wi in Eq. (5) should be determined to nul-
lify the coefficients caused by aliasing effects. We compute
wi using the difference between the direction of each group
θi and a pre-estimated direction for the latent EPI θ̂:

wi = sin( |θ̂ − θi | ) i = 2, . . . , |G|, (9)

where 0 ≤ θ̂, θi < π. We experimentally determined
w1 = min(wi) (i = 2, . . . , |G|). The pre-estimated direc-
tion for the latent EPI θ̂ is computed from the sub-sampled
EPI signal y ′ given as the input. The derivation details of θ̂
are mentioned in the following.

An EPI block is originally defined over the 2D space
as fk,l with the discrete spatial coordinate (k, l) (0 ≤ k, l <
√

N). The DFT coefficient of fk,l is denoted as Fm,n, where
−b
√
N
2 c ≤ m, n ≤ b

√
N
2 c. The purpose is to find a line equa-

tion n = m tan θ in the DFT domain that fits the distribution
of Fm,n. Specifically, we solve the weighted least square
problem given as

θ̂ = arg min
θ

∑
m,n

Ψm,n | |n − m tan θ | |22 . (10)

The weight term Ψm,n is designed as

Ψm,n = |Fm,n |
2h2

m,nbm,n. (11)

The first term is the energy of the coefficient Fm,n obtained
from the observed EPI y ′. The second term reduces the
weight for higher frequency components to suppress the ef-
fect of aliasing that is caused by the sparse sampling of the
EPI. In this paper, we utilize the Hann window function for
the second term defined as

hm,n=
(1 − cos

(
2πm+ bR/2 b

R

)
2

) (1 − cos
(
2π n+ bR/2 b

R

)
2

)
,

(12)

where R is the window length, which depends on the ratio
of sub-sampling because the aliasing effect happens beyond
the Nyquist frequency. For example, if square EPI blocks
are sub-sampled by a factor of 2 in the angular domain,
we set R = d

√
N
2 e. Exceptionally, the second term is set

to 0 when |m |, |n| > R. The third term is the weight for
robust estimation [34], which is iteratively updated using the
previous estimation of θ̂ as

bm,n =



(
1 −

(
dm,n/κ

)2)2
|dm,n | ≤ κ

0 otherwise
(13)

dm,n =
|n − m tan θ̂ |√

12 + tan2 θ̂
, (14)
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Fig. 3 Estimating direction in frequency domain. In this figure, the target
application is angular super-resolution. The left-top DFT coefficients are
computed from a sub-sampled EPI block with black stripes.

where κ is a positive constant. Here, Eq. (14) computes the
distance between the point (m, n) and the line, and bm,n is
initially set to 1.

The overview of direction estimation is shown in Fig. 3.
The estimated direction θ̂ is used to determine the group
weights in accordance with Eq. (9).

3.2.4 Merging Blocks into a Complete EPI

In the final step of interpolation of an LF, each interpolated
EPI block x is written back to the corresponding position of
the target LF X . Here, interpolated EPI blocks are denoted
again as xk (s, u) (k = 1, . . . , K), where K is the number of
total blocks. We assume that the interpolated EPI blocks
xk (s, u) are initially made to overlap each other. In our case,
adjacent EPI blocks overlap by the half size of the block
(rounded up after a decimal point) each other. Therefore, the
overlapped EPI blocks are merged using weighted averages:

Algorithm 1 LF interpolation using group sparsity prior
Inputs: sub-sampled LF signal Y
Parameters: Φ, A, G,W , λ, η
Extract EPI block y ∈ RN from the input Y EPI blocks y
Pre-processes:

• Compute means µ from y
• Compute input EPI blocks: y′ =W (y − µ)

Main processes:
• Determine group weight w from y′ (Eq. (9))
• Compute optimal coefficient by solving Eq. (4):
ẑ ← overlappingGroupLasso(y′,ΦA, λ, η, G, w)

Post-process:

• Reconstruct the EPI block x̂ ←W−1Aẑ + µ

Reconstruct LF signal X from EPI blocks x̂ (Eq. (15))
Output: interpolated LF signal X

Xv,t (s, u) =

∑
k∈Bv, t (s,u) Wk (s, u)xk (s, u)∑

k∈Bv, t (s,u) Wk (s, u)
, (15)

where Xv,t (s, u) is an EPI of the target LF X with a fixed
(v, t), and where Bv,t (s, u) contains all the indices of the in-
terpolated EPI blocks that include the pixel (s, t, u, v). Here,
Wk (s, u) is the weight that the pixel (s, u) received from the
window function W in k-th block xk (s, u).

3.3 Overview of Our Method

To conclude, the entire procedure of our method is described
in Alg. 1. Because our method consists of block-wise oper-
ations, we first extract EPI blocks y from the observed LF Y
and expand them. After applying the window function to the
blocks, they are interpolated using our group sparsity prior.
Finally, the interpolated EPI blocks x are written back to the
corresponding positions of the target LF X . These blocks
are made to overlap each other, so the interpolation results
are merged according to the weights given by the window
function.

4. Experimental Results

We tested the performance of our group sparsity prior using
Stanford LF datasets [35], new HCI LF datasets [36], and
Wang et al.’s dataset [37] as the input LFs. Each dataset
has 17 × 17, 9 × 9, and 7 × 7 views, respectively. Thus,
the processing units were 17 × 17, 9 × 9, and 7 × 7 EPI 2D
blocks, and these blocks are further expanded as mentioned
in Sect. 3.2.1, i.e.,

√
N = 19, 11, or 9. We demonstrated

view interpolation from the sub-sampled LFs, the views of
which were alternatively sampled from the original LFs.
When handling a 2-D (s, t) viewpoint arrangement, we first
performed interpolation in s direction and then in t direction
sequentially

To implement our method, we divided the DFT co-
efficients into log2

√
N + 1 groups, where g1 is allocated

to the 7 × 7, 5 × 5, and 3 × 3 low frequency components
around the DC component for 17 × 17, 9 × 9, and 7 × 7
block sizes, respectively, and the remaining groups are as-
signed to directional high frequency components. To solve
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Fig. 4 View interpolation in the EPI domain. GWandBE represent groupweight and block expansion,
respectively.

Table 1 PSNR [dB] of the entire LFs after interpolating 9 × 9 views from 5 × 5 views.
Dataset [36] bedroom bicycle boxes cotton dino dishes greek herbs kitchen pillows tower Average
Vagharshakyan et al. [14] 30.03 26.38 30.42 37.67 32.17 26.17 30.91 28.62 27.58 29.70 29.55 29.93
Kalantari et al. [16] 30.57 26.24 29.97 38.72 30.94 23.84 27.21 26.43 28.52 29.19 26.35 28.91
Wu et al. [17] 34.39 31.32 34.29 42.51 37.62 26.52 32.35 29.97 33.22 30.85 30.73 33.07
Eq. (3) with DFT 29.65 25.57 28.56 35.41 30.39 25.69 28.55 27.67 27.11 28.61 28.33 28.68
Eq. (4) with DFT w/o GW 34.20 30.91 34.80 40.53 36.27 28.45 33.27 30.66 32.15 32.75 30.93 33.18
Eq. (4) with DFT and GW 36.83 34.21 37.52 43.62 40.27 30.02 34.61 32.15 36.51 35.25 32.19 35.74
Eq. (4) with DFT, GW, and
BE (Our method)

38.72 36.34 39.63 45.69 42.87 30.89 35.74 33.12 38.91 37.70 32.83 37.49

Eq. (4), we used the SLEP library [38]. We compared our
method with three state-of-the-art LF interpolation methods:
the Vagharshakyan et al.’s method [14], the Kalantari et al.’s

method [16], and the Wu et al.’s method [17]. The Vaghar-
shakyan et al. method is a sparse coding method (Eq. (3))
using the shearlet frame [26] for interpolating EPIs. The
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Fig. 5 Differences between ground truth and interpolated images (magnified by 5) at the (2, 2)
viewpoint, which is among the 9 × 9 views interpolated from 5 × 5 views.

Fig. 6 Differences between ground truth and interpolated images (magnified by 5) at the (2, 2)
viewpoint, which is among the 9 × 9 views interpolated from 5 × 5 views.

Fig. 7 PSNR of each view in a horizontal line in “dino” [36]. We enabled
all the options except for BE.

Kalantari et al.’s method is based on explicit depth estimation
followed by view interpolation using CNNs. The Wu et al.’s
method is also a CNN-based method, but it does not need ex-
plicit depth estimation but interpolates views using aCNNon
the EPI domain. We implemented the Vagharshakyan et al.
method using the MATLAB code with ShearLab [39], [40].
For this implementation, we found that using the pre/post-
processings of Eqs. (7) and (8) improves the accuracy of the

Vagharshakyan et al.’s method [14]. Therefore, we also ap-
plied these processings to this method. For the Kalantari et
al.’s method [16], and the Wu et al.’s method [17], we used
each author’s distributed MATLAB codes. In all our experi-
ments, we sought the best parameters for these methods and
used them.

Figure 4 shows the results of view interpolation for sev-
eral 17 × 17 EPI blocks. The ground truth and sub-sampled
EPI blocks are shown in Figs. 4(a) and (b). Figures 4(c)–(f)
are presented to show the contributions of the group spar-
sity, group weights (GW), and block expansion (BE) to the
interpolation accuracy of our method. Our method can well
interpolate EPI blocks even if they have multiple and con-
tinuously varying slopes (see the two EPI blocks from the
bottom). Figures 4(g) and (h) show the results of the Vaghar-
shakyan et al.’s method [14] and Wu et al.’s method, which
are inferior to those of our method.

Figures 5 and 6 show the difference of resulting im-
ages and ground truth at the same viewpoint that was miss-
ing in the input LFs but was interpolated by our method,
the Vagharshakyan et al.’s method [14], Kalantari et al.’s
method [16], and the Wu et al.’s method [17]. We can see
that the group sparsity and group weights can suppress blur-
ring and artifacts. The BE technique also contributed to
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Fig. 8 Interpolated images at the (2, 2) viewpoint, which is among the 7 × 7 views interpolated from
3 × 3 views.

Table 2 PSNR [dB] of the entire LFs after interpolating 7×7 views from
3 × 3 views in Wang et al.’s dataset [37].

Average over 21 LFs
Kalantari et al. [16] 32.62

Wu et al. [17] 37.27
Our method 37.02

suppressing the ghosting effect. The improvement brought
by the BE technique is particularly large for the viewpoints
near the outermost views (view number 1, 2, 8, 9) as shown
in Fig. 7, which shows the accuracy of each view on a hori-
zontal line. Moreover, we confirm that our method has less
errors than the state-of-the-art methods.

Table 1 summarizes the performance comparison over
ten datasets included in the new HCI LF dataset [36]. In the
table, we also show the results of the other state-of-the-art
methods of view interpolation [14], [16], [17]. We found that
our method is superior to the other state-of-the-art methods.

Table 2 also summarizes the performance comparison
for 21 LFs included in the Wang et al.’s dataset [37]. While
the dataset [36] mentioned in Table 1 consists of computer
generated scenes without noise, the dataset [37] mentioned
Table 2 includes real scene captured by Lytro Illum cameras.
For this reason, the ground truth in this dataset includes
noise, and thus, the PSNR values reported in Table 2 are
only for reference. We can see that our method achieves
comparable performance to the Wu et al.’s method, and the
visual difference is imperceptible as shown in Fig. 8.

Finally, we mention the processing time. We executed

our method and the competitors on MATLAB R2019a with
a 3.60 GHz Intel Core i9-9900K CPU without GPU acceler-
ation. For view interpolation of an entire dataset, where 9×9
views were generated from 5 × 5 views in 512 × 512 pixels,
our method took 1093 sec. Meanwhile, Vagharshakyan et
al. [14], Kalantari et al. [16], and the Wu et al. [17] took
7716, 1628, and 1647 sec, respectively.

5. Discussion and Conclusion

5.1 Discussion

Our group sparsity prior described in the DFT domain was
proposed for LF interpolation. However, it is formulated
based on a general sparse coding framework, and thus, it has
the possibility of being applied to not only LF interpolation
but also the other applications that can be defined with an
observation matrix. This flexibility to various applications
is a benefit for our prior. It is hard to achieve such flex-
ibility using CNN-based methods. Moreover, our prior in
the DFT domain would be useful to design a better CNN-
based method for LF processing because domain-specific
knowledge has been shown to be effective in constructing
CNNs [16], [17], [41].

5.2 Conclusion

Aiming to achieve light field interpolation with high-quality,
we proposed a group sparsity prior in the discrete Fourier
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transform (DFT) domain that can fully exploit the specific
line structure in 2D epipolar plane images. Specifically,
we designed directional groups for DFT coefficients and in-
troduced several implementation techniques, i.e., expanding
processing blocks, applying a window function, determining
group weights, and merging blocks.

Our experimental results show that ourmethod achieved
better quality than other state-of-the-art methods [14], [16]
and that it is superior or comparable to the latest convolu-
tional neural network (CNN)-based method [17]. In future
work, our group sparsity prior will be extended to the full
4D DFT domain of the light field to better utilize their struc-
ture. We will also investigate how the prior knowledge in the
DFT domain can be used for designing better CNN-based
methods for light fields.
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