
1134
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

INVITED PAPER Special Section on Discrete Mathematics and Its Applications

Recent Advances in Practical Secure Multi-Party Computation∗

Satsuya OHATA†a), Nonmember

SUMMARY Secure multi-party computation (MPC) allows a set of
parties to compute a function jointly while keeping their inputs private.
MPC has been actively studied, and there are many research results both
in the theoretical and practical research fields. In this paper, we introduce
the basic matters on MPC and show recent practical advances. We first
explain the settings, security notions, and cryptographic building blocks of
MPC. Then, we show and discuss current situations on higher-level secure
protocols, privacy-preserving data analysis, and frameworks/compilers for
implementing MPC applications with low-cost.
key words: secure multi-party computation, privacy-preserving data anal-
ysis

1. Introduction

Secure multi-party computation (MPC) [1], [2] allows a set
of parties to compute a function f jointly while keeping their
inputs private. More precisely, the N(≥ 2) parties, each
holding private input xi for i ∈ [1,N], are able to compute
the output f (x1, · · · , xN) without revealing their private in-
puts xi. There is much progress in the research on MPC, and
its performance is dramatically improved. Moreover, many
applications on MPC have been proposed.

In this paper, we explain the recent situations in prac-
tical MPC and its applications. More concretely, we denote
the following topics.

• We introduce the settings and security notions we usu-
ally consider in the MPC research.

• We show some building blocks (homomorphic encryp-
tion, garbled circuit, secret sharing, and trusted hard-
ware) for efficient MPC.

• We show recent advances in secure higher-level pro-
tocols (e.g., equality check, less-than comparison), ap-
plications (machine learning, string analysis, the near-
est neighbor search), and implementation-related ef-
forts on MPC.

In Sect. 2, we introduce the settings and security notions on
MPC. Then, we show some building blocks (homomorphic
encryption, garbled circuit, secret sharing, and trusted hard-
ware) for MPC. As a concrete example, we take up secret

Manuscript received October 22, 2019.
Manuscript revised February 28, 2020.
†The author is with Digital Garage, Inc., Tokyo, 150-0042

Japan.
∗This work was done when the author was working at National

Institute of Advanced Industrial Science and Technology (AIST)
and supported by JST CREST JPMJCR 19F6.

a) E-mail: satsuya-ohata@dglab.com
DOI: 10.1587/transfun.2019DMI0001

sharing-based two-party computation and explain how to se-
curely compute arithmetic and boolean gates. We also dis-
cuss pros and cons between building blocks. In Sect. 3, we
explain the recent advances in practical MPC. More con-
cretely, we show how to construct higher-level secure pro-
tocols, recent situations on privacy-preserving data analysis
including secure machine learning, and the efforts for im-
plementing MPC with low-cost. Section 4 is the conclusion
of this paper.

2. An Overview of Secure Multi-Party Computation:
Settings, Security Notions, and Building Blocks

In this section, we show the technical overview of secure
multi-party computation.

2.1 Settings

There are many different settings that the previous works
have been considering. We here explain these settings.

(1) Client-Server Settings

We consider the N clients that have their secrets. We call
these clients as input parties. We consider the situation that
these N clients execute MPC to communicate with each
other. We call the parties that execute MPC as computing
parties. In the above case, input parties and computing par-
ties are the same. However, not necessarily, every input
party has rich computing resources. Moreover, we cannot
execute MPC using the secrets of arbitrary N clients if the
MPC protocol is optimized for fixed M(, N). In these situa-
tions, we usually consider the client-server (or outsourcing)
setting; that is, input parties are not the same as comput-
ing parties. In this setting, N clients send their (processed)
secrets to the M servers (=computing parties), and then M
servers execute MPC. After that, servers return their execu-
tion results to the clients.

(2) The Number of Parties

M varies in building blocks. In secret sharing-based MPC,
for example, we can set arbitral M ≥ 2. There are many ef-
ficient and optimized MPC schemes for fixed M. Note that
the collusion resistance depends on the building blocks. For
example, (see Sect. 2.3.1 for more details) when we consider
three-party computation (M = 3) using 2-out-of-3 secret
sharing schemes, the confidentiality is broken if two com-
puting parties collude. Besides, the property of computing

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

OHATA: RECENT ADVANCES IN PRACTICAL SECURE MULTI-PARTY COMPUTATION
1135

parties also affects on security and efficiency of MPC. The
setting that all computing parties do not deviate from the
protocol is called “semi-honest” settings (for more details,
see Sect. 2.2). As stronger security notions, we usually con-
sider “malicious” settings. In this security notions, we con-
sider the computing parties that deviate from the protocol.
In this setting, the rate of malicious parties affects the effi-
ciency of MPC. In recent situations, there are many practical
schemes in semi-honest or honest-majority settings.

(3) Communication Environments

MPC requires communications between computing parties.
Therefore, the performance of MPC relies not only on the
machine resources but on communication environments. In
many previous research results, the performance of MPC
has been evaluated over local area networks (LAN). In MPC
over LAN environments, the performance bottleneck is case
by case. In practice, however, we have many situations that
cannot assume LAN environments. In secret sharing-based
MPC with the client-server setting (in Sect. 2.3.1), for ex-
ample, MPC over LAN environments means all computing
parties work under the same administrator. It is difficult to
say the secrets are appropriately distributed between non-
colluding servers in this situation. Based on such a situa-
tion, recently, we can see research results on MPC over wide
area networks (WAN). In this setting, the performance bot-
tleneck is not computation but communication in most cases
because of its poor bandwidth and large latency. Which is
more important depends on the circuits we compute and the
data size we treat.

2.2 Security Notions

In the security evaluation of cryptographic research, we de-
fine the security goal and prove that the proposed schemes
satisfy them via security reduction. The security against
semi-honest (or, honest but curious) adversaries [3] is the
basic and minimum security notion in MPC research. In
this security notion, the adversaries try to obtain informa-
tion from their views but do not deviate from the protocol.
More concretely, security against the semi-honest adversary
is defined as follows:

Definition: Security against Semi-Honest Adversary Let
λ be the number of parties. Let f : ({0, 1}∗)λ → ({0, 1}∗)λ

be a probabilistic λ-ary functionality and fi(~x) denotes the
i-th element of f (~x) for ~x = (x1, x2, · · · , xλ) ∈ ({0, 1}∗)λ

and i ∈ {1, 2, · · · , λ}; f (~x) = (f1(~x), f2(~x), · · · , fλ(~x)). Let
Π be a λ-party protocol to compute the functionality f .
The view of party Pi for i ∈ {1, 2, · · · , λ} during an exe-
cution of Π on input ~x = (x1, x2, · · · , xλ) ∈ ({0, 1}∗)λ where
|x1| = |x2| = · · · = |xλ|, denoted by ViewΠ

i (~x), consists of
(xi, ri,mi,1, . . . ,mi,t), where xi represents Pi’s input, ri repre-
sents its internal random coins, and mi, j represents the j-th
message that Pi has received. The output of all parties af-
ter an execution of Π on input ~x is denoted as OutputΠ(~x).
Then for each party Pi, we say that Π privately computes

f in the presence of semi-honest corrupted party Pi if there
exists a probabilistic polynomial-time algorithm S such that

{(S(i, xi, fi(~x)), f (~x))} ≡ {(ViewΠ
i (~x),OutputΠ(~x))}

where the symbol ≡means that the two probability distribu-
tions are statistically indistinguishable.

As described in [3], the composition theorem for the
semi-honest model holds; that is, any protocol is privately
computed as long as its subroutines are privately computed.
We also usually consider the stronger security model; secu-
rity against malicious adversaries. In this notion, the adver-
saries may deviate from the protocol, and the composition
theorem does not hold; that is, the higher-level protocols
based on maliciously secure building blocks do not always
satisfy malicious security.

2.3 Building Blocks

There are some building blocks for MPC. Here, we mainly
explain the MPC based on secret sharing as an example and
show a short overview for others.

2.3.1 Secret Sharing

By using secret sharing (SS) (e.g., [4]), we can compute
arithmetic or boolean gates over shares (e.g., [2], [5]–[8]).
By combining the above gates, we can compute arbitrary
circuits over shares. In this setting, both inputs and outputs
are shares. Here, as an example, we explain how to securely
compute arithmetic or boolean gates in two-party settings
via Beaver triple-based secure two-party computation with
preprocessing [2], [9].

(1) Arithmetic Gates

We explain how to compute arithmetic ADD/MULT gates on
(2, 2)-additive SS. We use the standard the (2, 2)-additive SS
scheme, defined by

• Share(x): randomly choose r ∈ Z2n and let JxKA
1 = r

and JxKA
2 = x − r.

• Reconst(JxKA
1 , JxKA

2): output JxKA
1 + JxKA

2 .

We can compute fundamental operations: ADD(x, y) :=
x + y and MULT(x, y) := xy as follows:

• JzK ← ADD(JxK, JyK) can be done locally by just
adding each party’s share on x and on y.

• JwK ← MULT(JxK, JyK) can be done in various ap-
proaches. Here we explain the method based on Beaver
triples (BT) [9]. Such a triple consists of JbtK1 =

(JaK1, JbK1, JcK1) and JbtK2 = (JaK2, JbK2, JcK2) such that
(JaK1+JaK2)(JbK1+JbK2) = (JcK1+JcK2). Hereafter, a, b,
and c denote JaK1 +JaK2, JbK1 +JbK2, and JcK1 +JcK2, re-
spectively. We can compute these BT (that are used as
auxiliary inputs of the secure multiplication protocol)
in offline phase; that is, we can generate BT in advance
since it is independent of shares. In this protocol, each

1136
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

i-th party Pi (i ∈ {1, 2}) can compute the multiplication
share JzKi = JxyKi as follows:

1. Pi first compute (JxKi − JaKi) and (JyKi − JbKi).
2. P1/P2 sends them to P2/P1, respectively.
3. Pi reconstruct x′ = x − a and y′ = y − b.
4. P1 computes JzK1 = x′y′ + x′JbK1 + y′JaK1 + JcK1

and P2 computes JzK2 = x′JbK2 + y′JaK2 + JcK2.

JzK1 and JzK2 calculated as the above procedures are
valid shares of xy; that is, Reconst(JzK1, JzK2) = xy.

We abuse notations and write the ADD and MULT pro-
tocols simply as JxK + JyK and JxK · JyK, respectively. Note
that similarly to the ADD protocol, we can also locally com-
pute multiplication by constant c, denoted by c · JxK.

(2) Boolean Gates

In boolean XOR/AND gates, we use the standard (2, 2)-SS
scheme, defined by

• Share(x): randomly choose r ∈ Z2 and let JxKB
1 = r

and JxKB
2 = x ⊕ r.

• Reconst(JxKB
1 , JxKB

2): output JxKB
1 ⊕ JxKB

2 .

By converting + and − to ⊕ in arithmetic ADD and MULT
protocol, we can obtain XOR and AND protocol, respec-
tively. We can construct NOT and OR protocols from the
properties of these gates as follows:

• NOT(JxKB
1 , JxKB

2): P1 and P2 output ¬JxKB
1 and JxKB

2 ,
respectively.

• OR(JxK, JyK): From a basic property of OR gate, we
can construct OR by combining NOT and AND; that is,
OR(JxK, JyK) = ¬AND(¬JxK,¬JyK).

When we construct higher-level secure protocols, we use
these two types of shares and their conversion protocols (in
Sect. 3.1).

(3) Generation of Beaver Triples

We can compute BT in an offline phase since it is indepen-
dent of the inputs (x, y). We usually generate BT using HE
or Oblivious transfer (OT) between two computing parties
in advance [10]. To improve the time we need for this gen-
eration, the model that the third party generates BT without
using HE/OT and distributes them to the computing parties
has been proposed [11], [12].

2.3.2 Homomorphic Encryption

Homomorphic encryption (HE) is an encryption scheme that
can execute some operations (addition, multiplication, or
both) over ciphertexts. We have some types of HE; addi-
tive HE (e.g., [13]) that can compute addition, multiplicative
HE (e.g., [14]) that can compute multiplication, somewhat
(or leveled) HE (e.g., [15], [16]) that can compute addition
and the restricted number of multiplication, and fully HE
(FHE) (e.g., [17]) that can compute addition and multipli-
cation. There are also many papers on toolkit (e.g., [18])

and applications (e.g., [19]–[23]) based on HE. In MPC with
client-server settings based on FHE, there is no communica-
tion between computing parties, and this is a definite advan-
tage compared with MPC based on other building blocks.
However, it tends to require high computation costs. More-
over, we need to use the same key for encrypting plaintexts,
and this is a worrisome problem in multi-client settings. If
we adopt multi-key FHE (e.g., [24]), we do not need to take
care of this problem. However, in multi-key FHE, we need
to execute MPC for decrypting ciphertexts. Besides, practi-
cal performance is not enough and far from practical use.

2.3.3 Garbled Circuit

In garbled circuits (GC) (e.g., [1], [25]), we can construct
the garbled circuit and securely evaluate it as follows:

1. The party called “garbler” generates a garbled circuit;
that is, garbler prepares some ciphertexts for one AND
gate and assign keys for all input patterns. By repeating
this procedure, the garbler generates the garbled circuit
C(x, ·). Here, x is the input of the garbler, and C(x, ·)
does not leak the information of x. Then, the garbler
sends the garbled circuit to the other party called “eval-
uator”.

2. The evaluator tries to decrypt all the ciphertexts using
the key corresponding to the input of the evaluator y.
The evaluator can decrypt only one ciphertext and ob-
tain a new key for the next input. By repeating this pro-
cedure, evaluator eventually obtains the result of func-
tion evaluation C(x, y) without knowing x.

When we compute a large circuit, the size of data transfer
becomes large since we need to send more than one cipher-
text (= 128 bit, for example) per one AND gate [26], [27].
On the other hand, we can compute an arbitrary circuit with
constant small communication rounds. This means GC is
suitable for the computation of non-linear functions and the
computation over large-latency networks [28], [29]. We
have many application papers using GC (e.g., [30], [31]).

2.3.4 Trusted Hardware

We can execute MPC using trusted execution environments
(TEE). In Intel SGX [32], [33], a well-known realization
of TEE, we set the key in CPU as a root of trust and con-
struct isolated spaces (enclaves) on the RAM using the key.
Even the operating system cannot refer to the data in the en-
claves. Therefore, we can execute MPC via TEE [34], [35];
that is, we compute functions in enclaves. Although there
are some limitations (e.g., the size of enclaves), TEE-based
MPC works faster than all the other approaches. On the
other hand, there are many reports on side-channel attacks
for TEE (e.g., [36], [37]). Moreover, to believe the security
of TEE (and TEE-based MPC), we need to trust the correct-
ness of its design and manufacturing processes. TEE is a
relatively new technology, and there are some discussions
on its security including formalization (e.g., [38]).

OHATA: RECENT ADVANCES IN PRACTICAL SECURE MULTI-PARTY COMPUTATION
1137

2.4 Discussion

In Sect. 2.3, we show some building blocks for MPC. If
we focus on execution speed. TEE-based MPC is faster
than others. CYBERNETICA (a technology company in
Estonia) releases a new MPC system based on TEE called
“Sharemind HI” (previously, it has been proposed “Share-
mind MPC”, a SS-based MPC system). As we previously
denoted, however, whether the TEE-based MPC is secure or
not is related to the trust. Moreover, it is not easy to verify
the security of TEE by third parties since it is a hardware-
based system.

Other approaches (MPC based on HE/GC/SS) have
pros and cons on their performances. Although FHE-based
MPC does not need communications between computing
parties, its performance is far from practice in many cases
since the costs for data transfer and computation is ex-
tremely high. In other MPC protocols, whole performances
depend on the communication costs in many cases. GC-
based MPC is suitable for large-latency environments since
it can execute via small constant-round communications.
However, the size of data transfer is large. SS-based MPC
has opposite properties to GC-based MPC. Recently, to
overcome the disadvantage of SS-based MPC (that is, it re-
quires many communication rounds than other approaches),
the mutual transformations (or mixed protocols) between
SS-based MPC and GC-based MPC (e.g., [10], [39]) have
been proposed.

3. Recent Advances of Secure Multi-Party Computa-
tion

In this section, we show recent advances in higher-level se-
cure protocols, privacy-preserving data analysis, and frame-
works/compilers for implementing MPC applications with
low-cost. We mainly show the research results on SS-based
MPC, and some of them are based on GC or HE. We do not
mention the details in each section, parallelizing the compu-
tations and communications are the major premises to im-
prove the performance in SS-based MPC.

3.1 Higher-Level Secure Protocols

By combining the protocols computing arithmetic/boolean
gates in Sect. 2.3.1, we can construct higher-level secure
protocols. Here we explain the basic strategies for construct-
ing these protocols efficiently.

(1) Equality Check

An equality check protocol Equality(JxKA, JyKA) (e.g., [10],
[40], [41]) outputs JzKB, where z = 1 iff x = y. A basic strat-
egy for constructing Equality is as follows: we first compute
t = x − y and then check all bits of t are 0 or not. If all the
bits of t are 0, it means t = x − y = 0. We need O(log n)
communication rounds for the above procedure when we
use OR with a tree structure. Although the computation and

memory costs increase, we can obtain more round-efficient
Equality based on multi-fan-in gates [42]†.

(2) Less-Than Comparison

A less-than comparison protocol (Comparison(JxKA, JyKA))
outputs JzKB, where z = 1 iff the condition x < y holds
(e.g., [10], [40], [41]). A basic strategy for constructing
Comparison is to check the sign of x − y. More precisely,
we execute the following procedures:

1. We compute the MSB of x, y, x − y over shares and set
them as Jx′KB, Jy′KB, Jd′KB, respectively.

2. We set Jz′KB = Jx′KB ⊕ Jy′KB.
3. We compute JsKB = AND(Jz′KB, Jy′KB) and JtKB =

AND(Jz′KB, Jd′KB).
4. We compute JcpKB = JsKB ⊕ JtKB.

Here, cp = 1 if x < y holds. We can execute MSB extrac-
tion using an overflow detection algorithm Overflow. We
need to O(log n) communication rounds since we calculate
the overflow from the lower bits. If we adopt not the shares
over Z2n but Zp (p: prime), we can construct constant-round
Comparison via the different strategy [43], [44].

(3) Division

A division protocol Division(JNKA, JDKA) outputs JzKA,
where z = bN/Dc (e.g., [40], [45]). We usually follow the
strategy by Goldschmidt; that is, we set

N
D

=
NY0Y1 · · ·

DY0Y1 · · ·

and make the numerator (DY0Y1 · · ·) closer to 1 by choosing
appropriate Yi (i = 0, 1, · · ·) to approximate the value of N

D
by the value of the denominator (NY0Y1 · · ·). We need very
high computation costs and communication rounds for the
above procedures. Moreover, we need to expand the field
size from 2n to 2n′ (with n < n′) in this protocol since we
have to appropriately treat decimal numbers. When we use
n = 64, for example, we have to set n′ = 206.

(4) Share Conversion

The outputs of some protocols (e.g., Equality, Comparison)
are boolean shares. When we would like to use them as
the next inputs, we usually have to convert them into arith-
metic shares. When we execute table lookup over shares,
for example, the basic strategy is (1) converting index into
one-hot vector using Equality and (2) computing a dot prod-
uct. However, we need to execute a boolean to arithmetic
conversion protocol after (1) since the outputs of Equality
are boolean shares, and we cannot use them as inputs for
an arithmetic dot product protocol. Share conversion pro-
tocols (boolean-to-arithmetic, arithmetic-to-boolean) have
been actively studied [10], [40], [42], [46]–[49]. A basic
strategy for boolean-to-arithmetic conversion protocols is
considering boolean shares as arithmetic ones and adding

†This is the same for almost all the following protocols.

1138
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

correction terms. We also have some taylor-made share con-
version protocols [39], [42] for specific applications (e.g.,
ReLU function in neural networks).

(5) Other Protocols

There are many other efficient secure protocols. These are
useful for privacy-preserving database operations and data
analysis (in Sect. 3.2). More concretely, we have the pro-
tocols like table lookup [42], [50], the maximum/minimum
value extraction [42], sorting [51]–[56], database join [57],
[58], and floating point number computation [59]–[61]

3.2 Privacy-Preserving Data Analysis

There are many research results on privacy-preserving data
analysis based on MPC.

(1) Machine Learning

There are many research results on privacy-preserving data
mining (start from [62], [63]) and secure machine learn-
ing (e.g., [12], [39], [41], [64], [65]). Research targets
have varied, and recently there are many results on privacy-
preserving deep neural networks. The accuracy is lower
than the training using plaintexts in most cases because of
the following reasons:

• We usually approximate the non-linear functions (e.g.,
a sigmoid function, a softmax function) by polynomials
because of the performance. If we use lower-degree
polynomials (for making computation more efficient),
the approximation gets rough and loses the accuracy of
the machine learning model.

• Most of the previous research results adopt the small
parameters (e.g., the number of layers in multilayer
perceptron, the number of filters in convolutional neu-
ral networks) to complete the calculation within an ac-
ceptable time.

Recently, we have the results on fast neural network infer-
ences using the specificity of learning models [66]. In bi-
narized neural networks (neural networks that all param-
eters are restricted to the binary), for example, a heavy
Max-pooling function can be replaced by a lightweight OR
function since all the parameters in this model are binary.
However, we know immoderate quantization of parameters
leads to significant accuracy loss. To overcome this prob-
lem, the researcher on machine learning investigated the
moderate quantization for the training and inference in neu-
ral networks [67]. Moreover, this scheme executes train-
ing/inference using not floating-point numbers but integers.
This property is suitable for MPC, and the researcher on
MPC immediately adopted this strategy and showed a more
efficient and accurate construction of privacy-preserving
neural networks [68]. Although the original motivation of
quantization (in machine learning fields) was efficient hard-
ware implementations, it also profited to the MPC research
since a smaller range of plaintext leads to the more efficient
execution of MPC.

(2) String Analysis

There are many papers on privacy-preserving edit distance
computation. In this setting, each two-party has a string
(e.g., genome string) and computes the edit distance be-
tween these two strings. There are many research results
on approximate edit distance computation (e.g., [30], [69])
since we need costly dynamic programming for exact edit
distance computation. We also have results on the extended
edit distance computation like weighted edit distance and
Needleman-Wunsch distance [70]. There also exist some
results on string analysis other than edit distance compu-
tation. For example, we have some results on privacy-
preserving full-text search [21], [71], [72]. All previous
works on privacy-preserving full-text search are based on
HE, and its performance is not enough for large-scale ap-
plications (e.g., human genome analysis) so far. We can
also construct privacy-preserving text classification proto-
cols [73], [74] and apply them to the tweet analysis and hate-
speech detection. In this field, there is an example that we
can feel the importance of considering specific algorithms
of MPC. In the exact edit distance computation, we need to
compute min(a+1, b+e, c+1). Here, a, b, and c are arbitrary
integers and e ∈ {0, 1}. Although it requires high costs for
computing the above function since a + 1, b + e, and c + 1
can be large integers. However, we can reduce the costs by
considering b + min(a − b + 1, e, c − b + 1) since the con-
ditions a − b + 1 ∈ {0, 1, 2} and c − b + 1 ∈ {0, 1, 2} hold
from the property of edit distance computation. By using
this algorithm, we can significantly improve the efficiency
of privacy-preserving edit distance computation [23], [70].
Although such a trial is also meaningful in the standard com-
putation, it is more critical in MPC.

(3) The Nearest Neighbor Search

A (k-)nearest neighbor search protocol is a basis for many
applications (e.g., biometric matching, similar data search),
and there are many results [10], [30], [75]–[79] in the field
of MPC. Most of the protocols are based on HE or GC, and
recently we can see some results based on SS. Similar to the
case of edit distance computation, we can also the approxi-
mate nearest neighbor search [30], [79] for speeding up the
execution.

3.3 Low-Cost Implementation and Social Experiments

In general, implementing fast MPC correctly and securely
is difficult in practice. Therefore, only a few specialists can
implement MPC now, and this can be a barrier to wide us-
age in the real world. To break this situation, there are some
results on MPC compilers [48], [80], [81]. MPC compil-
ers take a (standard) program code (= function) written by
major programming languages (e.g., C, Python) or domain
specific language as input, and output a program code for
MPC of the same function. Some optimizations (e.g., mak-
ing the circuit shallow as possible, convert loop to vector)
are automatically applied. Such results are very important

OHATA: RECENT ADVANCES IN PRACTICAL SECURE MULTI-PARTY COMPUTATION
1139

for the social implementation of MPC.
A proof of concept is also important to proceed with

the social implementation of MPC. There is a paper on the
experiment by Boston University [82]. This experiment
computed the disparity in salaries between companies while
keeping the salary secret.

4. Conclusion

In this paper, we first explained the settings, security no-
tions, and building blocks for MPC. Then, we showed cur-
rent situations on applications and implementation of MPC.
As recent advances in this field,

• we explained the case example that integration with
other fields is progressing. An appropriate quantiza-
tion has been studied in machine learning fields, and
the researcher of privacy-preserving machine learning
adopted this trend for making their model more effi-
cient and accurate.

• we explained the importance of specific algorithms and
appropriate approximation for MPC. In edit distance
computation, by carefully devising the protocol, we
can replace the costly minimum value extraction proto-
col by alternative lightweight calculation while keeping
their outputs.

• we explained the efforts for improving usability (e.g.,
MPC compilers). Many organizations continue to de-
velop and enhance their frameworks/compilers. We
consider these are vital activities since requiring arti-
sans of MPC in developing privacy-preserving appli-
cations can be a bottleneck of social implementations.

We consider the performance of MPC applications will con-
tinue to be improved by accelerating the above research
trends. We would like to expect that MPC contributes a safer
and more convenient society in the future.

References

[1] A.C. Yao, “How to generate and exchange secrets (extended ab-
stract),” 27th Annual Symposium on Foundations of Computer Sci-
ence, pp.162–167, Toronto, Canada, Oct. 1986.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest major-
ity,” Proc. 19th Annual ACM Symposium on Theory of Computing,
pp.218–229, New York, New York, USA, 1987.

[3] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic
Applications, Cambridge University Press, 2004.

[4] A. Shamir, “How to share a secret,” Commun. ACM, vol.22, no.11,
pp.612–613, 1979.

[5] I. Damgård and J.B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” Proc. Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, pp.572–
590, Santa Barbara, CA, USA, Aug. 2007.

[6] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an hon-
est majority,” Proc, 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp.805–817, Vienna, Austria, Oct.
2016.

[7] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof,

K. Ohara, A. Watzman, and O. Weinstein, “Optimized honest-
majority MPC for malicious adversaries - breaking the 1 billion-gate
per second barrier,” 2017 IEEE Symposium on Security and Privacy,
SP 2017, pp.843–862, San Jose, CA, USA, May 2017.

[8] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi,
Y. Lindell, and A. Nof, “Fast large-scale honest-majority MPC for
malicious adversaries,” Proc. Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Part III,
pp.34–64, Santa Barbara, CA, USA, Aug. 2018.

[9] D. Beaver, “Efficient multiparty protocols using circuit randomiza-
tion,” Proc. Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, pp.420–432, Santa Barbara,
California, USA, Aug. 1991.

[10] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” 22nd An-
nual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, Feb. 2015.

[11] P. Mohassel, O. Orobets, and B. Riva, “Efficient server-aided 2pc for
mobile phones,” PoPETs, vol.2016, no.2, pp.82–99, 2016.

[12] P. Mohassel and Y. Zhang, “SecureML: A system for scalable
privacy-preserving machine learning,” 2017 IEEE Symposium on
Security and Privacy, SP 2017, pp.19–38, San Jose, CA, USA, May
2017.

[13] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Proc. Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, pp.223–238,
May 1999.

[14] R.L. Rivest, A. Shamir, and L.M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol.21, no.2, pp.120–126, 1978.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” Innovations in Theo-
retical Computer Science 2012, pp.309–325, Cambridge, MA, USA,
Jan. 2012.

[16] N. Attrapadung, G. Hanaoka, S. Mitsunari, Y. Sakai, K. Shimizu,
and T. Teruya, “Efficient two-level homomorphic encryption in
prime-order bilinear groups and A fast implementation in we-
bassembly,” Proc. 2018 on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2018, pp.685–697, Incheon, Repub-
lic of Korea, June 2018.

[17] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
Proc. 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pp.169–178, Bethesda, MD, USA, May–June 2009.

[18] X. Liu, R.H. Deng, K.R. Choo, and J. Weng, “An efficient privacy-
preserving outsourced calculation toolkit with multiple keys,” IEEE
Trans. Inf. Forensics Security, vol.11, no.11, pp.2401–2414, 2016.

[19] R. Bost, R.A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” 22nd Annual Network and Dis-
tributed System Security Symposium, NDSS 2015, San Diego, Cal-
ifornia, USA, Feb. 2015.

[20] R. Gilad-Bachrach, N. Dowlin, K. Laine, K.E. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy,” Proc. 33nd In-
ternational Conference on Machine Learning, ICML 2016, pp.201–
210, New York City, NY, USA, June 2016.

[21] K. Shimizu, K. Nuida, and G. Rätsch, “Efficient privacy-preserving
string search and an application in genomics,” Bioinformatics,
vol.32, no.11, pp.1652–1661, 2016.

[22] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” 27th
USENIX Security Symposium, USENIX Security 2018, pp.1651–
1669, Baltimore, MD, USA, Aug. 2018.

[23] K. Nuida, S. Ohata, S. Mitsunari, and N. Attrapadung, “Arbi-
trary univariate function evaluation and re-encryption protocols over
lifted-elgamal type ciphertexts,” IACR Cryptology ePrint Archive,
vol.2019, p.1233, 2019.

http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-540-74143-5_32
http://dx.doi.org/10.1007/978-3-540-74143-5_32
http://dx.doi.org/10.1007/978-3-540-74143-5_32
http://dx.doi.org/10.1007/978-3-540-74143-5_32
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.1007/3-540-46766-1_34
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.1515/popets-2016-0006
http://dx.doi.org/10.1515/popets-2016-0006
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/3196494.3196552
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1109/tifs.2016.2573770
http://dx.doi.org/10.1109/tifs.2016.2573770
http://dx.doi.org/10.1109/tifs.2016.2573770
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.1093/bioinformatics/btw050
http://dx.doi.org/10.1093/bioinformatics/btw050
http://dx.doi.org/10.1093/bioinformatics/btw050
https://eprint.iacr.org/2019/1233
https://eprint.iacr.org/2019/1233
https://eprint.iacr.org/2019/1233
https://eprint.iacr.org/2019/1233

1140
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

[24] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multi-
party computation on the cloud via multikey fully homomorphic en-
cryption,” Proc. 44th Symposium on Theory of Computing Confer-
ence, STOC 2012, pp.1219–1234, New York, NY, USA, May 2012.

[25] B. Applebaum, Y. Ishai, and E. Kushilevitz, “How to garble arith-
metic circuits,” SIAM J. Comput., vol.43, no.2, pp.905–929, 2014.

[26] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole -
Reducing data transfer in garbled circuits using half gates,” Proc.
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques, Part II, pp.220–250, Sofia, Bulgaria, April
2015.

[27] C. Kempka, R. Kikuchi, and K. Suzuki, “How to circumvent the
two-ciphertext lower bound for linear garbling schemes,” Proc. Ad-
vances in Cryptology - ASIACRYPT 2016 - 22nd International Con-
ference on the Theory and Application of Cryptology and Informa-
tion Security, Part II, pp.967–997, Hanoi, Vietnam, Dec. 2016.

[28] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest
secure multiparty computation for the internet,” Proc. 2016 ACM
SIGSAC Conference on Computer and Communications Security,
pp.578–590, Vienna, Austria, Oct. 2016.

[29] M. Byali, A. Joseph, A. Patra, and D. Ravi, “Fast secure computation
for small population over the internet,” Proc. 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
pp.677–694, Toronto, ON, Canada, Oct. 2018.

[30] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin, “Privacy-preserving
search of similar patients in genomic data,” PoPETs, vol.2018, no.4,
pp.104–124, 2018.

[31] B.D. Rouhani, M.S. Riazi, and F. Koushanfar, “DeepSecure: Scal-
able provably-secure deep learning,” Proc. 55th Annual Design Au-
tomation Conference, DAC 2018, pp.2:1–2:6, San Francisco, CA,
USA, June 2018.

[32] V. Costan, I.A. Lebedev, and S. Devadas, “Secure processors part
I: Background, taxonomy for secure enclaves and intel SGX archi-
tecture,” Foundations and Trends in Electronic Design Automation,
vol.11, no.1-2, pp.1–248, 2017.

[33] V. Costan, I.A. Lebedev, and S. Devadas, “Secure processors part II:
Intel SGX security analysis and MIT sanctum architecture,” Foun-
dations and Trends in Electronic Design Automation, vol.11, no.3,
pp.249–361, 2017.

[34] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A. Sadeghi,
G. Scerri, and B. Warinschi, “Secure multiparty computation from
SGX,” Financial Cryptography and Data Security - 21st Interna-
tional Conference, FC 2017, pp.477–497, Sliema, Malta, April
2017.

[35] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “IRON:
Functional encryption using intel SGX,” Proc. 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
pp.765–782, Dallas, TX, USA, Oct.–Nov. 2017.

[36] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software grand exposure: SGX cache attacks are prac-
tical,” 11th USENIX Workshop on Offensive Technologies, WOOT
2017, Vancouver, BC, Canada, Aug. 2017.

[37] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “In-
ferring fine-grained control flow inside SGX enclaves with branch
shadowing,” 26th USENIX Security Symposium, USENIX Security
2017, pp.557–574, Vancouver, BC, Canada, Aug. 2017.

[38] P. Subramanyan, R. Sinha, I.A. Lebedev, S. Devadas, and S.A.
Seshia, “A formal foundation for secure remote execution of en-
claves,” Proc. 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp.2435–2450, Dallas, TX,
USA, Oct.–Nov. 2017.

[39] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” Proc. 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, pp.35–52, Toronto,
ON, Canada, Oct. 2018.

[40] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, “High-

performance secure multi-party computation for data mining appli-
cations,” Int. J. Inf. Secur., vol.11, no.6, pp.403–418, 2012.

[41] M.S. Riazi, C. Weinert, O. Tkachenko, E.M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” Proc. 2018 on Asia
Conference on Computer and Communications Security, AsiaCCS
2018, pp.707–721, Incheon, Republic of Korea, June 2018.

[42] S. Ohata and K. Nuida, “Communication-efficient (client-aided) se-
cure two-party protocols and its application,” International Confer-
ence on Financial Cryptography and Data Security, pp 369–385, July
2020.

[43] H. Morita, N. Attrapadung, T. Teruya, S. Ohata, K. Nuida, and
G. Hanaoka, “Constant-round client-aided secure comparison proto-
col and its applications,” Proc. Computer Security - 23rd European
Symposium on Research in Computer Security, ESORICS 2018,
Part II, pp.395–415, Barcelona, Spain, Sept. 2018.

[44] H. Morita, N. Attrapadung, T. Teruya, S. Ohata, K. Nuida, and
G. Hanaoka, “Constant-round client-aided two-server secure com-
parison protocol and its applications,” IEICE Trans. Fundamentals,
vol.E103-A, no.1, pp.21–32, Jan. 2020.

[45] H. Morita, N. Attrapadung, S. Ohata, K. Nuida, S. Yamada,
K. Shimizu, G. Hanaoka, and K. Asai, “Secure division proto-
col and applications to privacy-preserving chi-squared tests,” Inter-
national Symposium on Information Theory and Its Applications,
ISITA 2018, pp.530–534, Singapore, Oct. 2018.

[46] R. Kikuchi, K. Chida, D. Ikarashi, W. Ogata, K. Hamada, and
K. Takahashi, “Secret sharing with share-conversion: Achieving
small share-size and extendibility to multiparty computation,” IEICE
Trans. Fundamentals, vol.E98-A, no.1, pp.213–222, Jan. 2015.

[47] R. Kikuchi, D. Ikarashi, K. Hamada, and K. Chida, “Adaptively and
unconditionally secure conversion protocols between ramp and lin-
ear secret sharing,” IEICE Trans. Fundamentals, vol.E98-A, no.1,
pp.223–231, Jan. 2015.

[48] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and
H. Tsuchida, “Generalizing the SPDZ compiler for other protocols,”
Proc. 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, pp.880–895, Toronto, ON, Canada,
Oct. 2018.

[49] R. Kikuchi, N. Attrapadung, K. Hamada, D. Ikarashi, A. Ishida,
T. Matsuda, Y. Sakai, and J.C.N. Schuldt, “Field extension in secret-
shared form and its applications to efficient secure computation,”
Proc. Information Security and Privacy - 24th Australasian Confer-
ence, ACISP 2019, pp.343–361, Christchurch, New Zealand, July
2019.

[50] G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the communication barrier in secure com-
putation using lookup tables,” 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California,
USA, Feb.–March, 2017.

[51] B. Zhang, “Generic constant-round oblivious sorting algorithm for
MPC,” Proc. Provable Security - 5th International Conference,
ProvSec 2011, pp.240–256, Xi’an, China, Oct. 2011.

[52] K.V. Jónsson, G. Kreitz, and M. Uddin, “Secure multi-party sort-
ing and applications,” IACR Cryptology ePrint Archive, vol.2011,
p.122, 2011.

[53] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi,
“Practically efficient multi-party sorting protocols from comparison
sort algorithms,” Information Security and Cryptology - ICISC 2012
- 15th International Conference, pp.202–216, Seoul, Korea, Nov.
2012.

[54] D. Bogdanov, S. Laur, and R. Talviste, “A practical analysis of obliv-
ious sorting algorithms for secure multi-party computation,” Proc.
Secure IT Systems - 19th Nordic Conference, NordSec 2014, pp.59–
74, Tromsø, Norway, Oct. 2014.

[55] K. Hamada, D. Ikarashi, K. Chida, and K. Takahashi, “Oblivious
radix sort: An efficient sorting algorithm for practical secure multi-
party computation,” IACR Cryptology ePrint Archive, vol.2014,

http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1137/120875193
http://dx.doi.org/10.1137/120875193
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-46803-6_8
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1007/978-3-662-53890-6_32
http://dx.doi.org/10.1145/2976749.2978347
http://dx.doi.org/10.1145/2976749.2978347
http://dx.doi.org/10.1145/2976749.2978347
http://dx.doi.org/10.1145/2976749.2978347
http://dx.doi.org/10.1145/3243734.3243784
http://dx.doi.org/10.1145/3243734.3243784
http://dx.doi.org/10.1145/3243734.3243784
http://dx.doi.org/10.1145/3243734.3243784
http://dx.doi.org/10.1515/popets-2018-0034
http://dx.doi.org/10.1515/popets-2018-0034
http://dx.doi.org/10.1515/popets-2018-0034
http://dx.doi.org/10.1109/dac.2018.8465894
http://dx.doi.org/10.1109/dac.2018.8465894
http://dx.doi.org/10.1109/dac.2018.8465894
http://dx.doi.org/10.1109/dac.2018.8465894
http://dx.doi.org/10.1561/9781680833010
http://dx.doi.org/10.1561/9781680833010
http://dx.doi.org/10.1561/9781680833010
http://dx.doi.org/10.1561/9781680833010
http://dx.doi.org/10.1561/1000000052
http://dx.doi.org/10.1561/1000000052
http://dx.doi.org/10.1561/1000000052
http://dx.doi.org/10.1561/1000000052
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1145/3133956.3134106
http://dx.doi.org/10.1145/3133956.3134106
http://dx.doi.org/10.1145/3133956.3134106
http://dx.doi.org/10.1145/3133956.3134106
http://dx.doi.org/10.1145/3133956.3134098
http://dx.doi.org/10.1145/3133956.3134098
http://dx.doi.org/10.1145/3133956.3134098
http://dx.doi.org/10.1145/3133956.3134098
http://dx.doi.org/10.1145/3133956.3134098
http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1145/3196494.3196522
http://dx.doi.org/10.1145/3196494.3196522
http://dx.doi.org/10.1145/3196494.3196522
http://dx.doi.org/10.1145/3196494.3196522
http://dx.doi.org/10.1145/3196494.3196522
https://doi.org/10.1007/978-3-030-51280-4_20
https://doi.org/10.1007/978-3-030-51280-4_20
https://doi.org/10.1007/978-3-030-51280-4_20
https://doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1587/transfun.2019cip0023
http://dx.doi.org/10.1587/transfun.2019cip0023
http://dx.doi.org/10.1587/transfun.2019cip0023
http://dx.doi.org/10.1587/transfun.2019cip0023
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.1587/transfun.e98.a.213
http://dx.doi.org/10.1587/transfun.e98.a.213
http://dx.doi.org/10.1587/transfun.e98.a.213
http://dx.doi.org/10.1587/transfun.e98.a.213
http://dx.doi.org/10.1587/transfun.e98.a.223
http://dx.doi.org/10.1587/transfun.e98.a.223
http://dx.doi.org/10.1587/transfun.e98.a.223
http://dx.doi.org/10.1587/transfun.e98.a.223
http://dx.doi.org/10.1145/3243734.3243854
http://dx.doi.org/10.1145/3243734.3243854
http://dx.doi.org/10.1145/3243734.3243854
http://dx.doi.org/10.1145/3243734.3243854
http://dx.doi.org/10.1145/3243734.3243854
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.1007/978-3-030-21548-4_19
http://dx.doi.org/10.14722/ndss.2017.23097
http://dx.doi.org/10.14722/ndss.2017.23097
http://dx.doi.org/10.14722/ndss.2017.23097
http://dx.doi.org/10.14722/ndss.2017.23097
http://dx.doi.org/10.14722/ndss.2017.23097
http://dx.doi.org/10.1007/978-3-642-24316-5_17
http://dx.doi.org/10.1007/978-3-642-24316-5_17
http://dx.doi.org/10.1007/978-3-642-24316-5_17
https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-642-37682-5_15
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://dx.doi.org/10.1007/978-3-319-11599-3_4
http://dx.doi.org/10.1007/978-3-319-11599-3_4
https://eprint.iacr.org/2014/121
https://eprint.iacr.org/2014/121
https://eprint.iacr.org/2014/121

OHATA: RECENT ADVANCES IN PRACTICAL SECURE MULTI-PARTY COMPUTATION
1141

p.121, 2014.
[56] K. Chida, K. Hamada, D. Ikarashi, R. Kikuchi, N. Kiribuchi, and

B. Pinkas, “An efficient secure three-party sorting protocol with an
honest majority,” IACR Cryptology ePrint Archive, vol.2019, p.695,
2019.

[57] S. Laur, R. Talviste, and J. Willemson, “From oblivious AES to ef-
ficient and secure database join in the multiparty setting,” Proc. Ap-
plied Cryptography and Network Security - 11th International Con-
ference, ACNS 2013, pp.84–101, Banff, AB, Canada, June 2013.

[58] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Rmind: A tool for
cryptographically secure statistical analysis,” IEEE Trans. Depend-
able Sec. Comput., vol.15, no.3, pp.481–495, 2018.

[59] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure com-
putation on floating point numbers,” 20th Annual Network and Dis-
tributed System Security Symposium, NDSS 2013, San Diego, Cal-
ifornia, USA, Feb. 2013.

[60] L. Kamm and J. Willemson, “Secure floating point arithmetic and
private satellite collision analysis,” Int. J. Inf. Secur., vol.14, no.6,
pp.531–548, 2015.

[61] M. Aliasgari, M. Blanton, and F. Bayatbabolghani, “Secure compu-
tation of hidden Markov models and secure floating-point arithmetic
in the malicious model,” Int. J. Inf. Secur., vol.16, no.6, pp.577–601,
2017.

[62] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” Proc.
2000 ACM SIGMOD International Conference on Management of
Data, pp.439–450, Dallas, Texas, USA, May 2000.

[63] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Proc.
Advances in Cryptology - CRYPTO 2000, 20th Annual International
Cryptology Conference, pp.36–54, Santa Barbara, California, USA,
Aug. 2000.

[64] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” Proc. 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
pp.619–631, Dallas, TX, USA, Oct.–Nov. 2017.

[65] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” PoPETs, vol.2019, no.3,
pp.26–49, 2019.

[66] M.S. Riazi, M. Samragh, H. Chen, K. Laine, K.E. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural net-
work inference,” 28th USENIX Security Symposium, USENIX Se-
curity 2019, pp.1501–1518, Santa Clara, CA, USA, Aug. 2019.

[67] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with
integers in deep neural networks,” 6th International Conference on
Learning Representations, ICLR 2018, Conference Track Proceed-
ings, Vancouver, BC, Canada, April–May 2018.

[68] N. Agrawal, A.S. Shamsabadi, M.J. Kusner, and A. Gascón, “QUO-
TIENT: Two-party secure neural network training and prediction,”
Proc. 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2019, pp.1231–1247, London, UK, Nov.
2019.

[69] T. Schneider and O. Tkachenko, “EPISODE: Efficient privacy-
preserving similar sequence queries on outsourced genomic
databases,” Proc. 2019 ACM Asia Conference on Computer and
Communications Security, AsiaCCS 2019, pp.315–327, Auckland,
New Zealand, July 2019.

[70] R. Zhu and Y. Huang, “Efficient privacy-preserving edit distance and
beyond,” IACR Cryptology ePrint Archive, vol.2017, p.683, 2017.

[71] Y. Yamamoto and M. Oguchi, “A decentralized system of genome
secret search implemented with fully homomorphic encryption,”
2017 IEEE International Conference on Smart Computing, SMART-
COMP 2017, pp.1–6, Hong Kong, China, May 2017.

[72] H. Sudo, K. Nuida, and K. Shimizu, “An efficient private evaluation
of a decision graph,” Information Security and Cryptology - ICISC
2018 - 21st International Conference, pp.143–160, Seoul, South Ko-
rea, Nov. 2018.

[73] G. Costantino, A.L. Marra, F. Martinelli, A. Saracino, and
M. Sheikhalishahi, “Privacy-preserving text mining as a service,”

2017 IEEE Symposium on Computers and Communications, ISCC
2017, pp.890–897, Heraklion, Greece, July 2017.

[74] D. Reich, A. Todoki, R. Dowsley, M.D. Cock, and A.C.A.
Nascimento, “Privacy-preserving classification of personal text mes-
sages with secure multi-party computation,” Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, pp.3752–3764,
Vancouver, BC, Canada, Dec. 2019.

[75] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” Proc. Privacy En-
hancing Technologies, 9th International Symposium, PETS 2009,
pp.235–253, Seattle, WA, USA, Aug. 2009.

[76] A. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” Information, Security and Cryptology
- ICISC 2009, 12th International Conference, pp.229–244, Seoul,
Korea, Dec. 2009.

[77] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-
preserving biometric identification,” Proc. Network and Distributed
System Security Symposium, NDSS 2011, San Diego, California,
USA, Feb. 2011.

[78] M. Barni, T. Bianchi, D. Catalano, M.D. Raimondo, R.D. Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva,
“Privacy-preserving fingercode authentication,” Multimedia and Se-
curity Workshop, MM&Sec 2010, pp.231–240, Roma, Italy, Sept.
2010.

[79] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I.P. Razenshteyn,
and M.S. Riazi, “SANNS: Scaling up secure approximate k-nearest
neighbors search,” 29th Usenix Security Symposium, 2020.

[80] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and
T. Schneider, “HyCC: Compilation of hybrid protocols for practi-
cal secure computation,” Proc. 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pp.847–861,
Toronto, ON, Canada, Oct. 2018.

[81] Y. Li and W. Xu, “PrivPy: General and scalable privacy-preserving
data mining,” Proc. 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, pp.1299–
1307, Anchorage, AK, USA, Aug. 2019.

[82] L. Qin, A. Lapets, F. Jansen, P. Flockhart, K.D. Albab, I. Globus-
Harris, S. Roberts, and M. Varia, “From usability to secure comput-
ing and back again,” Fifteenth Symposium on Usable Privacy and
Security, SOUPS 2019, Santa Clara, CA, USA, Aug. 2019.

Satsuya Ohata received B.Eng. degree
at Chiba University in 2011 and Ph.D. (Infor-
mation Science and Technology) degree at The
University of Tokyo in 2016. He is currently a
postdoctoral researcher at the National Institute
of Advanced Industrial Science and Technology
(AIST). His research interests are practical cryp-
tography and theoretical cybersecurity.

https://eprint.iacr.org/2014/121
https://eprint.iacr.org/2014/121
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
http://dx.doi.org/10.1007/978-3-642-38980-1_6
http://dx.doi.org/10.1007/978-3-642-38980-1_6
http://dx.doi.org/10.1007/978-3-642-38980-1_6
http://dx.doi.org/10.1007/978-3-642-38980-1_6
http://dx.doi.org/10.1109/tdsc.2016.2587623
http://dx.doi.org/10.1109/tdsc.2016.2587623
http://dx.doi.org/10.1109/tdsc.2016.2587623
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/s10207-016-0350-0
http://dx.doi.org/10.1007/s10207-016-0350-0
http://dx.doi.org/10.1007/s10207-016-0350-0
http://dx.doi.org/10.1007/s10207-016-0350-0
http://dx.doi.org/10.1145/342009.335438
http://dx.doi.org/10.1145/342009.335438
http://dx.doi.org/10.1145/342009.335438
http://dx.doi.org/10.1007/3-540-44598-6_3
http://dx.doi.org/10.1007/3-540-44598-6_3
http://dx.doi.org/10.1007/3-540-44598-6_3
http://dx.doi.org/10.1007/3-540-44598-6_3
http://dx.doi.org/10.1145/3133956.3134056
http://dx.doi.org/10.1145/3133956.3134056
http://dx.doi.org/10.1145/3133956.3134056
http://dx.doi.org/10.1145/3133956.3134056
http://dx.doi.org/10.2478/popets-2019-0035
http://dx.doi.org/10.2478/popets-2019-0035
http://dx.doi.org/10.2478/popets-2019-0035
http://dx.doi.org/10.1145/3319535.3339819
http://dx.doi.org/10.1145/3319535.3339819
http://dx.doi.org/10.1145/3319535.3339819
http://dx.doi.org/10.1145/3319535.3339819
http://dx.doi.org/10.1145/3319535.3339819
http://dx.doi.org/10.1145/3321705.3329800
http://dx.doi.org/10.1145/3321705.3329800
http://dx.doi.org/10.1145/3321705.3329800
http://dx.doi.org/10.1145/3321705.3329800
http://dx.doi.org/10.1145/3321705.3329800
https://eprint.iacr.org/2017/683
https://eprint.iacr.org/2017/683
http://dx.doi.org/10.1109/smartcomp.2017.7946977
http://dx.doi.org/10.1109/smartcomp.2017.7946977
http://dx.doi.org/10.1109/smartcomp.2017.7946977
http://dx.doi.org/10.1109/smartcomp.2017.7946977
http://dx.doi.org/10.1007/978-3-030-12146-4_10
http://dx.doi.org/10.1007/978-3-030-12146-4_10
http://dx.doi.org/10.1007/978-3-030-12146-4_10
http://dx.doi.org/10.1007/978-3-030-12146-4_10
http://dx.doi.org/10.1109/iscc.2017.8024639
http://dx.doi.org/10.1109/iscc.2017.8024639
http://dx.doi.org/10.1109/iscc.2017.8024639
http://dx.doi.org/10.1109/iscc.2017.8024639
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-14423-3_16
http://dx.doi.org/10.1007/978-3-642-14423-3_16
http://dx.doi.org/10.1007/978-3-642-14423-3_16
http://dx.doi.org/10.1007/978-3-642-14423-3_16
http://dx.doi.org/10.1145/1854229.1854270
http://dx.doi.org/10.1145/1854229.1854270
http://dx.doi.org/10.1145/1854229.1854270
http://dx.doi.org/10.1145/1854229.1854270
http://dx.doi.org/10.1145/1854229.1854270
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
http://dx.doi.org/10.1145/3243734.3243786
http://dx.doi.org/10.1145/3243734.3243786
http://dx.doi.org/10.1145/3243734.3243786
http://dx.doi.org/10.1145/3243734.3243786
http://dx.doi.org/10.1145/3243734.3243786
http://dx.doi.org/10.1145/3292500.3330920
http://dx.doi.org/10.1145/3292500.3330920
http://dx.doi.org/10.1145/3292500.3330920
http://dx.doi.org/10.1145/3292500.3330920

