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SUMMARY The direct sequence code division multiple access (DS-
CDMA) technique is widely used in various communication systems.
When adopting orthogonal variable spreading factor (OVSF) codes, DS-
CDMA is particularly suitable for supporting multi-user/multi-rate data
transmission services. A useful property of OVSF codes is that no two code
sequences assigned to different users will ever interfere with each other,
even if their spreading factors are different. Conventional OVSF codes
are constructed based on binary orthogonal codes, called Walsh codes, and
OVSF code sequences are binary sequences. In this paper, we propose new
OVSF codes that are constructed based on polyphase orthogonal codes and
consist of complex sequences in which each symbol is represented as a
complex number. Construction of the proposed codes is based on a tree
structure that is similar to conventional OVSF codes. Since the proposed
codes are generalized versions of conventional OVSF codes, any conven-
tional OVSF code can be presented as a special case of the proposed codes.
Herein, we show the method used to construct the proposed OVSF codes,
after which the orthogonality of the codes, including conventional OVSF
codes, is investigated. Among the advantages of our proposed OVSF codes
is that the spreading factor can be designed more flexibly in each layer than
is possible with conventional OVSF codes. Furthermore, combination of
the proposed code and a non-binary phase modulation is well suited to DS-
CDMA systems where the level fluctuation of signal envelope is required
to be suppressed.
key words: DS-CDMA, OVSF codes, complex sequences, polyphase or-
thogonal codes

1. Introduction

The direct sequence code division multiple access (DS-
CDMA) technique is widely used in various communication
systems [1]. One of the useful properties of this technique
is that, when an orthogonal code is used as a signature code
in DS-CDMA, multi-user interference is canceled because
any two code sequences are orthogonal and will never in-
terfere with each other. There are two kinds of orthogonal
codes: binary and non-binary. Walsh-Hadamard codes, re-
ferred to as Walsh codes in this paper, are binary orthogonal
codes whose code sequences are binary sequences. On the
other hand, non-binary orthogonal codes include orthogonal
codes over the complex number field and orthogonal codes
over non-binary finite fields [2], [3]. Polyphase orthogonal
codes are orthogonal codes over the complex number field
whose code sequences are complex number sequences [4]–
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[6].
Recently, orthogonal variable spreading factor (OVSF)

codes have been attracting attention for use in synchronous
DS-CDMA systems that support multi-rate data transmis-
sion services [7]–[10]. For example, in some practical wire-
less communication systems, OVSF codes are used to re-
alize multi-rate communications [11], [12]. These OVSF
codes are represented by code trees in which the sequences
at the mth layer are codewords of the Walsh code with a
spreading factor of 2m. When a code sequence is assigned
to one user, its descendant and ancestor code sequences in
the code tree cannot be assigned to another user because two
sequences will not be orthogonal if one of them is an ances-
tor of the other. A useful property of OVSF codes is that
any two code sequences assigned to different users will not
interfere with each other, even if their spreading factors are
different. Since the conventional OVSF codes are based on
Walsh codes, their code sequences are binary sequences in
which each symbol is presented as an element in {+1,−1}.

In this paper, we propose complex OVSF codes whose
code sequences consist of complex number field elements.
Since the proposed codes are generalized versions of con-
ventional OVSF codes, any conventional OVSF code can
be presented as a special case of the proposed codes. In
the sections below, we show the construction method of the
proposed complex OVSF codes, in which several polyphase
orthogonal codes whose degrees are arbitrary positive inte-
gers are used in order to expand code trees, and then investi-
gate the orthogonality of the proposed codes. An advantage
of our proposed complex OVSF codes is that the spreading
factor can be designed more flexibly in each layer than is
possible with conventional OVSF codes. Furthermore, com-
bination of the proposed code and a non-binary phase mod-
ulation is well suited to DS-CDMA systems where the level
fluctuation of signal envelope is required to be suppressed.

The remainder of the paper is organized as follows.
Section 2 reviews the Walsh codes, the polyphase orthogo-
nal codes, and the conventional OVSF codes. Then, the con-
struction of proposed complex OVSF codes is introduced in
Sect. 3. In Sect. 4, the orthogonality of the proposed codes is
discussed. Section 5 describes the features of the proposed
codes in some application systems. Finally, Sect. 6 offers
some concluding remarks.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

2.1 Walsh Codes

A Hadamard matrix H2m contains all of the 2m Walsh code
sequences with a length of 2m as its rows [1], [6]. H2m is
generated by the following recursive algorithm:

H1 =
[
1
]
, (1)

H2m+1 =

[
H2m H2m

H2m −H2m

]
, (2)

where m ≥ 0. Equation (2) can be also written with the
Kronecker product as follows:

H2m+1 = H2 ⊗ H2m , (3)

where A ⊗ B is the Kronecker product of matrices A and B.
For example, H2, H4 and H8 are calculated as follows:

H2 =

[
1 1
1 −1

]
, (4)

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , (5)

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


. (6)

Walsh codes have perfect orthogonality at zero time de-
lay. Since any two code sequences with the same length are
orthogonal, multi-user interference can be canceled when
Walsh codes are used in synchronous DS-CDMA systems.

2.2 Polyphase Orthogonal Codes

A polyphase orthogonal code of degree q is given by the
following matrix:

Gq =



ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωq−1

ω0 ω2 ω4 · · · ω2(q−1)

...
...

...
. . .

...

ω0 ωq−1 ω2(q−1) · · · ω(q−1)2


, (7)

where q is a positive integer. A complex number ω is a
primitive qth root of unity, whose order is q, and represented
by

ω = e2π j/q, (8)

where j =
√
−1. By using ω, the q different qth roots of

unity are presented as ω0, ω1, ω2, · · · , ωq−1. Polyphase or-
thogonal code sequences with a length of q are presented as

the rows of Gq, and it is known that the following equality
holds for any positive integer k:

q−1∑
i=0

ωik =

{
q, if k ≡ 0 (mod q),
0, if k . 0 (mod q). (9)

For example, G1, G2, G3, and G4 are presented as fol-
lows:

G1 =
[
e0π j/1

]
=
[
1
]
, (10)

G2 =

[
e0π j/2 e0π j/2

e0π j/2 e2π j/2

]
=

[
1 1
1 −1

]
, (11)

G3 =

e
0π j/3 e0π j/3 e0π j/3

e0π j/3 e2π j/3 e4π j/3

e0π j/3 e4π j/3 e8π j/3


=


1 1 1
1 (−1 +

√
3 j)/2 (−1 −

√
3 j)/2

1 (−1 −
√

3 j)/2 (−1 +
√

3 j)/2

 , (12)

G4 =


e0π j/4 e0π j/4 e0π j/4 e0π j/4

e0π j/4 e2π j/4 e4π j/4 e6π j/4

e0π j/4 e4π j/4 e8π j/4 e12π j/4

e0π j/4 e6π j/4 e12π j/4 e18π j/4


=


1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 . (13)

Although G1 and G2 are equal to H1 and H2, respectively,
G2m is not equal to H2m for m ≥ 2. When q ≥ 3,
the polyphase orthogonal codes sequences are complex se-
quences.

Let ak be the kth sequence of a polyphase orthogonal
code and be represented by

ak = (ak,0, ak,1, ak,2, · · · , ak,q−1)

= (ω0, ωk, ω2k, · · · , ω(q−1)k) (14)

for k = 0, 1, · · · , q − 1. The correlation between two se-
quences ak1 and ak2 at zero time delay is defined as follows:

R(ak1 , ak2 ) =

q−1∑
i=0

ak1,ia
∗
k2,i, (15)

where a∗k,i denotes the complex conjugate of ak,i. From
Eqs. (9) and (15), the auto-correlation and cross-correlation
of a polyphase orthogonal code are given as follows:

R(ak1 , ak2 ) =

{
q, if k1 = k2,
0, if k1 , k2,

(16)

where q is a code length, k1 = 0, 1, · · · , q − 1, and k2 =

0, 1, · · · , q − 1. The above equation shows that any two dif-
ferent polyphase orthogonal code sequences with the same
length are mutually orthogonal over the complex number
field.
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Fig. 1 Code tree for the conventional OVSF code with L = 3. This code
is also represented as the complex OVSF (2, 2, 2) code.

2.3 Conventional OVSF Codes

OVSF codes have been proposed for synchronous DS-
CDMA supporting multi-rate data transmission services [7].
An OVSF code is represented by a code tree in which se-
quences in the mth layer are codewords for a Walsh code
with a spreading factor of 2m. Each OVSF code sequence
corresponds to a node of its code tree. When a code se-
quence is assigned to one user, its descendant and ancestor
code sequences in the code tree cannot be assigned to any
other user. Therefore, a particular property of OVSF codes
is that no two code sequences assigned to different users will
ever interfere with each other, even if the spreading factors
of the sequences are different.

Suppose the code tree representing an OVSF code has
L + 1 layers, where L is a positive integer. As for conven-
tional OVSF codes, the number of code sequences at the
mth layer is 2m for m = 0, 1, · · · , L. The spreading factor
of code sequences at the mth layer is also 2m. Shorter code
sequences in the code tree are assigned to users transmit-
ting data at higher rates, while longer code sequences are
assigned to users transmitting data at lower rates.

Figure 1 shows a conventional OVSF code tree with
L = 3. Here, we can see that the spreading factor of code
sequences at the mth layer is twice of that of code sequences
at the (m − 1)th layer for m = 1, 2, · · · , L. In Fig. 1, the
code sequence c2m,k corresponds to the kth row in H2m (m =

0, 1, 2, · · · , L, k = 0, 1, 2, · · · , 2m − 1).

3. Construction of Complex OVSF Codes

As mentioned above, this study proposes new OVSF codes
constructed over the complex number field. The proposed
codes, which are constructed based on polyphase orthogo-
nal codes shown in 2.2, have a property similar to conven-
tional OVSF codes in that no two code sequences assigned
to different users will ever interfere with each other, even if
their spreading factors are different.

3.1 Code Sequences

First, we describe the code sequences in each layer of the

proposed complex OVSF codes. Suppose the code tree rep-
resenting a proposed code has L + 1 layers and rm is the
spreading factor at the mth layer (m = 0, 1, 2, · · · , L). rm is
given by

rm =

m∏
i=0

qi, m = 0, 1, 2, · · · , L, (17)

where q0 = 1 and q1, q2, · · · , qL are arbitrary integers greater
than one. For m ≥ 1, qm shows the ratio between the spread-
ing factors of the mth and (m − 1)th layers. The proposed
code with the above parameters is hereinafter referred to as
a complex OVSF (q1, q2, · · · , qL) code.

Suppose Mq1,q2,··· ,qm is a matrix containing all of the se-
quences at the mth layer in the code tree representing a com-
plex OVSF (q1, q2, · · · , qL) code for m ≥ 1. In that case,

Mq1 = Gq1 , (18)

and Mq1,q2,··· ,qm for 2 ≤ m ≤ L is represented with the Kro-
necker product as follows:

Mq1,q2,··· ,qm = Gqm ⊗ Mq1,q2,··· ,qm−1 . (19)

For example, the zeroth, first, second and third layer
matrices of the complex OVSF (4, 2, 2) code are shown as
follows:

H1 =
[
1
]
, (20)

M4 = G4 =


1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

 , (21)

M4,2 =

[
M4 M4
M4 −M4

]

=



1 1 1 1 1 1 1 1
1 j −1 − j 1 j −1 − j
1 −1 1 −1 1 −1 1 −1
1 − j −1 j 1 − j −1 j
1 1 1 1 −1 −1 −1 −1
1 j −1 − j −1 − j 1 j
1 −1 1 −1 −1 1 −1 1
1 − j −1 j −1 j 1 − j


, (22)

M4,2,2 =

[
M4,2 M4,2
M4,2 −M4,2

]

=



1 1 1 1 1 1 · · · 1
1 j −1 − j 1 j · · · − j
1 −1 1 −1 1 −1 · · · −1
1 − j −1 j 1 − j · · · j
1 1 1 1 −1 −1 · · · −1
...

...
...

...
...

...
. . .

...
1 −1 1 −1 −1 1 · · · −1
1 − j −1 j −1 j · · · j


. (23)

The following example shows the second layer matrix of
the complex OVSF (4, 4) code whose zeroth and first layer
matrices are equal to those of the complex OVSF (4, 2, 2)



MATSUSHIMA and YAMASAKI: COMPLEX OVSF CODES BASED ON POLYPHASE SEQUENCES
1221

code:

M4,4 =


M4 M4 M4 M4
M4 jM4 −M4 − jM4
M4 −M4 M4 −M4
M4 − jM4 −M4 jM4



=



1 1 1 1 1 1 · · · 1
1 j −1 − j 1 j · · · − j
1 −1 1 −1 1 −1 · · · −1
1 − j −1 j 1 − j · · · j
1 1 1 1 j j · · · − j
...

...
...

...
...

...
. . .

...
1 −1 1 −1 − j j · · · − j
1 − j −1 j − j −1 · · · −1


. (24)

Another example of the first and second layer matrices of
the complex OVSF (3, 2) code whose zeroth layer matrix is
equal to that of the complex OVSF (4, 2, 2) and (4, 4) codes
is shown below:

M3 = G3 =

e
0π j/3 e0π j/3 e0π j/3

e0π j/3 e2π j/3 e4π j/3

e0π j/3 e4π j/3 e8π j/3

 , (25)

M3,2 =

[
M3 M3
M3 −M3

]

=



e0π j/3 e0π j/3 e0π j/3 e0π j/3 e0π j/3 e0π j/3

e0π j/3 e2π j/3 e4π j/3 e0π j/3 e2π j/3 e4π j/3

e0π j/3 e4π j/3 e8π j/3 e0π j/3 e4π j/3 e8π j/3

e0π j/3 e0π j/3 e0π j/3 e3π j/3 e3π j/3 e3π j/3

e0π j/3 e2π j/3 e4π j/3 e3π j/3 e5π j/3 e7π j/3

e0π j/3 e4π j/3 e8π j/3 e3π j/3 e7π j/3 e11π j/3


,

(26)

All of the row sequences in the matrix Mq1,q2,··· ,qm of any
complex OVSF (q1, q2, · · · , qL) code are mutually orthogo-
nal over the complex number field for m = 1, 2, · · · , L. This
fact can be proven by mathematical induction as follows:

1. For m = 1 all of the row sequences in the matrix Mq1

are mutually orthogonal, since Mq1 = Gq1 , and all of
the rows of Gq1 are mutually orthogonal as shown in
Eq. (16).

2. Assuming that all of the row sequences in the matrix
Mq1,q2,··· ,qm−1 are mutually orthogonal, all of the row se-
quences in the Mq1,q2,··· ,qm are shown to be mutually or-
thogonal as follows:
Mq1,q2,··· ,qm is obtained by

Mq1,q2,··· ,qm = Gqm ⊗ M′

=



ω0
mM′ ω0

mM′ · · · ω0
mM′

ω0
mM′ ω1

mM′ · · · ω
qm−1
m M′

ω0
mM′ ω2

mM′ · · · ω
2(qm−1)
m M′

...
...

. . .
...

ω0
mM′ ω

qm−1
m M′ · · · ω

(qm−1)2

m M′


,

(27)

where ωm is a primitive qmth root of unity and is repre-
sented by

ωm = e2π j/qm (28)

and

M′ = Mq1,q2,··· ,qm−1 . (29)

In Eq. (27), each M′ has rm−1 rows that are mutually or-
thogonal and Mq1,q2,··· ,qm has rm = qmrm−1 rows. Let b0,
b1, · · · , and brm−1 be the rows in Mq1,q2,··· ,qm numbered
beginning at the top. Two different sequences, bk1 and
bk2 (k1 = 0, 1, · · · , rm − 1, k2 = 0, 1, · · · , rm − 1), are
orthogonal for k1 ≡ k2 (mod rm−1), since all of the
rows in Gqm are orthogonal. Two sequences, bk1 and
bk2 , are orthogonal for k1 . k2 (mod rm−1), since all
of the rows in M′ are orthogonal. Therefore, any two
different rows in Mq1,q2,··· ,qm are mutually orthogonal.

Due to the induction principle, all of the row sequences in
the matrix Mq1,q2,··· ,qm of any complex OVSF (q1, q2, · · · , qL)
code are mutually orthogonal for m = 1, 2, · · · , L.

3.2 Code Trees

Secondly, we show the construction method of code trees
for the proposed complex OVSF codes.

Figure 2 shows the code tree of the proposed com-
plex OVSF (q1, q2, q3) code. Here, it can be seen that in
the code tree of the complex OVSF (q1, q2, · · · , qL) code,

Fig. 2 Code tree for the proposed complex OVSF (q1, q2, q3) code.
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Fig. 3 Code tree for the proposed complex OVSF (4, 2, 2) code.

Fig. 4 Code tree for the proposed complex OVSF (4, 4) code.

the mth layer generally has rm sequences with a spread-
ing factor of rm. A sequence c(q1,q2,··· ,qm)

rm,k
in the mth layer

in the code tree corresponds to the kth row of Mq1,q2,··· ,qm

(k = 0, 1, · · · , rm − 1, m = 1, 2, · · · , L). Figures 3, 4, and
5 show specific examples of code trees for complex OVSF
(4, 2, 2), (4, 4), and (3, 2) codes, respectively.

In general, the root node at the zeroth layer in the com-
plex OVSF (q1, q2, · · · , qL) code tree corresponds to the se-
quence

c1,0 = (1).

The r1 nodes at the first layer are the sequences

c(q1)
r1,0
, c(q1)

r1,1
, · · · , c(q1)

r1,r1−1,

where r1 = q1. These sequences are the r1 rows of Mq1 , and

Mq1 is equal to Gq1 . c(q1)
r1,k

corresponds to the kth row of Mq1 .
The r2 nodes at the second layer are the sequences

c(q1,q2)
r2,0

, c(q1,q2)
r2,1

, · · · , c(q1,q2)
r2,r2−1,

where r2 = q2r1. These sequences are the r2 rows of Mq1,q2 ,
and Mq1,q2 is equal to Gq2 ⊗ Mq1 . c(q1,q2)

r2,k
corresponds to the

kth row of Mq1,q2 .
The rm nodes at the mth layer are the sequences

c(q1,q2,··· ,qm)
rm,0

, c(q1,q2,··· ,qm)
rm,1

, · · · , c(q1,q2,··· ,qm)
rm,rm−1 ,

where rm = qmrm−1 and m = 1, 2, · · · , L. These sequences
are the rm rows of Mq1,q2,··· ,qm , and Mq1,q2,··· ,qm is equal to
Gqm ⊗ Mq1,q2,··· ,qm−1 . c(q1,q2,··· ,qm)

rm,k
corresponds to the kth row

of Mq1,q2,··· ,qm .
The only important caution that must be made is that
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Fig. 5 Code tree for the proposed complex OVSF (3, 2) code.

the qm descendants at the mth layer whose ancestor is
c(q1,q2,··· ,qm−1)

rm−1,i
must be

c(q1,q2,··· ,qm)
rm,i

, c(q1,q2,··· ,qm)
rm,rm−1+i , c(q1,q2,··· ,qm)

rm,2rm−1+i , · · · , c(q1,q2,··· ,qm)
rm,(qm−1)rm−1+i

for i = 0, 1, · · · , rm−1 − 1.
For example, in the case of the complex OVSF (3, 2)

code whose code tree is described in Fig. 5, r1 and r2 are set
to r1 = 3 and r2 = 6, respectively. For m = 2 and i = 0, the
two descendants of c(3)

3,0 must be

c(3,2)
6,0 and c(3,2)

6,3 .

For m = 2 and i = 1, the two descendants of c(3)
3,1 must be

c(3,2)
6,1 and c(3,2)

6,4 .

And for m = 2 and i = 2, the two descendants of c(3)
3,2 must

be

c(3,2)
6,2 and c(3,2)

6,5 .

As with conventional OVSF codes, when a code se-
quence is assigned to one user, its descendant and ancestor
code sequences cannot be assigned to any other user. As
a result, the complex OVSF codes have a property that no
two code sequences assigned to different users will ever in-
terfere with each other, even if the spreading factors of the
sequences are different.

For complex OVSF (q1, q2, · · · , qL) codes, q1, q2, · · · , qL
are arbitrary integers greater than one. When q1 = q2 =

· · · = qL = 2, the complex OVSF code is equivalent to the
conventional OVSF code. Therefore, a particular property
of the proposed OVSF codes is that the spreading factor can
be designed more flexibly in each layer than is possible with
conventional OVSF codes.

3.3 Code Symbols

Next, we will investigate the code symbols consisting the
complex OVSF code sequences.

The mth layer code sequences consist of Qm complex
Qmth roots of unity,

e0π j/Qm , e2π j/Qm , e4π j/Qm , · · · , e(Qm−1)2π j/Qm , (30)

where

Qm = LCM(q1, q2, · · · , qm) (31)

and m = 1, 2, · · · , L. In Eq. (31), LCM(q1, q2, · · · , qm)
denotes the least common multiple of m integers
q1, q2, · · · , qm.

For example, the symbols of the complex OVSF
(4, 2, 2) and (4, 4) code sequences are in {1, j,−1,− j}, that
is the set of the four complex fourth roots of unity, re-
gardless of the layer. However, as for the complex OVSF
(3, 2) code, the symbols of the first layer sequences are in
{e0π j/3, e2π j/3, e4π j/3}, that is the set of the three complex
third roots of unity, and the symbols of the second layer
sequences are in {e0π j/3, e1π j/3, e2π j/3, e3π j/3, e4π j/3, e5π j/3} =

{e0π j/6, e2π j/6, e4π j/6, e6π j/6, e8π j/6, e10π j/6}, that is the set of
the six complex sixth roots of unity.

3.4 Code Sequence Assignment in Multi-Rate Transmis-
sion

Complex OVSF codes are useful in multi-rate DS-CDMA
transmission systems in a way that is similar to conventional
OVSF codes. Specifically, shorter code sequences are as-
signed to users transmitting data at higher rates, and longer
code sequences are assigned to users transmitting data at
lower rates. When a code sequence is assigned to one user,
its descendant and ancestor code sequences are not assigned
to any other user.

We will show an example of code sequence assignment
in multi-rate transmission. Consider the DS-CDMA system
using the complex OVSF (3, 2) code whose code tree is rep-
resented with Fig. 5. In Fig. 5, the spreading factors of the
zeroth, first, and second layers are 1, 3, and 6, respectively.
There are four cases of code sequence assignment depend-
ing on the number of users and their data rates.

Case 1: When six users transmit data at a low rate, each of
the six code sequences at the second layer, specifically
c(3,2)

6,0 , c(3,2)
6,3 , c(3,2)

6,1 , c(3,2)
6,4 , c(3,2)

6,2 and c(3,2)
6,5 , is assigned to

each user.
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Fig. 6 Code orthogonality. Two sequences v(k) and u are mutually orthogonal for 0 ≤ k ≤ qm −1, and
two sequences v and w are mutually orthogonal for any information symbols I(0), I(1), · · · , I(qm−1).

Case 2: When one user transmits data at a higher rate and
remaining four users transmit data at a lower rate, one
of the first layer sequences, e.g., c(3)

3,0, is assigned to the
higher-rate user. The second layer sequences whose
ancestors are not c(3)

3,0, specifically c(3,2)
6,1 , c(3,2)

6,4 , c(3,2)
6,2 and

c(3,2)
6,5 , are assigned to the four lower-rate users.

Case 3: When two users transmit data at a higher rate and
remaining two users transmit data at a lower rate, two
of the first layer sequences, e.g., c(3)

3,0 and c(3)
3,1, are as-

signed to the two higher-rate users. The second layer
sequences whose ancestor is c(3)

3,2, specifically c(3,2)
6,2 and

c(3,2)
6,5 , are assigned to the two lower-rate users.

Case 4: When three users transmit data at a high rate, each
of the three code sequences at the first layer, specifi-
cally c(3)

3,0, c(3)
3,1 and c(3)

3,2, is assigned to each user.

4. Orthogonality of Complex OVSF Codes

In this section, we will investigate the orthogonality of the
proposed complex OVSF (q1, q2, · · · , qL) codes, which in-
clude the conventional OVSF code as a case of q1 = q2 =

· · · = qL = 2 as mentioned above.
Let u = (u0, u1, · · · , urm−1−1) be a code sequence at

the (m − 1)th layer in a complex OVSF code, and v =

(v0, v1, · · · , vrm−1) be a code sequence at the mth layer in the
same code. Note that u is not an ancestor of v, rm and rm−1
are the spreading factors of the code sequences v and u, re-
spectively, and rm = qmrm−1.

The sequence v can be divided into qm blocks with a
length of rm−1 symbols, as shown in Fig. 6. If we suppose
v(0), v(1), · · · , v(qm−1) are the blocks, each block v(k) can be
represented as xu′, where x is one of the qmth roots of unity
and u′ is the ancestor of v at the (m − 1)th layer. Since u is
not an ancestor of v, the sequences u′ and u are orthogonal
over the complex number field. More specifically,

R(u′,u) =

rm−1−1∑
t=0

u′tu
∗
t = 0, (32)

where u′ = (u′0, u′1, · · · , u′rm−1−1). Thus, the two sequences
v(k) and u are orthogonal for 0 ≤ k ≤ qm − 1.

Furthermore, suppose w is a sequence

w = (I(0)u, I(1)u, · · · , I(qm−1)u), (33)

where I(0), I(1), · · · , I(qm−1) are qm information symbols. The
correlation of v and w is equal to zero, even if u is modulated
by any information symbols. From these facts, it is shown
that u in the (m − 1)th layer and v in the mth layer do not
interfere with each other if the ancestor code sequence of v is
not u. In a similar way, it is shown that two code sequences
that are not ancestors or descendants of each other will not
interfere with each other, regardless of whether their layers
are adjacent in the code tree.

5. Features in Application Systems

5.1 Suppression of Signal Envelope Fluctuation

A system model of DS-CDMA transmitter can be illustrated
with Fig. 7. Spreading a symbol by a polyphase code is
the equivalent of rotating its signal phase in each chip du-
ration. When data are modulated with p-ary phase shift
keying (PSK) and spread with a q-phase code, a spread sig-
nal in each chip duration corresponds to one of the Q-phase
signals, where Q = LCM(p, q). Spreading a symbol by
a binary code increases the number of signal constellation
points, when p is an odd number. For example, combination
of ternary PSK modulation and a binary spreading code pro-
duces hexagonal phase signals. In contrast, combination of
ternary PSK modulation and a ternary-phase spreading code
does not increase the number of signal constellation points.
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Fig. 7 System model of DS-CDMA transmitter.

Thus, properly designed polyphase codes are suited for DS-
CDMA systems employing non-binary phase modulation,
such as ternary, quadrature and hexagonal PSK [13], [14].

In addition, polyphase codes are inherently superior to
binary codes in suppressing the level fluctuation of signal
envelope. A binary code consists of two elements, 1 and
−1. Each element rotates the signal phase 0 or 180 de-
grees. The phase shift transitions of spread symbols often
pass nearby the origin of the complex plane in chip intervals.
The probability of the phase shift transitions passing nearby
the origin is about 1/2, even if the data modulation scheme
is not binary. Such transitions make the signal-envelope dy-
namic range wide [15]. On the other hand, when the system
employs a complex OVSF code, the envelope fluctuation
can be suppressed. For example, the probability of transi-
tions passing nearby the origin for the complex OVSF (4, 4)
code shown in Fig. 4 is about 1/4. Thus, using the complex
OVSF codes decreases the probability of transitions pass-
ing nearby the origin, and suppresses the level fluctuation
of signal envelope. This property stems from polyphase or-
thogonal codes constructing the complex OVSF codes.

As mentioned above, polyphase orthogonal codes are
inherently superior to binary orthogonal codes in suppress-
ing the level fluctuation of signal envelope. This prop-
erty of polyphase orthogonal codes is also attractive to or-
thogonal frequency division multiplexing (OFDM)-CDMA
systems. A variable spreading factor code composed of
polyphase symbols has been proposed for OFDM-CDMA
systems [16], [17]. This code is constructed based on a bi-
nary tree, and its maximum spreading factor is restricted to
N = 2n. The code sequences of lengths 2m (m ≤ n) have the
property that the orthogonality in time domain is preserved
in frequency domain as well. As a result, the code provides
variable spreading factor property and low peak-to-average
power ratio (PAPR) property in OFDM-CDMA systems, but
its spreading factors are restricted to 2m.

On the other hand, the OFDM-CDMA systems are out
of the scope of this research. The complex OVSF codes in
the present paper provide variable spreading factor property
and smaller signal-envelope dynamic range. Furthermore,
a particular property of the proposed OVSF codes is that
the spreading factor can be designed more flexibly in each
layer than is possible with conventional OVSF codes. This
flexibility stems from the non-binary code trees which are
extended by several polyphase codes with different or the
same code lengths as shown in Sect. 3.

5.2 Effects of Multipath Fading and Synchronization Er-
rors

The auto-correlations and cross-correlations between differ-
ent shifts of code sequences are not always zero for the con-
ventional OVSF codes. The proposed complex OVSF codes
have similar auto-correlation and cross-correlation proper-
ties with the conventional OVSF codes. DS-CDMA sys-
tems using these OVSF codes normally require strict syn-
chronization. In addition, in wireless communication envi-
ronment, the orthogonality of the OVSF codes is often de-
stroyed with time differences of multipath arrivals. There-
fore, when the OVSF codes are applied to wireless commu-
nications, some techniques should be introduced to enforce
the resistance against multipath channels and synchroniza-
tion errors. Since the conventional OVSF codes have been
practically used in the wideband DS-CDMA (W-CDMA)
system [11], there exist a lot of studies to overcome these
problems.

In the W-CDMA system, pilot symbols are inserted
into every data slot for coherent RAKE combining at the
receiver. In Refs. [8] and [12], performance of a DS-CDMA
system employing a conventional OVSF code in combina-
tion with a long random code is evaluated under frequency
selective Rayleigh fading environment. At the receiver of
this system, a matched filter resolves the multipath and the
pilot symbols are used for channel estimation to perform
coherent RAKE combining. Other techniques have also
been introduced to suppress the effect of multipath fading
in CDMA systems. In Refs. [18] and [19], channel equal-
ization techniques are presented in order to reduce the effect
of multipath fading in CDMA systems. In addition, OVSF
codes with Zero Correlation Zone (ZCZ) property are pre-
sented in Ref. [20], where ZCZ is a technique to mitigate
interference by controlling synchronization. Though these
techniques have been originally proposed for CDMA sys-
tems including W-CDMA, some of them would also be ap-
plied to the CDMA systems using proposed complex OVSF
codes similarly.

6. Conclusion

In this paper, a class of complex OVSF codes, that is a new
class of OVSF codes, is proposed. Since the complex OVSF
codes are generalized versions of the conventional OVSF
codes, any conventional OVSF code can be presented as
a special case of the complex OVSF codes. Although the
code trees of the proposed codes are similar to those of the
conventional OVSF codes, the spreading factor of the mth
layer in the proposed codes is not limited to 2m. As a result,
these complex OVSF codes can be applied to multi-rate data
transmission services more flexibly than the conventional
OVSF codes. In addition, the complex OVSF codes have
the advantage of suppressing the level fluctuations of signal
envelope in DS-CDMA systems employing non-binary PSK
modulation.
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