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LETTER
CsiNet-Plus Model with Truncation and Noise on CSI Feedback

Feng LIU†, Xuecheng HE†, Conggai LI†a), Nonmembers, and Yanli XU†, Member

SUMMARY For the frequency-division-duplex (FDD)-based massive
multiple-input multiple-output (MIMO) systems, channel state informa-
tion (CSI) feedback plays a critical role. Although deep learning has been
used to compress the CSI feedback, some issues like truncation and noise
still need further investigation. Facing these practical concerns, we pro-
pose an improved model (called CsiNet-Plus), which includes a trunca-
tion process and a channel noise process. Simulation results demonstrate
that the CsiNet-Plus outperforms the existing CsiNet. The performance in-
terchangeability between truncated decimal digits and the signal-to-noise-
ratio helps support flexible configuration.
key words: massive MIMO, CSI feedback, truncation, channel noise, deep
learning

1. Introduction

With the continuous development of communication tech-
nologies, the demand for high-speed networks is growing
stronger. As a key technology of 5G, massive multiple-input
multiple-output (MIMO) technology is receiving more and
more attentions in the industry, and it is considered as the
key to improving network speed. For massive MIMO sys-
tems, channel state information (CSI) plays a crucial role
of the system, which can increase channel capacity, im-
prove bit error rate, and reduce hardware complexity. In
the frequency-division-duplex (FDD) mode, the user equip-
ment (UE) needs to send its CSI back to the base station
(BS), and the BS adjusts the system transmission policy ac-
cording to the CSI. In order to guarantee timely CSI, the
feedback delay must be less than the coherence time. Thus,
MIMO systems need to deliver CSI on time to ensure real-
time performance, especially in rapidly changing channels.
However, as the number of antennas increases, the data vol-
ume of feedback CSI also increases, which leads to high
demands placed on the system. Therefore, it is crucial to
propose a feasible compression algorithm.

Compression sensing (CS) has been proposed to solve
the compression problem of large-scale antenna feedback
channels [1] which caused widespread concerns. However,
this model is not suitable for practical channel transmis-
sion due to its high complexity. In 2018, [2] proposed the
CsiNet neural network model for compressed CSI feedback
of massive MIMO with spatial redundancy, while [3] fur-
ther proposed the LSTM-NET to compress the CSI with
temporal redundancy. In 2019, [4] proposes a combination
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of LSTM module and FCN in the neural network architec-
ture for the problem of insufficient tracking time correlation
[2], [3]. Although these models have excellent feedback ef-
ficiency, many scholars have further improved it from differ-
ent aspects. [5] proposes DualNet-MAG and DualNet-ABS
to improve spectral efficiency using bi-directional channel
reciprocity. [6] uses the idea of combining deep learning
and superposition coding to superimpose CSI on the BS’s
uplink user data sequence. [7] proposes a CSI compression
feedback algorithm based on deep learning, which is suit-
able for single-user and multi-user scenarios. [8] proposes a
new deep AutoEncoder which considers the feedback error
and feedback delay. And DeepCMC scheme [9] for process-
ing CSI of different dimensions is used to further compress
the encoded data using quantization and entropy coding.

Nevertheless, the issues of truncation and channel
noise during the CSI feedback should be further investi-
gated. For the truncation issue, because the encoded data
is often float, the average code length (ACL) will increase
rapidly along with the number of float data digits. Although
[9] uses uniform quantization to reduce feedback overhead,
the impact of quantization precision is not considered. The
other issue is about the channel noise, which is inevitable in
practical communication but has not been considered for the
CS-based CSI feedback. The influence of channel noise on
the system performance should also be measured. Overall,
how to truncate the data in variant decimal digits and adapt
to different channel noise level is an urgent and important
problem to be addressed.

In this letter, we propose a CsiNet-Plus model based on
the existing CsiNet to solve the above problem. In response
to the truncation issue, in 2017, Twitter researcher Lucas
proposed a way to solve its back propagation in image com-
pression [10]. For the channel noise issue, Sebastian pro-
posed a two-step optimization method to solve the problem
of channel joint processing [11]. Motivated by the ideas
of these two articles, we can solve the above CSI feedback
problem with truncation and noise. Entropy coding is used
to reduce the feedback overhead with truncated data in dif-
ferent numbers of digits. A two-step optimization algorithm
is used to train the data with channel noise. The impacts on
the ACL and system performance are compared by simula-
tion. The performance interchangeability between the trun-
cated decimal digits and the signal-to-noise-ratio (SNR) is
demonstrated, which can be used for flexible configuration.
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Fig. 1 CsiNet-Plus model, including the encoding/decoding, and proposed modules.

2. System Model

We assume a simple single-cell single-user downlink mas-
sive MIMO system with FDD mode. There are Nt antennas
at BS and a single antenna at the UE. The system is operated
in orthogonal frequency division multiplexing (OFDM) over
Ñc subcarriers. The CSI data H̃ in frequency-spatial domain
has a dimension of Ñc×Nt, which should be transmitted back
to the BS side. To reduce the feedback amount of CSI, we
follow the framework of [2] using the deep learning method.

Figure 1 shows the system model of CsiNet-Plus
scheme, where the middle box indicates the proposed mod-
ule. The first and third boxes respectively represent the en-
coding and decoding modules given by [2]. The data com-
pression is divided into two steps.

Firstly, the original channel coefficient matrix H̃ can be
converted by 2D inverse discrete Fourier transform (IDFT)†

for initial compression, as shown below

H0 =
1

Ñc × Nt
Fd H̃FH

a (1)

where Fd and Fa are Ñc × Ñc and Nt × Nt IDFT matrices,
respectively. And (·)H is the Hermitian operation on a vec-
tor/matrix. Due to limited multipath time delay, performing
2D-IDFT can transform H̃ into a sparsed matrix, with only
the first Nc(< Ñc) rows having distinct non-zero values. This
operation will give a Ñc × Nt matrix. For simplicity, we di-
rectly use H to denotes the first Nc rows of H0.

With H as input, the system uses an improved version
of CsiNet (referred to as CsiNet-Plus) to further compress
the data. The encoding module is mainly composed of one
convolution layer and one dense layer with linear activation
function, among which the former is used to extract features
of the original data and the latter is used to extract com-
pressed data. The convolutional layer uses a 3 × 3 kernel to
generate two feature maps. Then we uses batch normaliza-
tion (BN) and relu functions (Relu) to prevent overfitting.

†DFT is performed here in [2]. However, we find that the in-
verse operation of DFT and IDFT will obtain a better performance.
So we use this inversed version in this letter.

The encoding module generates the following output

Sout = fen{H, θ1} (2)

where θ1 is the encoding parameter set to be determined
by training and fen{·} is the encoding module. Define the
compression ratio as λ = M/N, which M and N represents
the row dimension of Sout and H, respectively. So Sout is a
λNc × Nt matrix.

Then the encoded data is handled by the proposed mod-
ule, which is composed by truncation and channel noise pro-
cesses, as shown in Fig. 1. For the former process, there are
three steps including truncation layer, entropy coding and
decoding, while the latter adds noise into the channel be-
fore entropy decoding. This module produces the output
Śout with the same dimension as Sout.

After that, the decoding module will provide a reverse
function of the encoding module. It consists mainly of one
dense layer, one convolution layer and two RefineNet [2],
where RefineNet is based on residual neural networks [12].
The dense layer is used to expand M-dimensional data to
N-dimension, while RefineNet is used to restore data. The
output gives an estimation of H with a dimension of Nc ×Nt

Ĥ = fde{Śout, θ2} (3)

where θ2 is the decoding parameter set to be determined by
training and fde{·} is the decoding module.

Finally, the estimation of the original channel data H̃
can be obtained by performing 2D-DFT as

ˆ̃H = FeĤ0FH
f (4)

where Ĥ0 is the Ñc × Nt matrix after dimension expansion
with zero padding from Ĥ, while Fe and F f are Ñc× Ñc and
Nt × Nt DFT matrices, respectively.

The powerful ability of deep learning can improve the
compression performance of the system, but it does not con-
sider the communication problems that occur in the actual
transmission process, such as the truncation of decimal dig-
its and channel noise in the feedback transmission.

1. In a normal deep learning system, the data storage type
is float. The original information passes through the en-
coding module and the format of the output is float, too.
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So the decimal digits will play an important role when
considering the compress problem to reduce the feed-
back amount. Obviously, if the more decimal digits of
the data are truncated, the less ACL will be obtained at
the cost of accuracy degradation.

2. In the actual transmission process, encoding data needs
to be transmitted through the channel with additive
noise. Different SNR has different effects on the per-
formance of the feedback system. However, existing
models like [2] and [3] ignore the impact of channel
noise on the system, i.e., Sout = Śout, which is an ideal
scenario. With channel noise, the recovery accuracy of
the decoding module will be highly dependent on the
accuracy of Śout.

In this paper, we solve the above two issues by adding
the proposed module between the encoding and decoding
modules. The detail will be given in the next section.

3. Proposed CsiNet-Plus Scheme

To measure the effect of truncation and/or channel noise, we
will consider the following three scenarios.

3.1 Only Truncation without Channel Noise

Without channel noise, the entropy encoding and decoding
modules will be directly connected and only truncation op-
eration is left. The truncated layer performs decimal digit
truncation of Sout denoted by

Śout = Sd
tr = T{Sout, d} (5)

where T{·, d} is truncation operation and d (called truncation
length) is number of decimal digits to be kept by rounding
operation on the d + 1 th decimal digit. By controlling d,
the ACL in entropy coding can be adjusted. A smaller d can
reduce the ACL and improve the feedback efficiency.

In a neural network, the system calculates the output by
propagating the data in the forward direction. This output is
then compared to the expected result to yield a mean square
error (MSE)

Err = MS E(Ĥ,H) =
1

NcNt
‖Ĥ − H‖2F (6)

where ‖A‖F indicates the Frobenius norm of matrix A.
Through back-propagation [13], this error is reversed back
to the original system to reduce the error value by adjusting
the parameters of each layer.

In the traditional communications, truncating data is a
very common operation. But in neural networks, this can
cause significant problem because we cannot calculate the
gradient of the truncation process. So the gradient cannot be
directly back-propagated. Here we will use the scheme pro-
posed by [10] to solve this problem. By regarding truncation
error as additive noise, we have the following approximation

Str ≈ Sout + u (7)

The gradient of the truncation process can be computed as

d
dSout

Str ≈
d

dSout

(Sout + u) = 1 (8)

After truncation layer, the probability distribution of Str
will be changed in comparison with that of Sout. Thus we
further use the entropy encoding like Huffman algorithm to
reduce the ACL without any performance loss. Accordingly,
entropy decoding will be implemented at the base station.

3.1.1 Parameter Training

To obtain the encoding/decoding parameters θ̂d
1 and θ̂d

2 , we
give the following training process for the above scenario to
minimize the MSE estimation of H

(θ̂d
1 , θ̂

d
2) = arg min

θ1,θ2

‖fde{T{fen{H, θ1}, d}, θ2} − H‖2F (9)

3.2 Only Channel Noise without Truncation

Without truncation, there is no truncation related process
such as the entropy encoding/decoding. The noise is as-
sumed to be additive Gaussian distributed and not truncated.
The input-output relationship is

Śout = Sk
ns = N{Sout, nk} = Sout + nk (10)

where nk is the additive noise with S NR = k, N{·, nk} is used
to denote the channel noise process.

3.2.1 Parameter Training

To determine the training parameter, if we take the channel
noise process as a layer that does not affect the system and
set its back propagation gradient to a constant, the optimiza-
tion speed of the model will be greatly affected, since there
are too many external operations like modulation and de-
modulation which cannot be speed up by the GPU resource.
Thus we turn to the two-step optimization [11] and [14] for
training the encoding and decoding parameters.

In the first step, θ̂1 and θ̂2 are trained by minimizing the
MSE of H in the ideal setting without channel noise as

(θ̂1, θ̂2) = arg min
θ1,θ2

‖fde{fen{H, θ1}, θ2} − H‖2F (11)

In the second step, θ̂1 is fixed and θ̂k
2 is further trained

according to θ̂2 and nk

θ̂k
2 = arg min

θ̂2

‖fde{N{Sout, nk}, θ̂2} − H‖2F (12)

The specific steps are shown by Algorithm 1.
By training the decoding parameter set θ̂k

2 under dif-
ferent k, we can obtain the candidates of parameter settings
with variant SNR level.
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Algorithm 1 Two-step training for the scenario with only
channel noise
Input: Training Sets: D = (H,H); epochs T = 1000; S NR = k
Output: θ̂1, θ̂k

2
1: Step 1. Determine the encoding parameters θ̂1
2: Initialize. Randomly choose θ1 and θ2
3: for t = 1→ T do
4: Update θ̂1 and θ̂2 by training the CsiNet to compute Eq.(11)
5: end for
6: Get S out by computing fen{H, θ̂1}.
7: Step 2. Determine the decoding parameters θ̂2
8: Initialize. Use θ̂2 obtained in Step 1 for initialization
9: Get Sk

ns by computing Eq.(10).
10: for t = 1→ T do
11: Update θ̂k

2 by training decoding module to compute Eq.(12)
12: end for
13: return θ̂1, θ̂

k
2

3.3 Simultaneous Truncation and Channel Noise

As shown in Fig. 1, the proposed module simultaneously
considers the truncation and the channel noise processes.

Denote the truncation length by d0 and SNR by k0, the
input-output relationship of the proposed module is

Śout = N{Sd0
tr , n

k0 } = N{T{Sout, d0}, nk0 } (13)

Then the CSI estimation is given by

Ĥ = fde{N{T{fen{H, θ1}, d0}, nk0 }, θ2} (14)

3.3.1 Parameter Training

As mentioned earlier, here we still use the two-step method
to speed up the parameter training.

Firstly, θ̂d0
1 and θ̂d0

2 are determined by

(θ̂d0
1 , θ̂

d0
2 ) = arg min

θ1,θ2

‖fde{T{fen{H, θ1}, d0}, θ2} − H‖2F

(15)

And we get truncated encoded data Sd0
tr by Eq. (5).

Secondly, we add the channel noise process N{Sd0
tr , nk0 }

and get decoding parameters θ̂d0,k0
2 , as shown below

θ̂d0,k0
2 = arg min

θ̂
d0
2

‖fde{N{Sd0
tr , n

k0 }, θ̂d0
2 } − H‖2F (16)

The detail is similar with Algorithm 1 but omitted here due
to space limitation. With this training method, the system
parameters θ̂d0

1 and θ̂d0,k0
2 can be determined.

4. Simulation Results

We use the same indoor data as [2] for experiments, which
is obtained by simulation through COST2100 [15]. The BS
has Nt = 32 antennas and Ñc = 1024 sub-carriers are set
for OFDM. After the system uses the 2D-IDFT transform of

Table 1 Performance with different truncation digits.
DIGIT 1 2 3 4 5 6 7 8

ACL 3.7 6.6 7.6 8.0 8.3 8.4 8.5 8.6
NMS E −17.17 −20.04 −20.15 −20.19 −20.43 −20.69 −20.71 −21.56
ρ 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 2 Performance comparison with different SNR.
S NR 2 4 6 8 10 12 14

Existing CsiNet
NMS E 13.99 12.03 8.48 2.79 -5.89 -16.60 -20.69
ρ 0.21 0.33 0.58 0.85 0.97 0.99 0.99

Proposed CsiNet-Plus
NMS E −2.18 −5.27 −8.87 −12.99 −16.50 −20.76 −21.34
ρ 0.66 0.85 0.93 0.97 0.98 0.99 0.99

Table 3 Performance with truncation and channel noise.
The effects of truncation and channel noise on NMS E

Digit
S NR

2 4 6 8 10 12 14

2 0.23 −2.01 −5.04 −9.41 −12.45 −19.01 −19.02
4 −1.11 −4.04 −7.11 −10.89 −14.09 −19.06 −20.19
6 −1.51 −5.14 −8.66 −11.79 −15.68 −19.74 −20.61
8 −2.18 −5.17 −8.82 −12.55 −16.30 −20.05 −20.91

The effects of truncation and channel noise on ρ

Digit
S NR

2 4 6 8 10 12 14

2 0.34 0.64 0.83 0.93 0.97 0.99 0.99
4 0.54 0.78 0.89 0.95 0.97 0.99 0.99
6 0.61 0.84 0.93 0.96 0.98 0.99 0.99
8 0.67 0.85 0.93 0.96 0.98 0.99 0.99

the original data H̃, the first Nc = 32 rows of data H are
retained. The compression ratio is set to be λ = 1/4.

Performance is measured by NMS E and ρ. The dif-
ference between the recovered channel Ĥ and original H is
quantified by NMS E, which is defined as:

NMS E , E{‖H − Ĥ‖2F/‖H‖
2
F} (17)

The cosine similarity between the original channel vector h̃n

at the nth subcarrier over all antennas and its estimation ˆ̃hn
from 2D-DFT of Ĥ is described by

ρ , E

 1
Ñc

Ñc∑
n=1

| ˆ̃hH
n h̃n|

‖ ˆ̃hn‖2‖h̃n‖2

 (18)

We conducted three sets of experiments to study the
effects of truncation, and/or channel noise. The training,
testing and validation sets consist of 100,000, 20,000 and
30,000 samples, respectively. During the training, we use
the Adam optimizer with MSE to calculate the encoding and
decoding parameters. The epochs, learning rate and batch
size are set as 1000, 0.001 and 200, respectively.

According to the three scenarios in the precious sec-
tion, simulation results are correspondingly shown below.

4.1 The Effect of Truncation without Channel Noise

From the simulation we find that about 80% of the orig-
inal data Sout uses 8 decimal digits, while the other 20%
has a longer digits. The proposed scheme sets the trunca-
tion length from 1 to 8. The simulation results are provided
in Table 1. It can be seen from Table 1 that the number
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Fig. 2 The effects of truncation and channel noise on system performance with (a) NMS E; (b) ρ.

Fig. 3 Reconstructed images and ρ with different truncated decimal digits and SNRs.

of truncated digits has a significant influence on the ACL.
However, truncated digits has a much less impact on per-
formance metrics. As the number of digits increases, the
ACL also becomes larger along with a slightly better perfor-
mance such as NMS E and ρ. Specially, we find that when
the number of truncated bits is greater than 1, the truncation
error has little effect on the system recovery.

4.2 The Effect of Channel Noise without Truncation

Performance comparison with different SNR in a range of
2–14 dB is shown in Table 2. We can see that the pro-
posed CsiNet-Plus outperforms the existing CsiNet from
both NMS E and ρ aspects, especially in the low SNR range.
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4.3 The Effect of Truncation and Channel Noise

The effects of simultaneous truncation and channel noise on
NMS E and ρ are shown in Table 3 and Fig. 2. From both
we can observe that as the SNR or the truncated digits be-
come larger, the recovery quality gradually becomes better.
So it exhibits an interchangeability between the SNR and the
truncated decimal digits. For example, with a higher SNR,
the number of truncated digits can be smaller for the same
performance. When the SNR is large enough, the truncation
number can be very small. However, low SNR often causes
serious performance degradation even with a large trunca-
tion number. In contrast with the existing CsiNet model
with performance shown in Table 2, the proposed scheme
shows improvement even with a very short truncation length
of d0 = 2. Therefore, the proposed CsiNet-Plus really works
and performs better than the existing CsiNet. We remark
that the data in Table 3 with a truncation length of 8 digits is
slightly worse than that in Table 2 since there is no trunca-
tion process in the later scenario.

Figure 3 shows some reconstruction samples at differ-
ent SNR levels and truncated decimal digits along with the
corresponding pseudo-gray plots of the strength of Ĥ. We
can use the image with S NR = 12 and DIGIT = 8 as the
reference image. By observing the difference between these
figures and the reference image, we find that when the dif-
ference is small, the ρ is large. Again, with a higher SNR or
more truncated digits, better performance can be obtained.
This snapshot demonstrates coincident with the statistical
behavior as Table 3 and Fig. 2.

5. Conclusion

For practical applications, we proposed the CsiNet-Plus
model to adapt the situation of truncation and channel noise
in the CSI feedback transmission. The performance in dif-
ferent truncation digits and channel noise level are evalu-
ated, from which an interchangeable relationship between
them can be observed. The proposed scheme is shown to
outperforms the existing CsiNet.
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