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PAPER
Which Replacement Is Better at Working Cycles or Number of
Failures

Satoshi MIZUTANI†a), Member, Xufeng ZHAO††b), Nonmember, and Toshio NAKAGAWA†c), Member

SUMMARY When a unit repeats some works over again and undergoes
minimal repairs at failures, it is more practical to replace it preventively at
the end of working cycles or at its failure times. In this case, it would be
an interesting problem to know which is better to replace the unit at a num-
ber of working cycles or at random failures from the point of cost. For
this purpose, we give models of the expected cost rates for the following
replacement policies: (1) The unit is replaced at a working cycle N and
at a failure number K, respectively; (2) Replacement first and last policies
with working cycle N and failure number K, respectively; (3) Replacement
overtime policies with working cycle N and failure number K, respectively.
Optimizations and comparisons of the policies for N and K are made ana-
lytically and numerically.
key words: replacement policies, minimal repair, working cycle, replace-
ment last, replacement overtime

1. Introduction

It has become an important problem to plan good mainte-
nance policies for a large-scale system such as a plant equip-
ment and an information system with network, as they have
been widely used in various environments and their sudden
failures might incur great losses or even social confusions.
There have been many research works regarding to preven-
tive maintenance policies in theory [1]–[4]; however, the
difficulties are which maintenance policies are better from
the points of cost, practicality and reliability. Further, if we
could rank the maintenance policies as needed, but will this
rank change when the maintenance environment changes. In
order to answer the above questions, this paper tries to give
some comparisons of replacement policies when an operat-
ing unit is replaced at working cycles or at random failures.

In general, it would be impossible to do some main-
tenance during the interval when the unit is operating for
works, and it would be better to do maintenance when the
work completes or when the unit fails. The theoretical mod-
els have shown that maintaining a unit after it completes
some works are possible even though they are sometimes
costly [5]. The properties of replacement times between
two successive failed units were investigated for a system
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which replaced only at random times [6]. Several random
and age replacement models were discussed [7] for an op-
erating unit which repeats some works over again. The
maintenance model with age T and number of jobs com-
pleted N has been considered [8]. Considering the systems
successively executing jobs with random working times, it
would be better to conduct the maintenance after the jobs
completed. Other maintenance models with random work-
ing cycle have been studied extensively [9]–[11]. Further-
more, replacement first and last with two kinds of failures
were considered and their optimal policies were discussed
and compared [12]. Replacement policies in which a main-
tainer made the postponed replacement in a delay time due
to inspection test were studied [13].

Nakagawa and Zhao considered about first and last
policies for replacement and inspections when the policies
are triggered by two factors. [14]–[16]. Replacement first
means that the unit is replaced preventively at time of events
such as operating time, number of repairs, working cycles,
cumulative damage, etc, whichever occurs first, and replace-
ment last means that the unit is replaced preventively at the
above events, whichever occurs last. It has been shown
that [15] replacement last policies could let the unit operate
works as longer as possible while replacement first polices
are more easily to save total maintenance cost. Replacement
first and last polices are good alternatives when the unit per-
forms one big project and the decision on replacement is
based on the termination time of the project [10].

For replacement first and last policies, it is an interest-
ing problem to determine which policies are better from the
points of cost, practicality and reliability. The recent work
[17] has given some comparative methods for replacement
policies when they are performed at continuous or discrete
times. However, when the unit can be only replaced pre-
ventively at discrete times such as working cycles or at ran-
dom failures, this paper will answer the questions like how
we can formulate the replacement first and last policies, and
how we can know which policy is better from the point of
cost. For this purpose, the following policies are given: (1)
The unit is replaced at the Nth (N = 1, 2, . . . ) working cy-
cle, and the Kth (K = 1, 2, . . . ) failure, respectively; (2) the
unit is replaced at the Nth working cycle or the Kth failure,
whichever occurs first and last. In addition, it is a possi-
ble way to delay the replacement policies over a planned
time, whose models are called replacement overtime [18],
so that the above policies are extended to overtime replace-
ment policies with working cycles N and failures K.
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We formulate the expected cost rates, give analytical
discussions and make comparisons to decided which is bet-
ter for the above replacement policies in each sections. Fi-
nally, we give the properties of extended failure rates which
are needed for theoretical analysis of optimal policies in Ap-
pendix.

2. Assumptions

We give the following assumptions for the models in this
paper:

1. The unit repeats some works over again which have
random working cycles Y j ( j = 1, 2, . . . ). It is assumed
that Y j are independent and identically distributed ran-
dom variables and have an identical distribution G(t) ≡
Pr{Y j ≤ t} with finite mean 1/θ ≡

∫ ∞
0 G(t)dt, where

G(t) ≡ 1 − G(t). Let G(n)(t) (n = 1, 2, . . . ) denote the
n-fold Stieltjes convolution of G(t) and G(0)(t) ≡ 1 for
t ≥ 0.

2. It is assumed that failures occur in a nonhomogeneous
Poisson process with H(t) ≡

∫ t
0 h(u)du. Let p j(t) de-

note the probability that the number of failures in [0, t]
is j, i.e.,

p j(t) ≡
H(t) j

j!
e−H(t) ( j = 0, 1, 2, . . . ). (1)

We assume that the failure rate h(t) increases strictly
from h(0) = 0 to h(∞) = ∞ for simplicity of discus-
sions.

3. Let PK(t) ≡
∑∞

j=K p j(t) and PK(t) ≡
∑K−1

j=0 p j(t) (K =

0, 1, 2, . . . ), where note that
∑−1

j=0 ≡ 0. Further, we have
the following relations for t (0 < t < ∞) and j ( j =

0, 1, 2, . . . ),

P j+1(t) =

∫ t

0
p j(u)h(u)du,

P j+1(t) =

∫ ∞

t
p j(u)h(u)du,

∫ ∞

0
p j(t)h(t)dt = 1,∫ ∞

0
H(t)dP j(t) =

∫ ∞

0
P j(t)h(t)dt

=

j−1∑
i=0

∫ ∞

0
pi(t)h(t)dt = j.

4. The probability that some failures occur in (0, t] is
given by F(t) ≡

∑∞
j=1 p j(t) = 1 − p0(t) = 1 − e−H(t)

with finite mean µ, and f (t) is a density function of F(t)
and f (t) ≡ dF(t)/dt. Thus, for given t (0 ≤ t < ∞),
the probability that a failure occurs in (u, u + du] is
f (u)du/F(t) for u > t.

5. When the failure has occurred, the unit is replaced or
undergoes minimal repair. The unit after minimal re-
pair has the same failure rate as before rate [3, p. 96].

Fig. 1 Replacement at cycle N.

3. Basic Policies

3.1 Replacement at Cycle N

Suppose that the unit is replaced at working cycle N (N =

1, 2, . . . ) (see Fig. 1). Then, the expected cost rate is [5,
p. 76],

C(N) =
cN + cM

∫ ∞
0 [1 −G(N)(t)]h(t)dt

N/θ
(N = 1, 2, . . . ),

(2)

where cN = replacement cost at cycle N and cM =

cost of minimal repair at each failure.
We find optimal N∗ to minimize C(N). Forming the

inequality C(N + 1) −C(N) ≥ 0,∫ ∞

0
[1 −G(N)(t)][Q1(N) − h(t)]dt ≥

cN

cM
, (3)

where for 0 < T ≤ ∞ and N = 0, 1, 2, . . . ,

Q1(N; T ) ≡

∫ T
0 [G(N)(t) −G(N+1)(t)]h(t)dt∫ T

0 [G(N)(t) −G(N+1)(t)]dt
≤ h(T ),

Q1(N) ≡ lim
T→∞

Q1(N; T )

= θ

∫ ∞

0
[G(N)(t) −G(N+1)(t)]h(t)dt.

In particular, when G(t) = 1 − e−θt,

Q1(N) =

∫ ∞

0

θ(θt)N

N!
e−θth(t)dt,

which increases strictly with N to ∞ from Appendix A.
Thus, there exists a finite and unique minimum N∗ (1 ≤
N∗ < ∞) which satisfies (3), and the resulting cost rate is

cMQ1(N∗ − 1) < C(N∗) ≤ cMQ1(N∗). (4)

3.2 Replacement at Failure K

Suppose that the unit is replaced at failure K (K = 1, 2, . . . )
(see Fig. 2). Then, the expected cost rate is [3, p. 106]

C(K) =
cK + cMK∫ ∞
0 PK(t)dt

(K = 1, 2, . . . ), (5)
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Fig. 2 Replacement at failure K.

where cK = replacement cost at failure K.
We find optimal K∗ to minimize C(K). Forming the

inequality C(K + 1) −C(K) ≥ 0,

H1(K)
∫ ∞

0
PK(t)dt − K ≥

cK

cM
, (6)

where for 0 < T ≤ ∞ and K = 0, 1, 2, . . . ,

H1(K; T ) ≡

∫ T
0 pK(t)h(t)dt∫ T

0 pK(t)dt
,

H1(K) ≡ lim
T→∞

H1(K; T ) =
1∫ ∞

0 pK(t)dt
,

which increases strictly with K to h(∞) from Appendix B.
Thus, because the left-hand side of (6) increases strictly with
K to ∞, there exists a finite and unique minimum K∗ (1 ≤
K∗ < ∞) which satisfies (6), and the resulting cost rate is

cMH1(K∗ − 1) < C(K∗) ≤ cMH1(K∗). (7)

3.3 Numerical Examples

We compute numerically optimal N∗ and K∗ when G(t) =

1 − e−t and H(t) = (λt)2, i.e., h(t) = 2λ2t. In this case,

Q1(N) =

∫ ∞

0

tN

N!
e−t2λ2tdt = 2λ2(N + 1),

N−1∑
j=0

∫ ∞

0

t j

j!
e−t2λ2tdt = λ2N(N + 1),

and from (3), optimal N∗ is given by

2λ2N(N + 1) − λ2N(N + 1) = λ2N(N + 1) ≥
cN

cM
, (8)

and from (2),

C(N∗)
cM

=
cN/cM + λ2N∗(N∗ + 1)

N∗
. (9)

Further, we can see that∫ ∞

0
pK(t)dt =

∫ ∞

0

(λt)2K

K!
e−(λt)2

dt =
1

2λ
Γ(K + 1/2)
Γ(K + 1)

,

K−1∑
j=0

∫ ∞

0
p j(t)dt =

1
λ

Γ(K + 1/2)
Γ(K)

,

and from (6), optimal K∗ is given by

2Γ(K + 1/2)/Γ(K)
Γ(K + 1/2)/Γ(K + 1)

− K = K ≥
cK

cM
, (10)

Table 1 Optimal N∗, K∗, C(K∗)/cM and C(N∗)/cM when G(t) = 1−e−t ,
H(t) = (λt)2 and cN = cK .

λ = 0.1 λ = 1cN
cM K∗ N∗ C(K∗)

cM

C(N∗)
cM

N∗ C(K∗)
cM

C(N∗)
cM

1 1 10 0.226 0.210 1 2.257 3.000
2 2 14 0.301 0.293 1 3.009 4.000
3 3 17 0.361 0.357 2 3.611 4.500
4 4 20 0.413 0.410 2 4.127 5.000
5 5 22 0.459 0.457 2 4.585 5.500
6 6 22 0.500 0.503 2 5.002 6.000
7 7 24 0.539 0.542 3 5.387 6.333
8 8 26 0.575 0.578 3 5.746 6.667
9 9 28 0.608 0.611 3 6.084 7.000
10 10 32 0.640 0.643 3 6.404 7.333

where Γ(α) ≡
∫ ∞

0 xα−1e−xdx for α > 0. Thus, if cK/cM is an
integer then K∗ = cK/cM , and from (5),

C(K∗)
cM

=
cK/cM + K∗

Γ(K∗ + 1/2)/[λΓ(K∗)]
. (11)

Table 1 gives optimal K∗, N∗, C(K∗)/cM and C(N∗)/cM
for λ = 0.1, 1, and cN/cM = 1, 2, . . . 10. We can see that for
λ = 1, C(K∗)/cM < C(N∗)/cM , that is, replacement with K∗

is better than replacement with N∗. On the other hand, for
λ = 0.1, C(K∗)/cM > C(N∗)/cM for K∗ = cN/cM ≤ 5, and
C(K∗)/cM < C(N∗)/cM for K∗ ≥ 6. Optimal N∗ decreases
with λ. The reason would be that when λ is large, interval
times of failures become small and we should replace early
to avoid the cost of failures.

4. Replacement First and Last

4.1 Replacement First

The unit is replaced at cycle N (N = 1, 2, . . . ) or fail-
ure K (K = 1, 2, . . . ), whichever occurs first (see Fig. 3).
The probability that the unit is replaced at cycle N is∫ ∞

0 PK(t)dG(N)(t), and the probability that it is replaced at
failure K is

∫ ∞
0 [1 −G(N)]dPK(t). The mean time to replace-

ment is∫ ∞

0
t PK(t)dG(N)(t) +

∫ ∞

0
t [1 −G(N)(t)]dPK(t)

=

∫ ∞

0
[1 −G(N)(t)]PK(t)dt, (12)

and the expected number of failures until replacement is∫ ∞

0
H(t)PK(t)dG(N)(t) +

∫ ∞

0
H(t)[1 −G(N)(t)]dPK(t)

=

∫ ∞

0
[1 −G(N)(t)]PK(t)h(t)dt. (13)

Therefore, the expected cost rate is

CF(N,K) =

cK − (cK − cN)
∫ ∞

0 PK(t)dG(N)(t)
+cM

∫ ∞
0 [1 −G(N)(t)]PK(t)h(t)dt∫ ∞

0 [1 −G(N)(t)]PK(t)dt
. (14)
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Fig. 3 Replacement first with N and K.

Clearly, CF(∞,K) = C(K) in (5) and CF(N,∞) = C(N) in
(2).

We find optimal N∗F and K∗F to minimize CF(N,K)
when cK = cN and G(t) = 1 − e−θt. Forming the inequal-
ity CF(N + 1,K) −CF(N,K) ≥ 0,

Q2(N,K)
∫ ∞

0
[1 −G(N)(t)]PK(t)dt

−

∫ ∞

0
[1 −G(N)(t)]PK(t)h(t)dt ≥

cN

cM
, (15)

where

Q2(N,K) ≡

∑K−1
j=0

∫ ∞
0 (θt)Ne−θt p j(t)h(t)dt∑K−1

j=0

∫ ∞
0 (θt)Ne−θt p j(t)dt

,

which increases strictly with N from Q2(0,K) to h(∞) and
increases strictly with K from Q2(N, 1) to

Q2(N,∞) =

∫ ∞

0

θ(θt)N

N!
e−θth(t)dt = Q1(N)

from Appendix A. Thus, because the left-hand side of
(13) increases strictly with N to ∞, there exists a finite and
unique minimum N∗F (1 ≤ N∗F < ∞) which satisfies (15),
and the resulting cost rate is

cMQ2(N∗F − 1,K) < CF(N∗F ,K) ≤ cMQ2(N∗F ,K). (16)

In addition, noting that the left-hand side of (15) goes
to that of (3) as K → ∞, N∗F approaches to N∗ given in (3)
as K → ∞.

Forming the inequality CF(N,K + 1) −CF(N,K) ≥ 0,

H2(K,N)
∫ ∞

0
[1 −G(N)(t)]PK(t)dt

−

∫ ∞

0
[1 −G(N)(t)]PK(t)h(t)dt ≥

cN

cM
, (17)

where

H2(K,N) ≡

∑N−1
j=0

∫ ∞
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑N−1

j=0

∫ ∞
0 [(θt) j/ j!]e−θt pK(t)dt

,

which increases strictly with N from H2(K, 1) to

H2(K,∞) =

∫ ∞
0 pK(t)h(t)dt∫ ∞

0 pK(t)dt
= H1(K),

and increases strictly with K from H2(0,N) to h(∞) from

Fig. 4 Replacement last with N and K.

Appendix B. Thus, because the left-hand side of (17) in-
creases strictly with K to ∞, there exists a finite and unique
minimum K∗F (1 ≤ K∗F < ∞) which satisfies (17), and the
resulting cost rate is

cMH2(K∗F − 1,N) < CF(N,K∗F) ≤ cMH2(K∗F ,N). (18)

In addition, noting that the left-hand side of (17) goes
to that of (6) as N → ∞, K∗F approaches to K∗ given in (6)
as N → ∞.

4.2 Replacement Last

The unit is replaced at cycle N (N = 0, 1, 2, . . . ) or fail-
ure K (K = 0, 1, 2, . . . ), whichever occurs last (see Fig. 4).
The probability that the unit is replaced at cycle N is∫ ∞

0 PK(t)dG(N)(t) and the probability that it is replaced at
failure K is

∫ ∞
0 G(N)(t)dPK(t). The mean time to replace-

ment is∫ ∞

0
tPK(t)dG(N)(t) +

∫ ∞

0
t G(N)(t)dPK(t)

=

∫ ∞

0
[1 −G(N)(t)PK(t)]dt, (19)

and the expected number of failures until replacement is∫ ∞

0
H(t)PK(t)dG(N)(t) +

∫ ∞

0
H(t)G(N)(t)dPK(t)

=

∫ ∞

0
[1 −G(N)(t)PK(t)]h(t)dt. (20)

Therefore, the expected cost rate is

CL(N,K) =

cK − (cN − cK)
∫ ∞

0 PK(t)dG(N)(t)
+cM

∫ ∞
0 [1 −G(N)(t)PK(t)]h(t)dt∫ ∞

0 [1 −G(N)(t)PK(t)]dt
. (21)

Clearly, CL(0,K) = C(K) in (5) and CL(N, 0) = C(N) in (2).
We find optimal N∗L and K∗K to minimize CL(N,K) when

cK = cN and G(t) = 1− e−θt. Forming the inequality CL(N +

1,K) −CL(N,K) ≥ 0,

Q̃2(N,K)
∫ ∞

0
[1 −G(N)(t)PK(t)]dt

−

∫ ∞

0
[1 −G(N)(t)PK(t)]h(t)dt ≥

cK

cM
, (22)

where
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Q̃2(N,K) ≡

∑∞
j=K

∫ ∞
0 (θt)Ne−θt p j(t)h(t)dt∑∞

j=K

∫ ∞
0 (θt)Ne−θt p j(t)dt

,

which increases strictly with N from Q̃2(0,K) to h(∞) and
increases strictly with K from

Q̃2(N, 0) =

∫ ∞

0

θ(θt)N

N!
e−θth(t)dt = Q1(N)

to h(∞), and Q̃2(N,K) ≥ Q2(N,K) from Appendix C. Thus,
because the left-hand side of (22) increases strictly with N to
∞, there exists a finite and unique minimum N∗L (0 ≤ N∗L <
∞) which satisfies (22), and the resulting cost rate is

cMQ̃2(N∗L − 1,K − 1) < CL(N∗L,K) ≤ cMQ̃2(N∗L,K − 1).
(23)

In addition, noting that the left-hand side of (22) agrees
with that of (3) when K = 0, N∗L = N∗ given in (3) when
K = 0.

Forming the inequality CL(N,K + 1) −CL(N,K) ≥ 0,

H̃2(K,N)
∫ ∞

0
[1 −G(N)(t)PK(t)]dt

−

∫ ∞

0
[1 −G(N)(t)PK(t)]h(t)dt ≥

cK

cM
, (24)

where

H̃2(K,N) ≡

∫ ∞
0 G(N)(t)pK(t)h(t)dt∫ ∞

0 G(N)(t)pk(t)dt
,

which increases strictly with K from H̃2(0,N) to h(∞) from
Appendix D. Thus, because the left-hand side of (24) in-
creases strictly with K to ∞, there exists a finite and unique
minimum K∗L (0 ≤ K∗L < ∞) which satisfies (24), and the
resulting cost rate is

cMH̃2(K∗L − 1,N) < CL(N,K∗L) ≤ cMH̃2(K∗L,N). (25)

In addition, noting that the left-hand side of (24) agrees
with that of (6) when N = 0, K∗L = K∗ given in (6) when
N = 0.

We compute numerically optimal (K∗F ,N
∗
F) and

(K∗L,N
∗
L) when cN = cK , G(t) = 1 − e−t and H(t) = (λt)2.

Tables 2 and 3 give (K∗F ,N
∗
F), CF(K∗F ,N

∗
F)/cM , (K∗L,N

∗
L)

and CL(K∗L,N
∗
L)/cM for cN/cM = 1, 2, . . . 10 when λ = 0.1

and λ = 1, respectively. We can see from these tables that
CF(K∗F ,N

∗
F)/cM < CL(K∗L,N

∗
L)/cM .

5. Overtime Policies

5.1 Replacement at First Failure Over Cycle N

Suppose that the unit is replaced at the first failure over
working cycle N (N = 0, 1, 2, . . . ) (see Fig. 5). Recall that
F(t) = 1 − e−H(t) and the probability that the unit with age t
fails in (u, u + du] for u > t is f (u)du/F(t). Thus, the mean

Table 2 Optimal (K∗F ,N
∗
F ), CF (K∗F ,N

∗
F )/cM , (K∗L,N

∗
L) and CL(K∗L,N

∗
L)/

cM when G(t) = 1 − e−t , H(t) = (λt)2, cN = cK and λ = 0.1.

cN
cM (K∗F ,N

∗
F ) (K∗L,N

∗
L)

CF (K∗F ,N
∗
F )

cM

CL(K∗L ,N
∗
L)

cM
1 ( 3, 11) ( 0, 9) 0.208 0.210
2 ( 4, 15) ( 1, 13) 0.291 0.292
3 ( 5, 19) ( 2, 16) 0.354 0.355
4 ( 6, 22) ( 3, 18) 0.407 0.408
5 ( 7, 25) ( 4, 20) 0.454 0.455
6 ( 8, 27) ( 5, 22) 0.496 0.497
7 ( 9, 30) ( 6, 24) 0.535 0.536
8 (10, 32) ( 7, 25) 0.572 0.572
9 (11, 34) ( 8, 26) 0.606 0.607

10 (12, 36) ( 9, 28) 0.638 0.639

Table 3 Optimal (K∗F ,N
∗
F ), CF (K∗F ,N

∗
F )/cM , (K∗L,N

∗
L) and CL(K∗L,N

∗
L)/

cM when G(t) = 1 − e−t , H(t) = (λt)2, cN = cK and λ = 1.0.

cN
cM (K∗F ,N

∗
F ) (K∗L,N

∗
L)

CF (K∗F ,N
∗
F )

cM

CL(K∗L ,N
∗
L)

cM
1 ( 2, 3) ( 2, 1) 2.221 2.617
2 ( 3, 4) ( 3, 1) 2.995 3.222
3 ( 4, 5) ( 4, 1) 3.604 3.750
4 ( 5, 5) ( 5, 1) 4.123 4.224
5 ( 6, 6) ( 6, 1) 4.583 4.657
6 ( 7, 7) ( 7, 1) 5.001 5.056
7 ( 8, 7) ( 8, 1) 5.386 5.429
8 ( 9, 8) ( 9, 1) 5.745 5.779
9 (10, 8) ( 9, 1) 6.083 6.110

10 (11, 9) (10, 1) 6.404 6.426

Fig. 5 Replacement at first failure over cycle N.

time to replacement is∫ ∞

0

1

F(t)

[∫ ∞

t
u dF(u)

]
dG(N)(t)

=
N
θ

+

∫ ∞

0

[∫ ∞

t
e−H(u)+H(t)du

]
dG(N)(t)

= µ +

∫ ∞

0

[
1 −G(N)(t)

][∫ ∞

t
e−H(u)+H(t)du

]
h(t)dt, (26)

and the expected number of failures until replacement is∫ ∞

0

1

F(t)

[∫ ∞

t
H(u)dF(u)

]
dG(N)(t)

= 1 +

∫ ∞

0
[1 −G(N)(t)]h(t) dt. (27)

Thus, the expected cost rate is

CO(N) =
cON + cM

{
1 +

∫ ∞
0

[
1 −G(N)(t)

]
h(t)dt

}
µ +

∫ ∞
0

[
1 −G(N)(t)

][∫ ∞
t e−H(u)+H(t)du

]
h(t)dt

.

(28)

where cON = replacement cost at first failure over cycle N.
We find optimal N∗O to minimize CO(N) when G(t) =
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1 − e−θt. Forming the inequality CO(N + 1) −CO(N) ≥ 0,

QO1(N)
{
µ +

∫ ∞

0

[
1 −G(N)(t)

][∫ ∞

t
e−H(u)+H(t)du

]
h(t)dt

}
−

∫ ∞

0
[1 −G(N)(t)]h(t)dt − 1 ≥

cON

cM
, (29)

where

QO1(N) ≡

∫ ∞
0 (θt)Ne−θth(t) dt∫ ∞

0 (θt)Ne−θth(t)
[∫ ∞

t e−H(u)+H(t)du
]

dt
,

which increases strictly with N to h(∞) from Appendix E.
Thus, because the left-hand side of (29) increases strictly
with N to ∞, there exists a finite and unique minimum N∗O
(0 ≤ N∗O < ∞) which satisfies (29), and the resulting cost
rate is

cMQO1(N∗O − 1) < CO(N∗O) ≤ cMQO1(N∗O). (30)

5.2 Replacement at First Cycle Over Failure K

Suppose that the unit is replaced at the first working cycle
over failure K (K = 0, 1, 2, . . . ) (see Fig. 6). The mean time
to replacement is

∞∑
j=0

∫ ∞

0

{∫ t

0

[∫ ∞

t
ydG(y − u)

]
dG( j)(u)

}
dPK(t)

=

∫ ∞

0
PK(t)dt

+

∞∑
j=0

∫ ∞

0

{∫ t

0

[∫ ∞

t
G(y − u)dy

]
dG( j)(u)

}
dPK(t)

=
1
θ

∞∑
j=0

∫ ∞

0
G( j)(t)dPK(t), (31)

and the expected number of failures until replacement is

∞∑
j=0

∫ ∞

0

{∫ t

0

[∫ ∞

t
H(y)dG(y − u)

]
dG( j)(u)

}
dPK(t)

=

∞∑
j=0

∫ ∞

0

{∫ t

0

[∫ ∞

t
G(y)h(u + y)dy

]
dG( j)(u)

}
dPK(t).

(32)

Therefore, the expected cost rate is

CO(K) =

cOK +cM
∑∞

j=0

∫ ∞
0 {

∫ t
0 [

∫ ∞
0 G(y)h(u+y)dy]dG( j)(u)}dPK(t)

(1/θ)
∑∞

j=0

∫ ∞
0 G( j)(t)dPK(t)

.

(33)

Fig. 6 Replacement at first cycle over failure K.

where cOK = replacement cost at first cycle over failure K.
In particular, when G(t) = 1 − e−θt,

CO(K) =

cOK + cM{
∫ ∞

0 e−θth(t)dt +
∫ ∞

0 PK(t)[
∫ ∞

0 θe−θuh(t+u)du]dt}

1/θ +
∫ ∞

0 PK(t)dt
.

(34)

We find optimal K∗O to minimize CO(K) in (34). Form-
ing the inequality CO(K + 1) −CO(K) ≥ 0,

HO1(K)
[
1
θ

+

∫ ∞

0
PK(t)dt

]
−

∫ ∞

0
e−θth(t)dt

−

∫ ∞

0
PK(t)

[∫ ∞

0
θe−θuh(t + u)du

]
dt ≥

cOK

cM
, (35)

where for 0 < T ≤ ∞,

HO1(K,T ) ≡

∫ T
0 H(t)Ke−H(t)

[∫ ∞
0 θe−θuh(t + u)du

]
dt∫ T

0 H(t)Ke−H(t)dt
,

HO1(K) ≡ lim
T→∞

HO1(K,T )

=

∫ ∞
0 H(t)Ke−H(t)

[∫ ∞
0 θe−θuh(t + u)du

]
dt∫ ∞

0 H(t)Ke−H(t)dt
,

which increases strictly with K to
∫ ∞

0 θe−θth(T + t)dt from
Appendix F. Thus, because the left-hand side of (35) in-
creases strictly with K to ∞, there exists a finite and unique
minimum K∗O (0 ≤ K∗O < ∞) which satisfies (35), and the
resulting cost rate is

cMHO1(K∗O − 1) < CO(K∗O) ≤ cMHO1(K∗O). (36)

We discuss numerically optimal N∗O, K∗O when cON =

cOK , G(t) = 1 − e−t and H(t) = (λt)2. Tables 4 and 5
give optimal N∗O, CO(N∗), K∗O, CO(K∗O) when λ = 0.1 and
λ = 1, respectively. We can see from these tables that
CO(N∗O) < CO(K∗O) for cON/cM ≤ 5 and CO(N∗O) ≥ CO(K∗O)
for cON/cM ≥ 6 in Table 4, CO(N∗O) < CO(K∗O) for cON/cM ≤

3 and CO(N∗O) ≥ CO(K∗O) for cON/cM ≥ 4 in Table 5. This
means that cON/cM has a threshold level and if cON/cM is
smaller than this level, i.e., replacement cost is relatively

Table 4 Optimal N∗O, CO(N∗O)/cM , K∗O, CO(K∗O)/cM , when G(t) = 1 −
e−t , H(t) = (λt)2 and cON = cOK , λ = 0.1.

cON/cM N∗O
CO(N∗O)

cM
K∗O

CO(K∗O)
cM

1 6 0.216 1 0.223
2 11 0.294 2 0.300
3 14 0.357 3 0.361
4 17 0.410 4 0.412
5 20 0.457 5 0.458
6 22 0.500 6 0.500
7 24 0.539 7 0.539
8 26 0.576 8 0.575
9 28 0.610 9 0.608
10 30 0.643 10 0.641
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Table 5 Optimal N∗O, CO(N∗O)/cM , K∗O, CO(K∗O)/cM , when G(t) = 1 −
e−t , H(t) = (λt)2 and cON = cOK , λ = 1.

cON/cM N∗O
CO(N∗O)

cM
K∗O

CO(K∗O)
cM

1 1 2.702 1 3.060
2 1 3.377 1 3.590
3 1 4.052 1 4.121
4 1 4.728 2 4.576
5 2 5.231 2 5.005
6 2 5.667 3 5.381
7 2 6.103 4 5.743
8 2 6.539 4 6.084
9 3 6.885 5 6.401
10 3 7.198 6 6.707

smaller against minimal repair cost cM , replacement at first
failure over cycle N is better than replacement at first cycle
over failure K.

6. Conclusions

We have discussed theoretically and numerically the opti-
mal policies of replacements with cycle N and failure K. In
general, it would be more difficult to derive theoretically op-
timal policies for replacements with discrete variables than
those with continuous ones. This paper has given several
mathematical techniques of solving optimization problems
with discrete variables and these would be useful for main-
tenances of actual models in practical fields. For example,
we can propose the following replacement policies from the
results of this paper:

1. If cN is smaller than cK and cycle N can be counted
more easily than failure K, then cycle N is better than
failure K.

2. If cK is smaller than cN and failure K can be counted
more easily than cycle N, then failure K is better than
cycle N.

3. If cK is smaller than cN and cycle N can be counted
more easily than failure K, then replacement overtime
with cycle N is better than failure K.

4. If cN is smaller than cK and failure K can be counted
more easily than cycle N, then replacement overtime
with failure K is better than cycle N.

5. If both costs of cN and cK are almost the same and cy-
cle N and failure K can be counted easily, we compute
the expected costs C(N∗) and C(K∗), and the expected
costs C(N∗F ,K

∗
F) and C(N∗L,K

∗
L) numerically, and de-

cide the optimal replacement policy.

The replacement policies proposed in this paper would
be applied to the cumulative damage models and data
backup models of computer systems by making some suit-
able modifications [19], [20].
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which increases strictly with N from Q2(0,K; T ) to h(T ) and
increases strictly with K from Q2(N, 1; T ) to

Q2(N;∞; T ) =

∫ T
0 (θt)Ne−θth(t)dt∫ T

0 (θt)Ne−θtdt
.

Proof. Note that

Q2(∞; K; T ) = lim
N→∞

∫ T
0 (θt)Ne−θtPK(t)h(t)dt∫ T

0 (θt)Ne−θtPK(t)dt
= h(T ),

Q2(N;∞; T ) =

∫ T
0 (θt)Ne−θth(t)dt∫ T

0 (θt)Ne−θtdt
.

Denoting

L1(T ) ≡
∫ T

0
(θt)N+1e−θtPK(t)h(t)dt

∫ T

0
(θt)Ne−θtPK(t)dt

−

∫ T

0
(θt)Ne−θtPK(t)h(t)dt

∫ T

0
(θt)N+1e−θtPK(t)dt,

we have L1(0) = 0 and

L′1(T ) = (θT )Ne−θT PK(t)

×

∫ T

0
(θt)Ne−θtPK(t)(θT − θt)[h(T ) − h(t)]dt > 0,

which follows that Q2(N,K; T ) increases strictly with N
from Q2(0,K; T ) to h(T ) for any K and T . Similarly, de-
noting

L2(T ) ≡
K∑

j=0

∫ T

0
(θt)Ne−θt p j(t)h(t)dt

K−1∑
j=0

∫ T

0
(θt)Ne−θt p j(t)dt

−

K−1∑
j=0

∫ T

0
(θt)Ne−θt p j(t)h(t)dt

K∑
j=0

∫ T

0
(θt)Ne−θt p j(t)dt,

we have L2(0) = 0 and

L′2(T ) = (θT )Ne−θT
K−1∑
j=0

∫ T

0
(θt)Ne−θt[h(T ) − h(t)]

×
e−H(T )−H(t)

K! j!
[H(T )H(t)] j[H(T )K− j − H(t)K− j]dt > 0,

which follows that Q2(N,K; T ) increases strictly with K
from Q2(N, 1; T ) to Q2(N;∞; T ) for any N and T . There-
fore, because T is arbitrary, Q2(N,K) ≡ Q2(N,K;∞)
increases strictly with N from Q2(0,K) to h(∞) and
increases strictly with K from Q2(N, 1) to Q1(N) =

θ
∫ ∞

0 [(θt)N/N!]e−θth(t)dt, and because K is arbitrary, Q1(N)
increases strictly with N to h(∞).

Appendix B:

For N = 1, 2, . . . , K = 0, 1, 2, . . . and 0 < T < ∞,

H2(N,K; T ) =

∑N−1
j=0

∫ T
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑N−1

j=0

∫ T
0 [(θt) j/ j!]e−θt pK(t)dt

,

which increases strictly with N from H2(1,K; T ) to

H2(∞,K; T ) =

∫ T
0 pK(t)h(t)dt∫ T

0 pK(t)dt
,

and increases strictly with N from H2(N, 0; T ) to h(T ).
Proof. Note that

H2(∞,K; T ) =

∫ T
0 pK(t)h(t)dt∫ T

0 pK(t)dt
,

H2(N,∞; T ) ≡ lim
K→∞

∑N−1
j=0

∫ T
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑N−1

j=0

∫ T
0 [(θt) j/ j!]e−θt pK(t)dt

= h(T ).

Denoting

L3(T ) ≡∫ T

0
[(θt)N/N!]e−θt pK(t)h(t)dt

N−1∑
j=0

∫ T

0
[(θt) j/ j!]e−θt pK(t)dt

−

∫ T

0
[(θt)N/N!]e−θt pK(t)dt

N−1∑
j=0

∫ T

0
[(θt) j/ j!]e−θt pK(t)h(t)dt,

we have L3(0) = 0 and

L′3(T ) =

N−1∑
j=0

∫ T

0
e−θ(T+t) pK(T )pK(t)[h(T ) − h(t)]

×
(θT )N(θt) j − (θT ) j(θt)N

N! j!
dt > 0,

which follows that H2(N,K; T ) increases strictly with N
from H2(1,K; T ) to H2(∞,K; T ) for any K and T . Similarly,
denoting

L4(T ) ≡
N−1∑
j=0

∫ T

0

(θt) j

j!
e−θt pK+1(t)h(t)dt

N−1∑
j=0

∫ T

0

(θt) j

j!
e−θt pK(t)dt

−

N−1∑
j=0

∫ T

0

(θt) j

j!
e−θt pK(t)h(t)dt

N−1∑
j=0

∫ T

0

(θt) j

j!
e−θt pK+1(t)dt,

we have L4(0) = 0 and

L′4(T ) =

N−1∑
j=0

(θT ) j

j!
e−θT

N−1∑
j=0

∫ T

0

(θt) j

j!
e−θt

[H(T )H(t)]K

K!(K + 1)!

× e−H(T )−H(t)[H(T ) − H(t)][h(T ) − (t)]dt > 0,

which follows that H2(N,K; T ) increases strictly with K
from H2(N, 0; T ) to h(T ) for any N and T . Therefore, be-
cause T is arbitrary, H2(N,K) ≡ H2(N,K;∞) increases
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strictly with N from H2(1,K) to H2(∞,K) = H1(K) =

1/
∫ ∞

0 pK(t)dt and increases strictly with K from H2(N, 0)
to h(∞), and because N is arbitrary, H1(K) increases strictly
with K to h(∞).

Appendix C:

For N = 0, 1, 2, . . . , K = 0, 1, 2, . . . and 0 < T < ∞,

Q̃2(N,K; T ) ≡

∫ T
0 (θt)Ne−θtPK(t)h(t)dt∫ T

0 (θt)Ne−θtPK(t)dt
,

which increases strictly with N from Q̃2(0,K; T ) to h(T ) and
increases strictly with K from Q2(N,∞; T ) to h(T ).
Proof. Note that

Q̃2(∞,K; T ) ≡ lim
N→∞

∫ T
0 (θt)Ne−θtPK(t)h(t)dt∫ T

0 (θt)Ne−θtPK(t)dt
= h(T ),

Q̃2(N,∞; T ) ≡ lim
K→∞

∫ T
0 (θt)Ne−θtPK(t)h(t)dt∫ T

0 (θt)Ne−θtPK(t)dt
= h(T ).

Thus, by using the similar method of Appendix A, we can
prove Appendix C. Therefore, Q̃2(N,K) ≡ Q̃2(N,K;∞) in-
creases strictly with N from Q̃2(0,K) to h(∞) and increases
strictly with K form Q1(N) to h(∞).

Appendix D:

For N = 0, 1, 2, . . . , K = 0, 1, 2, . . . and 0 < T < ∞,

H̃2(N,K; T ) =

∑∞
j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑∞

j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)dt

,

which increases strictly with N from H2(∞,K; T ) to h(T )
and increases strictly with K from H̃2(N, 0; T ) to h(T ).
Proof. Note that

H̃2(∞,K; T ) = lim
N→∞

∑∞
j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑∞

j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)dt

= h(T ),

H̃2(N,∞; T ) ≡ lim
K→∞

∑∞
j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)h(t)dt∑∞

j=N

∫ T
0 [(θt) j/ j!]e−θt pK(t)dt

= h(T ).

Thus, by using the similar method of Appendix B, we can
prove Appendix D. Therefore, H̃2(N,K) ≡ H̃2(N,K;∞) in-
creases strictly with N from 1/

∫ ∞
0 pK(t)dt to h(∞) and in-

creases strictly with K from H̃2(N, 0) to h(∞).

Appendix E:

For N = 0, 1, 2, . . . and 0 < T < ∞,

QO1(N; T ) ≡

∫ T
0 (θt)Ne−θth(t) dt∫ T

0 (θt)Ne−θth(t)
[∫ ∞

t e−H(u)+H(t)du
]
dt

increases strictly with N from QO1(0; T ) to QO1(∞; T ) =

F(T )/
∫ ∞

T F(t)dt.
Proof. Note that

QO1(∞; T ) ≡ lim
N→∞

QO1(N; T ) =
1∫ ∞

T e−H(t)+H(T )dt

=
F(T )∫ ∞

T F(t) dt
.

Denoting

L5(T ) ≡
∫ T

0
(θt)N+1e−θth(t)dt

×

∫ T

0
(θt)Ne−θth(t)

[∫ ∞

t
e−H(u)+H(t)du

]
dt

−

∫ T

0
(θt)Ne−θth(t)dt

×

∫ T

0
(θt)N+1e−θth(t)

[∫ ∞

t
e−H(u)+H(t)du

]
dt,

we have L5(0) = 0 and

L′5(T ) = (θT )Ne−θT h(T )
∫ T

0
(θt)Ne−θt(θT − θt)

×
[∫ ∞

t
e−H(u)+H(t)du −

∫ ∞

T
e−H(u)+H(T )du

]
dt > 0,

which follows that QO1(N; T ) increases strictly with N from
QO1(0; T ) to F(T )/

∫ ∞
T F(t)dt for any T . Thus, because T

is arbitrary, QO1(N) ≡ QO1(N;∞) increases strictly with N
from QO1(0) to limT→∞ F(T )/

∫ ∞
T F(t)dt = h(∞).

Appendix F:

For K = 0, 1, 2, . . . and 0 < T < ∞,

HO1(K; T ) ≡

∫ T
0 H(t)Ke−H(t)

[∫ ∞
0 θe−θuh(t + u)du

]
dt∫ T

0 H(t)Ke−H(t)dt
,

which increases strictly with K from HO1(0; T ) to∫ ∞
0 θe−θt(T + t)dt.

Proof. Note that

HO1(∞; T ) ≡ lim
K→∞

HO1(K; T ) =

∫ ∞

0
θe−θt(T + t) dt,

Thus, by using the similar method of Appendix E,
HO1(K; T ) increases strictly with K from HO1(0; T ) to∫ ∞

0 θe−θth(T + t)dt for any T . Therefore, because T is ar-
bitrary, HO1(K) ≡ HO1(K;∞) increases strictly with K from
HO1(0) to limT→∞

∫ ∞
0 θe−θt(T + t)dt = h(∞).
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