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PAPER
Insertion/Deletion/Substitution Error Correction by a Modified
Successive Cancellation Decoding of Polar Code∗

Hikari KOREMURA†, Nonmember and Haruhiko KANEKO†a), Member

SUMMARY This paper presents a successive cancellation (SC) decod-
ing of polar codes modified for insertion/deletion/substitution (IDS) error
channels, in which insertions and deletions are described by drift values.
The recursive calculation of the original SC decoding is modified to include
the drift values as stochastic variables. The computational complexity of
the modified SC decoding is O(D3) with respect to the maximum drift
valueD, andO(N log N ) with respect to the code length N . The symmet-
ric capacity of polar bit channel is estimated by computer simulations, and
frozen bits are determined according to the estimated symmetric capacity.
Simulation results show that the decoded error rate of polar code with the
modified SC list decoding is lower than that of existing IDS error correction
codes, such as marker-based code and spatially-coupled code.
key words: insertion error, deletion error, synchronization error, polar
code, successive cancellation decoding, list decoding

1. Introduction

Synchronization errors will be a major obstacle to improve
the reliability of some types of future high-density memory
and storage devices, such as, bit-patterned media record-
ing [1], racetrack memory [2], [3], and DNA archival stor-
age [4]. Hence, it is expected that error control codes ca-
pable of correcting synchronization errors will be crucial
to improve the reliability of these devices. Channels with
synchronization errors are usually modeled by insertion/de-
letion/substitution (IDS) channel, and several classes of IDS
error correcting codes were proposed. For example, codes
with the bounded distance decoding were designed based
on a constraint on weighted sum of codeword bits, such as,
single IDS error correcting code [5], multiple IDS error cor-
recting code [6], and non-binary single IDS error correcting
code [7]. Another strategy for IDS error correction is to
employ the concatenated coding, where the outer code is a
random error correcting code (e.g., LDPC code), and the
inner code controls prior probabilities of channel input bits,
such as watermark embedding [8] and marker insertion [9].
Also, it was shown that spatially-coupled codes can correct
IDS errors without using the inner coding [10].

Arıkan proposed polar coding with successive cancel-
lation (SC) decoding [11], which can achieve the symmetric
capacity of any binary-input memoryless channel with the
computational complexity of O(N log N ), where N = 2n is
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the code length. Şaşoğlu et al. proved that the polar code
can achieve the capacity of any discrete memoryless chan-
nel [12]. To improve the performance of polar code with
finite code length, Tal and Vardy presented SC list (SCL)
decoding with cyclic redundancy check (CRC) [13]. For
correction of synchronization errors using the polar code,
Thomas et al. presented a polar coding for channels with
erasures and deletions [14], where the coding mainly deals
with single deletion errors. Tian et al. proposed an SC de-
coding of polar code for channels with d deletions [15], and
they proved that this coding achieves the symmetric capacity.

Existing IDS channels often assume that insertions and
deletions occur probabilistically [3], [4], [8]–[10], as op-
posed to the deletion model in [15]. That is, received word
may have multiple insertion and deletion errors simultane-
ously, and thus the numbers of insertions and deletions can-
not be determined uniquely from the received word length
N ′. Hence, extension of the d-deletion correction polar cod-
ing [15] to the multiple insertion/deletion error correction
coding will not be straightforward. From this, we present an
SC decoding of polar codes for IDS channels in which inser-
tion, deletion, and substitution errors occur with probability
pi, pd, and ps, respectively, under a constraint on maximum
drift between transmitted and received bits. This paper em-
ploys an IDS channel model expressed by a sequence of drift
values, which is suitable for deriving a modified recursive
computation in the SC decoding. That is, the appropri-
ate combination of the IDS channel model and recursive
computation enables a natural extension of the existing SC
decoding to IDS error correction. Simulation results show
that the presented SC decoding has lower decoded error rates
compared to the existing marker-based code and spatially-
coupled code.

The rest of this paper is organized as follows. Section 2
describes notations used in this paper. Section 3 defines
IDS channel model. Section 4 presents a polar coding with
modified SC decoding for IDS channel. Section 5 shows
simulation results, and Sect. 6 concludes this paper.

2. Notations

This paper uses the following notations. Finite subsets of
integers are defined as ZM = {0, 1, . . . , M −1} and B = Z2 =
{0, 1}. The inversion of bit x is denoted as x = x ⊕ 1, where
⊕ is the XOR operator, and x, x ∈ B. For a binary vector
a = (a0, a1, . . . , aN−1) ∈ BN of length N , sub-vector a j

i is
defined as
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a
j
i =




(ai, ai+1, . . . , a j ) (0 ≤ i ≤ j ≤ N − 1)
ε (otherwise)

,

where ε is the vector of length zero. For a binary vector
a = (a0, a1, . . . , a2N−1) ∈ B2N of even-length 2N , mappings
even(a) and odd(a) are defined as follows:

even (a) = (a0, a2, . . . , a2i, . . . , a2N−2) ,
odd (a) = (a1, a3, . . . , a2i+1, . . . , a2N−1) .

For two binary vectors, a = (a0, a1, . . . , aN−1) ∈ BN and
b = (b0, b1, . . . , bN−1) ∈ BN , XOR of a and b is defined as

a ⊕ b = (a0 ⊕ b0, a1 ⊕ b1, . . . , aN−1 ⊕ bN−1).

Probability that a random variable X takes a value x is sim-
ply denoted as p(x) , Pr(X = x). Conditional and joint
probabilities are denoted similarly, that is, p(x | y) , Pr(X =
x |Y = y) and p(x, y) , Pr(X = x,Y = y).

3. Channel Model

Let x and y be transmitted and received words, respectively,
where the words are expressed by binary vectors as

x = xN−1
0 = (x0, x1, . . . , xN−1) ∈ BN and

y = yN ′−1
0 = (y0, y1, . . . , yN ′−1) ∈ BN ′ .

Let pi, pd, and ps be insertion, deletion, and substitution
error probabilities, respectively. And let D be the maximum
absolute value of drift between x and y. Insertion/deletion
errors between x and y are expressed by a drift vector

d = (d0, d1, . . . , dN−1, dN ) ∈ DN+1,

where D = {−D, . . . ,−1, 0, 1, . . . , D} is the set of drift val-
ues. We assume that the drift vector is determined byMarkov
process with the following state transition probabilities:

p(di+1 |di) =




pi ((di+1 = di + 1) ∧ (di , D))
pd ((di+1 = di − 1) ∧ (di , −D))
1 − pi − pd ((di+1 = di) ∧ (−D < di < D))
1 − pi ((di+1 = di) ∧ (di = −D))
1 − pd ((di+1 = di) ∧ (di = D))
0 (otherwise)

, (1)

where the initial drift value is d0 = 0. Figure 1 (a) shows
the state transition diagram of di . From this definition, d
satisfies −1 ≤ di+1 − di ≤ 1 for all i ∈ ZN . Let I(i; di, di+1)
be a set of indices in received word yN ′−1

0 corresponding to
the i-th transmitted bit xi , that is,

I(i; di, di+1) = {i′ | i + di ≤ i′ < (i + 1) + di+1} ⊂ ZN ′,

where N ′ = N + dN . The following relations hold for
I(i; di, di+1):

Fig. 1 Channel model.

|I(i; di, di+1) | =



2 (di+1 = di + 1 (insertion))
1 (di+1 = di)
0 (di+1 = di − 1 (deletion))

,

∀i, j ∈ZN, (i, j) → I(i; di, di+1)∩I( j; d j, d j+1)=φ,⋃
i∈ZN

I(i; di, di+1) = ZN ′,

where φ is the empty set. For each transmitted bit xi (i ∈
ZN ), received bit values are determined according to

p(yi′ |xi) =



1 − ps (yi′ = xi)
ps (yi′ = xi)

,

where i′ ∈ I(i; di, di+1). Figure 1 (b) and (c) illustrate the
relations between drift value di and insertion/deletion error.

4. Polar Code for IDS Channel

Let N = 2n be the code length of polar code. LetA andAc

be sets of information and frozen bits, respectively, where
A ∪ Ac = ZN and A ∩ Ac = φ. The positions of frozen
bits are determined based on a simulation based estimation
described in Sect. 4.3. It is assumed that the value of frozen
bit is zero, while effect of frozen bit values on the decoded
error rate will be examined by simulation in Sect. 5.2. En-
coding and decoding use n + 1 intermediate binary vectors,
u(n), u(n − 1), . . . , u(0) ∈ BN , each of length N = 2n.
Figure 2 illustrates notations in the encoding and decoding
procedures.

4.1 Encoding

Encoding process is identical to that of the original polar
code. That is, information word uN−1

0 = u(n) is encoded as
xN−1

0 = u(0) by the following recursive calculation:

u(n) = uN−1
0 ,
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Fig. 2 Notations for encoding and decoding.

u(k − 1)γ−1
α = even

(
u(k)β−1

α

)
⊕ odd

(
u(k)β−1

α

)
,

u(k − 1)β−1
γ = odd

(
u(k)β−1

α

)
,

xN−1
0 = u(0),

where k ∈ {1, 2, . . . , n} is level index, and α, β, and γ are bit
positions given as

α = 2km, β = 2k (m + 1),

γ = (α + β)/2 = 2km + 2k−1.

Here, m ∈ {0, 1, . . . , 2n−k−1} indicates block index.

4.2 Successive Cancellation Decoding

The SC decoder is given the frozen bit set Ac ⊂ ZN ,
value of each frozen bit, and channel parameters, pi, pd, ps,
and D. The decoder inputs received word yN ′−1

0 ∈ BN ′

with its length N ′, and it outputs decoded word ûN−1
0 =

(û0, û1, . . . , ûN−1) ∈ BN . The original SC decoding is mod-
ified to deal with drift di , as follows.

The i-th information bit ui is estimated as

ûi =



ui (i ∈ Ac)
hi

(
N ′, yN ′−1

0 , ûi−1
0

)
(i ∈ A)

,

where

hi
(
N ′, yN ′−1

0 , ûi−1
0

)
=




0
(
p
(
dN ,y

N ′−1
0 ,ui−1

0 =ûi−1
0 |ui=0

)
p
(
dN ,y

N ′−1
0 ,ui−1

0 =ûi−1
0 |ui=1

) ≥ 1
)

1 (otherwise)
.

We firstly consider a polar bit IDS channel of level k = n for
u(n) = uN−1

0 defined as follows:

W (i)
2n

(
dN, y

N ′−1
0 , u(n)i−1

0 = û
i−1
0

��� d0=0, u(n)i=c
)

= p
(

dN, y
N ′−1
0 , ui−1

0 = ûi−1
0

��� d0=0, ui = c
)
,

Fig. 3 Polar bit IDS channel of level k.

where c ∈ B. This channel is factorized into two channels
of W ( bi/2c)

2n−1 (·) in level k = n − 1. Similarly, we can apply
recursive factorization of the polar bit IDS channel in level
k, W (i)

2k (·), into two channels in level k − 1, W ( bi/2c)
2k−1 (·).

Unlike the existing SC decoding, the following SC decoding
considers cases in which sub-vector of received word y is
factorized into two vectors of unequal lengths due to insertion
and deletion errors. Figure 3 illustrates the polar bit IDS
channel corresponding to level k.

4.2.1 Recursions for Level k ∈ {1, 2, . . . , n}

Probabilities in level k are calculated using probabilities in
level k − 1. In level k, probability is calculated for each
combination (m, j) of block index m ∈ {0, 1, . . . , 2n−k − 1}
and bit index j ∈ {0, 1, . . . , 2k−1−1}. The following notations
are used in the recursion:

α = 2km, β = 2k (m + 1), γ = (α + β)/2,

ũ = (ũ0, ũ1, . . . , ũ2k−1) = u(k)β−1
α ∈ B2k ,

ṽ = (ṽ0, ṽ1, . . . , ṽ2k−1−1) = u(k − 1)γ−1
α ∈ B2k−1

,

w̃ = (w̃0, w̃1, . . . , w̃2k−1−1) = u(k − 1)β−1
γ ∈ B2k−1

,

u′b = even
(
ũ

2j−1
0

)
⊕ odd

(
ũ

2j−1
0

)
∈ Bj,

u′g = odd
(
ũ

2j−1
0

)
∈ Bj .

The probabilities for bits of even indices are calculated as
follows:

W (2j)
2k

(
dβ, y

β+dβ−1
α+dα

, ũ
2j−1
0

���� dα, ũ2j

)
=

∑
ũ2 j+1∈B

p
(

dβ, y
β+dβ−1
α+dα

, ũ
2j−1
0 , ũ2j+1

���� dα, ũ2j

)
=

∑
ũ2 j+1∈B

p
(

dβ, y
β+dβ−1
α+dα

, ũ
2j−1
0

���� dα, ũ2j, ũ2j+1

)
p
(
ũ2j+1

��� ũ2j
)

=
∑

ũ2 j+1∈B

p
(
dβ, y

β+dβ−1
α+dα

, ṽ
j−1
0 =u′b, w̃

j−1
0 =u′g

��� dα, ṽj = ũ2j ⊕ ũ2j+1, w̃ j = ũ2j+1
)
·

1
2

=
1
2

∑
dγ ∈D

∑
ũ2 j+1∈B

p
(
dβ, dγ, y

γ+dγ−1
α+dα

, y
β+dβ−1
γ+dγ

, ṽ
j−1
0 =u

′
b, w̃

j−1
0 =u

′
g
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��� dα, ṽj = ũ2j ⊕ ũ2j+1, w̃ j = ũ2j+1
)

=
1
2

∑
dγ∈D

∑
ũ2 j+1∈B

W ( j)
2k−1

(
dγ, y

γ+dγ−1
α+dα

, ṽ
j−1
0 =u

′
b

���� dα, ṽj = ũ2j ⊕ũ2j+1

)
×W ( j)

2k−1

(
dβ, y

β+dβ−1
γ+dγ

, w̃
j−1
0 =u′g

���� dγ, w̃ j = ũ2j+1

)
,

Those of odd indices are calculated as follows:

W (2j+1)
2k

(
dβ, y

β+dβ−1
α+dα

, ũ
2j
0

���� dα, ũ2j+1

)
= p

(
dβ, y

β+dβ−1
α+dα

, ũ
2j−1
0

���� dα, ũ2j, ũ2j+1

)
p
(
ũ2j

��� ũ2j+1
)

= p
(
dβ, y

β+dβ−1
α+dα

, ṽ
j−1
0 = u′b, w̃

j−1
0 = u′g

��� dα, ṽj = ũ2j ⊕ ũ2j+1, w̃ j = ũ2j+1
)
·

1
2

=
1
2

∑
dγ ∈D

p
(
dβ, dγ, y

γ+dγ−1
α+dα

, y
β+dβ−1
γ+dγ

, ṽ
j−1
0 =u′b, w̃

j−1
0 =u′g

��� dα, ṽj = ũ2j ⊕ ũ2j+1, w̃ j = ũ2j+1
)

=
1
2

∑
dγ ∈D

W ( j)
2k−1

(
dγ, y

γ+dγ−1
α+dα

, ṽ
j−1
0 =u′b

���� dα, ṽj = ũ2j ⊕ ũ2j+1

)
×W ( j)

2k−1

(
dβ, y

β+dβ−1
γ+dγ

, w̃
j−1
0 =u′g

���� dγ, w̃ j = ũ2j+1

)
.

The above calculations assume that the following relation
holds:

p
(
ũ2j+1

��� ũ2j
)
= p

(
ũ2j

��� ũ2j+1
)
= 1/2.

4.2.2 Calculation for Level k = 0

For i ∈ {0, 1, . . . , N − 1}, the probability is calculated as

W (i)
20

(
di+1, y

(i+1)+di+1−1
i+di

��� di, u(0)i
)

= p
(
yi+di+1
i+di

��� di, di+1, xi
)
· p(di+1 |di).

Here, the second factor of right-hand side is given by Eq. (1),
and the first factor is calculated as

p
(
yi+di+1
i+di

��� di, di+1, xi
)
=




pδs (1−ps)`−δ (|di+1−di | ≤1, 0≤ i+di, i+di+1<N ′)
0 (otherwise)

,

where ` = |I(i; di, di+1) | and

δ =
���{i
′ ∈ I(i; di, di+1) | yi′ , xi }

���
=

∑
i′∈I(i;di,di+1)

(xi ⊕ yi′ ).

This SC decoding can be extended to the list decoding
in the same way as the existing SCL decoding [13], and also
concatenation with a CRC is straightforward.

4.3 Determination of Frozen Bits

Let I (W (i)
N ) be the symmetric capacity of W (i)

N defined as

I
(
W (i)

N

)
=

1
2N

∑
u∈BN

∑
y∈B

p
(
yN ′−1

0
��� u

N−1
0

)
Ĩ
(

dN, y
N ′−1
0 , ui−1

0
��� ui

)
, (2)

where B =
⋃

d∈D B
N+d and

Ĩ
(

dN, y
N ′−1
0 , ui−1

0
��� ui

)
=

log
p
(

dN, y
N ′−1
0 , ui−1

0
��� ui

)
1
2 p

(
dN, y

N ′−1
0 , ui−1

0
��� ui

)
+ 1

2 p
(

dN, y
N ′−1
0 , ui−1

0
��� ūi

) .
(3)

For given code length N and rate R, the set of positions of
frozen bits is determined as

Ac = {i0, i1, . . . , im−1} ⊂ ZN,

where m = [N R] is the round-off of N R, and

∀i, j ∈ ZN, (i ∈ Ac ∧ j ∈ A) → I
(
W (i)

N

)
≤ I

(
W ( j)

N

)
.

For the polar bit IDS channel, it will be difficult to
calculate the exact value of the symmetric capacity I (W (i)

N ).
Observing that Eq. (2) is the expectation of Eq. (3) over all
received words yN ′−1

0 for a given codeword uN−1
0 , where

u is uniformly distributed, we use the following simulation
based method to estimate the symmetric capacity.

1. Generate a random information vector uN−1
0 .

2. Encode uN−1
0 to codeword xN−1

0 .
3. Determine received word yN ′−1

0 probabilistically ac-
cording to the IDS channel model.

4. Calculate λ = Ĩ
(

dN, y
N ′−1
0 , ui−1

0
��� ui

)
of Eq. (3) using

the modified SC decoding.
5. Repeat the above procedure for a fixed number of times,

and then determine the average of λ as the symmetric
capacity.

4.4 Estimation of Block Error Rate

For given A = ZN \ Ac , an upper bound on decoded block
error rate (BLER) of the above SC decoding is derived as
follows [11]:

p(E) ≤
∑
i∈A

p(Ei), (4)

where Ei is the event that the i-th bit is incorrectly decoded
as ûi = ui , E is the event that a decoded word has at least
one incorrectly decoded bit, and

p(Ei) =
1

2N

∑
u∈BN

∑
y∈B

p
(
yN ′−1

0
��� u

N−1
0

)
Fi

(
dN, y

N ′−1
0 , ui−1

0
��� ui

)
. (5)

Here, Fi (·) ∈ B is defined using the indicator function 1 as

Fi

(
dN, y

N ′−1
0 , ui−1

0
��� ui

)
=
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


1

(
p
(
dN, y

N ′−1
0 , ui−1

0
��� 0

)
< p

(
dN, y

N ′−1
0 , ui−1

0
��� 1

))
(ui=0)

1

(
p
(
dN, y

N ′−1
0 , ui−1

0
��� 1

)
≤ p

(
dN, y

N ′−1
0 , ui−1

0
��� 0

))
(ui=1)

.

(6)

Similar to the estimation of symmetric capacity based on
Eqs. (2) and (3), the value of p(Ei) is estimated by a simula-
tion based method since Eq. (5) is the expectation of Eq. (6)
over all received words yN ′−1

0 for a given codeword uN−1
0 ,

where u is uniformly distributed. Numerical example of the
estimated BLER will be shown in Fig. 8 of Sect. 5.2.

4.5 Computational Complexity

Recursion structure of the original SC decoding is expressed
as follows:

W (2j)
2k (·|ũ2j ) =

1
2

∑
ũ2 j+1∈B

W ( j)
2k−1 (·|ũ2j⊕ũ2j+1)W ( j)

2k−1 (·|ũ2j+1),

W (2j+1)
2k (·|ũ2j+1) =

1
2

W ( j)
2k−1 (·|ũ2j⊕ũ2j+1)W ( j)

2k−1 (·|ũ2j+1),

where ũ = (ũ0, ũ1, . . . , ũN−1) = u(k). The probability is
calculated for each element ũi of each intermediate vector
u(k), where i ∈ ZN and k ∈ Zn. Hence computational
complexity is O(N log N ). On the other hand, recursion of
the presented SC decoding for IDS channel is expressed as
follows:

W (2j)
2k (dβ, · |dα, ũ2j )=

1
2

∑
dγ∈D

∑
ũ2 j+1∈B

W ( j)
2k−1 (dγ, · |dα, ũ2j⊕ũ2j+1)W ( j)

2k−1 (dβ, · |dγ, ũ2j+1),

W (2j+1)
2k (dβ, · |dα, ũ2j+1) =

1
2

∑
dγ ∈D

W ( j)
2k−1 (dγ, · |dα, ũ2j⊕ũ2j+1)W ( j)

2k−1 (dβ, · |dγ, ũ2j+1),

where dα, dβ ∈ D. From the above relations, the num-
ber of calculated probabilities is increased by a factor of
|D|2 = (2D + 1)2, and the complexity of calculation of
each probability is increased by a factor of |D| = 2D + 1.
Thus, the complexity of the presented SC decoding isO(D3)
with respect to the maximum drift value D, while it is still
O(N log N ) with respect to the code length N .

5. Simulation Results

Numerical results of polarization of W (i)
2n and decoded error

rates are presented in Sects. 5.1 and 5.2, respectively. We as-
sume that themaximumdrift values is D = 4 in the following
simulations.

5.1 Channel Polarization

Figure 4 presents relation between the bit index i of W (i)
2n

and symmetric capacity I (W (i)
2n ) estimated by the simulation

Fig. 4 Polarization of IDS channel (pi = pd = 1.0 × 10−2, ps = 1.0 ×
10−2, n = 12).

Fig. 5 Relation between bit position and mutual information (pi = pd =
5.0 × 10−3, ps = 0, SIR = 9.31 × 10−1).

Fig. 6 Relation between bit position and mutual information (pi = pd =
5.0 × 10−3, ps = 1.0 × 10−2, SIR = 8.53 × 10−1).

described in Sect. 4.3, where pi = pd = 1.0 × 10−2, ps =
1.0 × 10−2, and n = 12. This simulation result suggests
polarization of W (i)

2n similar to memoryless channels. For
pi = pd = 5.0 × 10−3 and ps = 0, Fig. 5 shows the relation
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Fig. 7 Dependence of error rates on the code length N = 2n (n ∈ {11, 12, 13, 14}, ps = 0, R =
0.80, L = 4).

Fig. 8 Dependence of error rates on the list size L ∈ {1, 4, 8, 16} (ps = 0, n = 12, R = 0.80).

between bit position (sorted by I (W (i)
2n ) and normalized by

code length N = 2n) and estimated symmetric capacity,
where n ∈ {10, 11, . . . , 15}. The result suggests that longer
codes have stronger polarization effect, and it is expected
that the rate ���

{
i ∈ ZN

��� I (W (i)
2n ) > 1 − ε

}��� /N approaches the
channel SIR, 9.31× 10−1. Figure 6 presents the case of
channel with substitution errors, where ps=1.0×10−2. This
channel also shows the polarization effect similar to Fig. 5.

5.2 Block and Bit Error Rates

The block error rate (BLER) and bit error rate (BER) of
the presented coding are evaluated by simulations, where
the positions of frozen bits are determined according to the
procedure of Sect. 4.3 with 104 iterations. The value of
frozen bit is ui = 0 for all i ∈ Ac , except in Paragraph (6)
wherein the effect of frozen bit values on decoded error rate
is examined. The CRC for SCL decoding is defined by
generator polynomial g(x) = x8 + x7 + x6 + x4 + x2 + 1.

(1) Relation to the Code Length N = 2n

Figure 7 shows the BLER and BER for code lengths N =
2n, where n ∈ {11, 12, 13, 14}. Here, the horizontal axis is

the insertion/deletion probability pi = ps, the substitution
probability is ps = 0, code rate R = 0.80, and list size L = 4.
It is observed that the error rate lowers with increasing code
length, while at these code lengths, there exists considerable
gap from the channel SIR.

(2) Relation to the List Size L

Figure 8 presents effect of the list size L ∈ {1, 4, 8, 16} on the
decoded BLER and BER, where the code length is N = 212

and code rate is R = 0.80. The results show that the SCL
decoding has much lower error rate compared to the SC
decoding (L = 1), while the improvement diminishes for
larger list sizes. This figure also shows the estimated BLER
of SC decoding (L = 1) given by the right-hand side of
Eq. (4). The estimation gives accurate values of BLER for
the simulated parameters.

(3) Comparison to Marker-Based Codings

Figure 9 compares the error rates of the polar codes with
those of marker-based coding [9], where ps = 0, n ∈
{12, 13}, R=0.80, and L=16. The outer code of the marker-
based coding is binary (3,6)-regular LDPC code of rate 0.88,
and the inner code is insertion of marker (0, 1) with the reg-
ular interval of 20 bits. The results show that the error rates
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Fig. 9 Comparison to marker-based codings (ps = 0, n ∈ {12, 13}, R = 0.80, L = 16).

Fig. 10 Error rate when channel has substitution errors (ps = 1.0×10−2, n=12, R=0.80, L ∈ {8, 16}).

Fig. 11 Error rates of low-rate codes (ps = 0, n = 17, R = 0.44, L = 8).

of polar code are lower than those of marker-based codings.

(4) Error Rates of Channels with Substitution Errors

Figure 10 presents the error rates of polar code and marker-
based coding when the substitution error probability is ps =
1.0×10−2, where the marker coding is with the interval of
96 bits. The polar codes have lower error rates compared
to the marker-based coding, while discrepancy from the SIR

(= 1.05×10−2) is large. For small insertion/deletion prob-
abilities, e.g., pi = pd = 1.0×10−3, substitution errors with
probability ps = 2.0×10−2 have a dominant contribution to
the decoded error rates, and hence error rates do not fall
sharply.

(5) Error Rates of Low-Rate Codes with Large Length

Figure 11 shows the error rates of low-rate codes with R =
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Table 1 Effect of frozen bit values on decoded error rate (ps = 0, n =
12, R = 0.80, L = 16).

BLER BER
pi=pd (a) (b) (c) (a) (b) (c)
0.009 1.3×10−3 1.2×10−3 1.3×10−3 2.1×10−4 2.0×10−4 1.9×10−4

0.010 5.2×10−3 5.1×10−3 5.1×10−3 9.3×10−4 9.2×10−4 9.2×10−4

0.011 1.7×10−2 1.9×10−2 1.7×10−2 3.4×10−3 3.8×10−3 3.4×10−3

0.012 5.2×10−2 5.1×10−2 5.1×10−2 1.1×10−2 1.1×10−2 1.1×10−2

0.44, n = 17, and ps = 0. This figure shows the BLERs and
BERs of the polar code, marker-based coding, and spatially-
coupled LDPC (SC-LDPC) code [10]. The outer code of
the marker-based coding is binary (3,6)-regular LDPC code
of rate 0.58, and the inner code is insertion of marker (0, 1)
with the interval of 6 bits. The base matrix of SC-LDPC
code is B(3, 6, 16) and the lifting number is M = 4096. The
results show that polar code has the lowest error rate among
the evaluated codes.

(6) Effect of Frozen Bit Values

Table 1 lists the error rates for three cases of frozen bit values,
where the values are determined as (a) ui = 0, (b) ui = 1,
and (c) ui ∈ B with p(ui =0) = p(ui =1) = 1/2, for i ∈ Ac .
Here, the channel and code parameters are determined as
ps = 0, n = 12, R = 0.80, and L = 16. The results do
not show significant dependence of error rates on the frozen
bit values, and thus it is expected that the IDS channel is
symmetric with respect to input bit value.

6. Conclusion

This paper presented an SC decoding of polar codes modi-
fied for IDS error channels, in which insertions and deletions
are expressed by drift values. The recursive computations
of original SC decoding is modified to include drift values
in the calculation. The computational complexity of the SC
decoding is O(D3) with respect to the maximum drift value
D, and O(N log N ) with respect to the code length N . This
also showed a simulation based estimation of symmetric ca-
pacity of polar bit channels to determine the positions of
frozen bits. Simulation results showed that the presented SC
list decoding with CRC gives lower decoded error rates com-
pared to the existing codes, such as spatially-coupled code,
and concatenated coding with LDPC code and synchroniza-
tion marker. Future works include reduction of decoding
complexity by approximation, theoretical analysis and proof
of polarization of polar bit IDS channel, theoretical analysis
on the decoded error rate of the modified SC list decoding,
and efficient determination method of frozen bits.
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