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PAPER
Chaos–Chaos Intermittency Synchronization Controlled by
External Feedback Signals in Chua’s Circuits

Sou NOBUKAWA†a), Hirotaka DOHO††,†††, Natsusaku SHIBATA†, Haruhiko NISHIMURA†††, Members,
and Teruya YAMANISHI††††, Nonmember

SUMMARY Fluctuations in nonlinear systems can enhance the syn-
chronization with weak input signals. These nonlinear synchronization
phenomena are classified as stochastic resonance and chaotic resonance.
Many applications of stochastic resonance have been realized, utilizing its
enhancing effect for the signal sensitivity. However, although some stud-
ies showed that the sensitivity of chaotic resonance is higher than that of
stochastic resonance, only few studies have investigated the engineering
application of chaotic resonance. A possible reason is that, in chaotic res-
onance, the chaotic state must be adjusted through internal parameters to
reach the state that allows resonance. In many cases and especially in bi-
ological systems, such adjustments are difficult to perform externally. To
overcome this difficulty, we developed a method to control the chaotic state
for an appropriate state of chaotic resonance by using an external feedback
signal. The method is called reducing the range of orbit (RRO) feedback
method. Previously, we have developed the RRO feedback method for dis-
crete chaotic systems. However, for applying the RRO feedback method
to actual chaotic systems including biological systems, development of the
RRO feedback signals in continuous chaotic systems must be considered.
Therefore, in this study, we extended the RRO feedback method to con-
tinuous chaotic systems by focusing on the map function on the Poincaré
section. We applied the extended RRO feedbackmethod to Chua’s circuit as
a continuous chaotic system. The results confirmed that the RRO feedback
signal can induce chaotic resonance. This study is the first to report the
application of RRO feedback to a continuous chaotic system. The results
of this study will facilitate further device development based on chaotic
resonance.
key words: synchronization, chaotic resonance, chaos-chaos intermittency,
control

1. Introduction

It is widely known that fluctuations in nonlinear systems can
enhance the synchronization with weak input signals [1]–
[6] (see review [7]–[9]). These nonlinear synchronization
phenomena are classified according to the sources of fluctu-
ation, i.e., additive stochastic noise and internal deterministic
chaos. The former one is called stochastic resonance, which
is observed in various kinds of systems, such as climate
systems, nonlinear electric circuits, biological systems, and
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social systems [10]–[17]. The latter one is called chaotic res-
onance [18], [19], which is observed in systems with chaos-
chaos intermittency (CCI) where the chaotic orbit appears
between separate regions, such as one-dimensional cubic
map, Chua’s circuit, Lorenz systems, and duffing systems
[20], [21] (reviewed in [19], [22]–[24]). In chaotic reso-
nance, switching between different regions in CCI synchro-
nizes with a weak external signal and its degree is maximized
near the conditions where an attractor-merging bifurcation
arises [19]. Studies on chaotic resonance have been pro-
ceeding toward neural systems [18], [21], [25]–[30]. For
example, Nishimura et al. and Nobukawa et al. showed that
chaotic neural networks with several stored patterns corre-
sponding to memory exhibit chaotic resonance [18], [21].
Schweighofer et al. Tokuda et al. and Nobukawa et al.
demonstrated that cerebellar learning is supported by the
chaotic resonance effect [25]–[27], [29].

Many applications of stochastic resonance have been
developed, utilizing its enhancing effect for the signal sen-
sitivity [31]–[35]. For example, Tadokoro et al. proposed a
method for enhancing receiver sensitivity in digital commu-
nication [35]. In terms of biomedical applications, Kurita et
al. developed a wearable device for enhancing human tactile
sensitivity [31], [34]. With regard to other applications, a
method for improving tactile sensations in paralyzed patients
and stroke survivors and a method for enhancing the ability
of perceptual decision making by transcranial random noise
stimulation [32], [33], [36] have been proposed.

On the other hand, although some studies showed that
the sensitivity of chaotic resonance exceeds that of stochastic
resonance [18], [37], only few studies have considered the
engineering application of chaotic resonance. One proba-
ble reason is that, in a chaotic resonance, the chaotic state
must be adjusted through internal parameters to reach the
state that allows resonance. In many cases and especially
in biological systems, such adjustments are difficult to per-
form externally. In contrast, in stochastic resonance cases,
the strength of additive noise can be easily controlled. To
address this difficulty, we developed a method to control the
chaotic state for an appropriate state of chaotic resonance
by using an external feedback signal; the technique is called
reducing the range of orbit (RRO) feedback method [38].
In the conventional chaos control method, the chaotic states
are transferred to stable periodic states and a fixed point by
applying external perturbation, such as in the Ott–Grebogi–
Yorke method [39], delayed feedback [40], [41], and H∞
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control [42]. On the other hand, the RRO feedback method
does not eliminate the chaotic behavior and controls the fre-
quency of CCI and attractor-merging bifurcation [38]. In
particular, the RRO feedback signal reduces the local maxi-
mum and minimum of the map function, which induce CCI,
and controls the attractor merging bifurcation. Under this
effect, the chaotic resonance is induced, instead of adjusting
internal system parameters.

The RRO feedback method has been adopted to only
discrete chaotic systems typified as the discrete cubic map
and its assembly [38], [43] and discrete neural systems
[44], [45]. However, in the process of applying the RRO
feedback method to actual chaotic systems, development of
the RRO feedback signals in continuous chaotic systems
must be considered. Therefore, we have proposed a RRO
feedback method for continuous chaotic system by using
the system behavior on Poincaré section as preliminary trial
[46]. In this study, based on our previous work [46], we
introduce the RRO feedback method for Chua’s circuit [47]
as a continuous chaotic system and control the CCI by this
method. Moreover, chaotic resonance is induced by this
RRO feedback method.

2. Material and Methods

2.1 Fundamental Description of RRO FeedbackMethod in
Discrete Map

In our previous studies, we proposed the RRO feedback con-
trol for separating the merged attractor in discrete chaotic
systems with CCI [38], [43]–[45]. Here, we briefly explain
the control method based on the example of cubic map as
follows:

x(t + 1) = F (x(t)) + Ku(x(t)), (1)
F (x) = (ax − x3) exp(−x2/b) (2)
u(x) = −(x − xd) exp(−(x − xd)2/(2σ2)), (3)

Here, K and xd indicate the amplitude of RRO feedback con-
trol and the point dividing each attractor, respectively. In our
previous study [38], [43], we set xd = 0 because the cubic
map of Eq. (2) has two symmetric attractor regions, i.e., pos-
itive and negative x(t) regions. Under the condition for no
feedback signals (K = 0), by increasing the internal parame-
ter a, the chaotic attractors, whichwere separated to two sym-
metric attractor regions, aremerged andCCI arises [19]. The
conditions for attractor merging are determined by satisfying
F ( fmax)+Ku( fmax)− xd < 0, F ( fmin)+Ku( fmin)− xd > 0.
Here, fmax,min indicate the local maximum and minimum of
the map function, respectively. More concretely, attractor
switching in CCI arises in the case where the orbit enters
the regions with F (x) + Ku(x) − xd < 0 when x > 0, or
with F (x) + Ku(x) − xd > 0 when x < 0. The range of
the upper limit of x in the x > 0 region is determined by
fmax, while the lower limit of x in the x < 0 region is de-
termined by fmin. Owing to the cubic map characteristic of

Fig. 1 Overview of the “reduced region of orbit” (RRO) feedback control
method for discrete chaotic systems. (a) Effect of separating the merged
attractor (upper) and that for merging the separated attractor (lower). Here
fmax,min indicate the local maximum and minimum of map functions of
F (x(t)) + Ku(x(t)). Arrows indicate the attractor merging points, i.e.,
F ( fmax,min)+Ku( fmax,min). (b) The feedback termKu(x) inK = 0.2, −0.2
cases. (b = 10, σ = 0.6).

F (x) + Ku(x), if fmax,min reaches the regions of x satisfy-
ing F (x) + Ku(x) − xd < 0 in the region for x > 0 and
F (x) +Ku(x) − xd > 0 in the region for x < 0, respectively,
the attractor merges.

We demonstrate the effect of the RRO feedback method
in Fig. 1. In the left parts of Fig. 1(a), the map functions
of F (x) and their orbits are represented corresponding to
the cases without feedback signal (K = 0) for merged at-
tractor (a = 2.86) and separated attractor (a = 2.75). In
the merged attractor condition (a = 2.86), application of
positive feedback strength (K = 0.2) (see Fig. 1(b)) induces
separation of the attractor into negative and positive regions,
depending on the initial values of x(t), because decreasing
| fmax,min | leads to violation of the attractormerging condition
F ( fmax)+Ku( fmax)− xd < 0, F ( fmin)+Ku( fmin)− xd > 0.
This separating effect was explored in our previous stud-
ies [38], [43], [44]. Furthermore, in this study, we deal
with the negative RRO feedback strength in addition to
the positive RRO feedback strength. Under the condi-
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tion for separated attractor (a = 2.75) (see lower part of
Fig. 1(a)), application of negative RRO feedback strength
(K = −0.2) leads to attractor merging and CCI by satisfying
the attractor merging condition F ( fmax) + Ku( fmax) − xd <
0, F ( fmin) + Ku( fmin) − xd > 0 due to increasing | fmax,min |.

2.2 Chua’s Circuit Model with RRO Feedback Signals

In this section, we expand the RRO feedback method to con-
tinuous chaotic systems. Chua’s circuit is a chaotic system
with a double-scroll attractor [47] described by the differen-
tial equations

ẋ = α(y − x) − α f (x), (4)
ẏ = x − y + z, (5)
ż = −βy − γz. (6)

Here, the function f determines the non-linear characteris-
tics of Chua’s diode as

f (x) = m1x +
1
2

(m0 − m1)(|x + 1| − |x − 1|). (7)

In this system, when the parameters are set to (β =
12.0732, γ = 0.0052,m0 = −0.1768,m1 = −1.1468), the
chaotic attractor exhibits CCI between two separated regions
[48]. The present study adopts this parameter set.

Figure 2(a) outlines our proposed RRO feedback con-
trol method, as applied to continuous chaotic systems. The
Poincaré return map of zi , which is the values of z within
the Poincaré section P, is exhibited as follows:

zi+1 = FK (zi). (8)

The RRO feedback signal for the ith (i = 1, 2, · · · ) trajectory
crossing Poincaré section P is determined by the function
u(zi) with a strength K (see Fig. 2(b)). In Refs. [38], [43]
and Sect. 2.1, we demonstrated that the merged attractor dis-
playing CCI has a cubic-map structure and that reduction of
the absolute values of the local maximum and minimum of
map function results in the separation of the merged attractor
(increase of these absolute values leads to the merging the
separated attractor). In the present study, we therefore de-
veloped the RRO feedback function u to adjust the absolute
values of the local maximum and minimum of the Poincaré
return map function FK (zi). Specifically, the RRO feedback
signal Ku was added to Eq. (6), yielding

ż = −βy − γz + Ku(zi). (9)

where, zi denotes the ith value of z when crossing the
Poincaré section P = {(x, y, z) |x = 0, y < 0} [20]. This
RRO feedback signal Ku(zi) becomes constant during one
cycle from Poincaré section to Poincaré section. We as-
sumed that these signals are biased to the dynamics of zi
corresponding to the direction of the sign of Ku(zi), i.e.,
positive (Ku(zi) > 0) and negative (Ku(zi) < 0) values of
the RRO feedback signal induce an increase and decrease
in the value of zi+1, respectively. In this study, as well as

Fig. 2 Overview of the “reduced region of orbit” (RRO) feedback control
method for continuous chaotic systems. (a) Orbit of a chaotic system and
the RRO feedback signal. (b) Poincaré return map function FK (zi ) on
Poincaré section P.

Fig. 3 Profile of RRO feedback signals given by Eq. (10) ((µ, σ) =
(−3.7, 0.3)).

for the RRO feedback functions used in our previous work
[38], [43], the Gaussian RRO feedback function u is given
by

u(X ) = −(X − µ)
1

√
2πσ

exp(−
(X − µ)2

2σ2 ), (10)

where µ is set to a division for attractor of zi . In this study,
we set (µ, σ) = (−3.7, 0.3) (see the profile of function u in
Fig. 3).

To evaluate the synchronization with an input signal,
the sinusoidal signal S(t) is applied to ż as follows:

ż = −βy − γz + Ku(zi) + S(t). (11)

Here, S(t) represents As sin(2π fst).
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2.3 Evaluation Methods

According to the attractor merging condition for the discrete
cubic map described in Sect. 2.1 and in Refs. [38], [43], to
evaluate the effect of RRO feedback signals, we use the
condition for attractor merging:

FK ( fmax) − µ < 0, (12)
FK ( fmin) − µ > 0. (13)

Here fmax,min indicate the local maximum and minimum of
FK (zi), respectively. Otherwise, the condition corresponds
to the attractor separating.

Under the condition of attractor merging, the orbit of
zi hops between zi ≤ µ and zi > µ regions, which is called
CCI of zi . To evaluate the synchronization of CCI of zi
with a weak input sinusoidal signal, we use the strength of
distribution for the interval term of CCI around the period
of Ts = 1/ fs [49]:

P1 =

∫ 1.25Ts

0.75Ts
P(Tcci)dTcci . (14)

Here, P(Tcci) exhibits the probability distribution for the
interval term of CCI of zi , i.e., Tcci = tk+1− tk (k = 1, 2, · · · )
(tk is time at which the CCI arises).

3. Results

3.1 Chua’s Circuit without RRO Feedback Signal

Figure 4 shows a bifurcation diagram of zi as a function of
the internal system parameter α, in the absence of a RRO
feedback signal (K = 0). As α increases through a period-
doubling bifurcation, the chaotic state appears when α &
8.42. When 8.42 . α . 8.48, zi is confined within the
range −4.5 . zi . −3.7 or −3.7 . zi . −2.5, depending on
the initial condition. However, when α & 8.48, zi oscillates
between these regimes, thus demonstrating CCI.

3.2 Chua’s Circuit with a RRO Feedback Signal

For a fixed value of the internal system parameter α = 8.52,
the system state exhibits CCI when there is no RRO feedback
(K = 0). Then, the RRO feedback signal Ku(zi) is applied.
Figure 5 shows a bifurcation diagram of zi , plotted as a
function of the RRO feedback strength K . Typical examples
of time-series of (x, y, z), z(t), and zi in K = 0, 0.1, 0.3
are represented in Fig. 6. For 0 . K . 0.21, zi exhibits
CCI in the ranges −4.5 . zi . −3.7 and −3.7 . zi .
−2.5 (see the representative example for zi in the left and
middle parts of Fig. 6(c)). However, as K increases beyond
≈ 0.21, zi becomes constrained within −4.5 . zi . −3.7 or
−3.7 . zi . −2.5, depending on the initial values (see the
representative example of zi in the right part of Fig. 6(c)).

Next, the negative RRO feedback signal is applied to

Fig. 4 System behavior of Chua’s circuit without a RRO feedback signal.
Bifurcation diagram of zi , plotted as a function of the internal system
parameter α. Two kinds of zi time series are plotted, corresponding to
different initial values: (x(0), y(0), z(0)) = (−6.0489, 0.0839, 8.7739)
(plotted with black points) and (6.0489, −0.0839, −8.7739) (plotted with
red points). With increasing α, the separated attractor is merged. (β =
12.0732, γ = 0.0052,m0 = −0.1768,m1 = −1.1468, K = 0).

Fig. 5 System behavior of Chua’s circuit with an applied RRO feedback
signal. Bifurcation diagram of zi , plotted as a function of the RRO feedback
strength K . Two kinds of zi time series are plotted, corresponding to
different initial values: (x(0), y(0), z(0)) = (−6.0489, 0.0839, 8.7739)
(plotted with black points) and (6.0489, −0.0839, −8.7739) (plotted with
red points). With increasing strength of the positive feedback signal, the
merged attractor is separated. (α = 8.52, β = 12.0732, γ = 0.0052,m0 =
−0.1768,m1 = −1.1468).

Chua’s circuit under the condition that the attractor is sep-
arating when there is no RRO feedback (K = 0) corre-
sponding to α = 8.46. Figure 7 shows a bifurcation di-
agram of zi , plotted as a function of the RRO feedback
strength K . Typical examples of time-series of (x, y, z),
z(t), and zi in K = 0,−0.1,−0.2 are represented in Fig. 8.
For −1.3 . K ≤ 0, zi is constrained in −4.5 . zi . −3.7
or −3.7 . zi . −2.5 (see the representative example for
zi in the left and middle parts of Fig. 8(c)). However, as
K decreases to less than ≈ −1.3, zi exhibits CCI between
−4.5 . zi . −3.7 and −3.7 . zi . −2.5 (see the represen-
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Fig. 6 Typical time-series of system behavior of Chua’s circuit with an applied positive RRO feedback
signal (corresponding to Fig. 5). (α = 8.52, β = 12.0732, γ = 0.0052,m0 = −0.1768,m1 = −1.1468).

Fig. 7 System behavior of Chua’s circuit with an applied negative RRO
feedback signal. Bifurcation diagram of zi , plotted as a function of the RRO
feedback strengthK . Two kinds of zi time series are plotted, corresponding
to different initial values: (x(0), y(0), z(0)) = (−6.0489, 0.0839, 8.7739)
(plotted with black points) and (6.0489, −0.0839, −8.7739) (plotted with
red points). With increasing absolute value of strength of the negative feed-
back signal, the separated attractor is merged. (α = 8.46, β = 12.0732, γ =
0.0052,m0 = −0.1768,m1 = −1.1468).

tative example of zi in the right part of Fig. 8(c)).
Figure 9(a) shows the return maps of zi on a Poincaré

section in the cases corresponding to K = 0, 0.3 in Fig. 6.
The cubic-map structure for the map function FK (zi) in the
case without an applied RRO feedback signal is confirmed.
On the other hand, in the presence of a RRO feedback signal,
the absolute values of the local maximum of the map func-
tion FK (zi) are reduced, and the separation of the merged
attractor is also confirmed. This effect of the RRO feed-
back signal is consistent with our previous findings for a
discrete cubic map [38], [43]. Here, the change to the value
of the local minimum of the map function is less in com-
parison with the change of the local maximum of the map
function FK (zi). Moreover, this effect is evaluated by the
attractor merging conditions for Eqs. (12) and (13). Ac-
cording to the evaluation of the condition based on fmax
(Eq. (12)), FK ( fmax) − µ ≈ −2.8 < 0 (attractor merging)
and FK ( fmax) − µ ≈ 0.22 > 0 (attractor separating) are
satisfied in the K = 0, 0.3 cases, respectively. By con-
trast, according to the evaluation of the condition based on
fmin (Eq. (13)), in K = 0.3 corresponding to the attrac-
tor separating, the attractor separating condition is satisfied
(FK ( fmin) − µ ≈ −0.47 < 0), although when K = 0, corre-
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Fig. 8 Typical time-series of system behavior of Chua’s circuit with an applied negative RRO feedback
signal (corresponding to Fig. 7). (α = 8.46, β = 12.0732, γ = 0.0052,m0 = −0.1768,m1 = −1.1468).

sponding to attractor merging, the attractor merging condi-
tion is not satisfied (FK ( fmin)− µ ≈ −0.72 < 0). This might
be attributed to the fact that the slope of FK (zi) at around
fmin (zi ≈ −4.5) is too steep to estimate the map function
precisely (see the middle part in Fig. 9(a)).

In Fig. 9(b), the map function FK (zi) corresponding to
K = 0,−0.2 cases in Fig. 8 are represented. In the case with-
out an applied RRO feedback signal (K = 0), the attractor
is divided into −4.5 . zi . −4 and −3.5 . zi . −2.5.
While applying a negative RRO feedback signal (K = −0.2),
the absolute values of the local maximum of the map func-
tion FK (zi) are increased, and then the attractor is merged.
Here, as well as the positive feedback case in Fig. 9(a), the
changing values of the local minimum of the map function
are smaller in comparison with the ones for the local max-
imum of the map function FK (zi). Moreover, according to
the evaluation of the condition based on fmax (Eq. (12)),
FK ( fmax) − µ ≈ 0.21 > 0 (attractor separating) and
FK ( fmax)−µ ≈ −0.09 < 0 (attractormerging) are satisfied in
the K = 0,−0.2 cases, respectively. By contrast, according
to the evaluation of the condition based on fmin (Eq. (13)),
when K = 0, corresponding to the attractor separating, the
attractor separating condition for FK ( fmin) − µ ≈ −0.67 < 0
is satisfied, although when K = −0.2, corresponding to the

attractor merging, the attractor merging condition is not sat-
isfied (FK ( fmin) − µ ≈ −0.60 < 0). This might be for the
same reason as in the positive feedback case, whereby the
slope of FK (zi) at around fmin (zi ≈ −4.5) is too steep to
estimate the map function precisely (see the middle part of
Fig. 9(b)).

3.3 Inducing Chaotic Resonance with a RRO Feedback
Signal

The signal response against a weak sinusoidal signal (S(t) =
As sin(2π fst),As = 10−3) is evaluated. The upper parts
of Fig. 10 show the strength of distribution for the interval
term of CCI: P1 as a function of the feedback strength K
in the cases of positive RRO feedback strength (α = 8.52)
and negative RRO feedback strength (α = 8.46). The lower
parts of Fig. 10 show scatter plots of P1 and FK ( fmax) − µ
given by Eq. (12) under the condition without a sinusoidal
signal. Here, the attractor merging condition based on fmax
is used, rather than the condition based on fmin according to
the results in Sect. 3.2. In both cases, the tendency of the
unimodal maximum peak of P1 is confirmed at around the
feedback strength K for the appearance of the attractor merg-
ing (FK ( fmax) − µ ≈ 0). Moreover, the peak values depend
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Fig. 9 Return map of zi on a Poincaré section, in the absence of RRO
feedback signal (upper graph) and presence of RRO feedback signal (middle
graph). The lower graph is magnified at around ∗ in the middle graph. The
red and black points correspond to the initial conditions (x(0), y(0), z(0)) =
(−6.0489, 0.0839, 8.7739) and (6.0489, −0.0839, −8.7739), respectively.
The black and red dashed lines in the lower part indicate the local max-
imum and minimum values of the map function FK (zi ), respectively, in
the case without feedback (K = 0). (β = 12.0732, γ = 0.0052,m0 =
−0.1768,m1 = −1.1468, α = 8.52 ((a)), α = 8.46 ((b))).

on the input signal frequency fs . From these results, it can
be interpreted that the RRO feedback signal induces an ap-
propriate chaotic state around attractor-merging bifurcation
for the chaotic resonance.

4. Discussion and Conclusion

In this study, we extended the RRO feedback method, which
was developed for controlling attractor-merging bifurcation
in discrete chaotic systems, to continuous chaotic systems by
focusing on the map function on the Poincaré section. We
applied the extended RRO feedback method to Chua’s cir-
cuit as a continuous chaotic system with CCI. Moreover, we
evaluated the signal response against a weak sinusoidal sig-
nal under the RRO feedback signals. The results confirmed
that a merged attractor and a separated attractor can be sepa-
rated and merged, respectively, by the RRO feedback signal
with sufficiently strong strength. In both cases, the ability of
signal response is maximized at around the strength of the

RRO feedback signal for attractor merging bifurcation, i.e.,
the chaotic resonance can be induced by the RRO feedback
signals.

The mechanism of the RRO feedback method that
merges and separates the attractor must be considered. With
regard to the separating effect, Refs. [38], [43] show that, in
discrete chaotic systems, the merged attractor in the presence
of CCI exhibits a cubic-map structure, and the reduction of
the absolute values of the local maximum and minimum of
the map function by the RRO feedback signal has the effect
of separating the merged attractor. Moreover, in Sect. 2.1,
we showed that the RRO feedback signal with negative feed-
back strength exhibits the effect of merging the separated
attractor due to increasing the absolute values of the local
maximum and minimum of map function. For developing
the RRO feedback method for Chua’s circuit, the local maxi-
mum andminimum of the function u are set to approximately
equate the local minimum andmaximum of themap function
of FK (zi), respectively, as well as those of discrete chaotic
systems [38], [43]. In addition, the RRO feedback signal
is set to a constant value Ku(zi) defined by Eq. (9), during
one cycle from Poincaré section to Poincaré section. We
assumed that these signals are biased to the dynamics of zi
corresponding to the direction of sign of Ku(zi), i.e., posi-
tive (Ku(zi) > 0)/negative (Ku(zi) < 0) values of the RRO
feedback signal induce increase/decrease in the value of zi+1,
respectively. Owing to this effect, the absolute values of the
local maximum/minimum of the map function are reduced
and increased for the positive (K > 0 case) and negative
(K < 0 case) RRO feedback signals, respectively. This leads
to the respective effects for separating and merging attractor.

Next, with regard to the signal response against a
weak sinusoidal signal, the proposed RRO feedback sig-
nals for Chua’s circuit can induce the unimodal maxi-
mum peak of signal response with the dependency on in-
put frequency around the attractor-merging bifurcation (see
Fig. 10). The reason for enhancing the signal response of
CCI at the attractor-merging bifurcation is considered. Near
the attractor-merging bifurcation point, CCI seldom occurs
in the condition without an input signal. However, with
an input signal, the influence of the input signal leads the
attractor to switch according to the period of the input sig-
nal. Consequently, this effect enhances the signal response.
It is known that, in discrete and continuous chaotic sys-
tems with CCI, the signal response in chaotic resonance is
also maximized at around the attractor-merging bifurcation,
and its response exhibits dependency on the input frequency
[19]. We previously reported that these characteristics are
maintained under RRO feedback signals in discrete chaotic
systems [38], [44], [45]. Therefore, the characteristics of
chaotic resonance observed in this study are congruent with
the previous findings of [19], [38], [44], [45].

We now turn to a discussion of the limitations and fu-
ture scope of this study. By expanding RRO feedback signals
to Chua’s circuit, the system-specific assumption is not con-
sidered. Therefore, it is assumed that the RRO feedback
signals can be widely adopted for other continuous systems
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Fig. 10 Strength of distribution for interval term of chaos–chaos intermittency (CCI): P1 as a function
of feedback strength K (upper). Scatter plots of P1 given by the upper part and FK ( fmax) − µ under
the condition without a sinusoidal signal (given by Eq. (12)) (lower). (a) Positive feedback strength
case (α = 8.52). (b) Negative feedback strength case (α = 8.46). In both feedback cases, the value
of P1 exhibits an unimodal maximum peak at around the attractor merging point. (β = 12.0732, γ =
0.0052,m0 = −0.1768,m1 = −1.1468, As = 10−3).

with attractor-merging bifurcation where chaotic resonance
have been observed, such as the Lorenz system and the duff-
ing oscillator [9], [19], [23], for inducing chaotic resonance.
This must be verified in a future study. As a limitation of
the proposed RRO feedback method, when controlling the
local minimum of the map function of zi in Chua’s circuit,
the change in the value of the RRO feedback signal is less
in comparison with that for the local maximum (see Fig. 9).
This might be attributed to the fact that the return map of zi
is not a complete odd function, while the RRO feedback sig-
nal is applied based on the assumption of complete function.
Furthermore, we did not succeed at estimating the attractor
merging condition based on fmin because of the steep slope
of the map function. To address these problems, we must
develop RRO feedback signals that accurately correspond to
the return map on the Poincaré section, and a highly accurate
estimation method is needed for the map function. More-
over, to adopt the RRO feedback method to chaotic systems
with more complex structure of attractor, one might consider
the setting for several Poincaré sections and a RRO feedback
signal based on the map function estimated using these sec-
tions. In addition, application of the RRO feedback method
to continuous neural systems should be investigated in future
studies.

In conclusion, this study is the first to report the ap-
plication of RRO feedback to a continuous chaotic system.
The findings will open fresh avenues for expanding device
development, which to date has been limited to stochastic
resonance, to chaotic resonance.
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