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PAPER
Chaos–Chaos Intermittency Synchronization Induced by Feedback
Signals and Stochastic Noise in Coupled Chaotic Systems

Sou NOBUKAWA†a), Member, Nobuhiko WAGATSUMA††, Nonmember, and Haruhiko NISHIMURA†††, Member

SUMMARY Various types of synchronization phenomena have been
reported in coupled chaotic systems. In recent years, the applications of
these phenomena have been advancing for utilization in sensor network
systems, secure communication systems, and biomedical systems. Specif-
ically, chaos–chaos intermittency (CCI) synchronization is a characterized
synchronization phenomenon. Previously, we proposed a new chaos control
method, termed as the “reduced region of orbit (RRO) method,” to achieve
CCI synchronization using external feedback signals. This method has been
gathering research attention because of its ability to induce CCI synchro-
nization; this can be achieved even if internal system parameters cannot be
adjusted by external factors. Further, additive stochastic noise is known to
have a similar effect. The objective of this study was to compare the per-
formance of the RRO method and the method that applies stochastic noise,
both of which are capable of inducing CCI synchronization. The results
showed that even though CCI synchronization can be realized using both
control methods under the induced attractor merging condition, the RRO
method possesses higher adoptability and accomplishes a higher degree of
CCI synchronization compared to additive stochastic noise. This advan-
tage might facilitate the application of synchronization in coupled chaotic
systems.
key words: chaos, synchronization, control, reduced region of orbit method

1. Introduction

Various kinds of synchronization phenomena have been
widely observed in nonlinear systems, which are typified by
social systems, electrical circuits, and biological systems (re-
view in [1]). Among these synchronization phenomena, fluc-
tuation enhances the degree of synchronization in stochastic
resonance and chaotic resonance (review in [2], [3]). In
stochastic resonance, the timing for exceeding the barrier
or threshold of nonlinear systems synchronizes with a weak
external signal under the effect of additive stochastic noise
[4]–[9]. Stochastic resonance was first observed in climatic
systems as the mechanism of the Milankovitch cycle [4].
In recent years, stochastic resonance has been observed in
numerous types of systems including economic and biolog-
ical systems [5]–[11]. In chaotic resonance, chaos causes a
phenomenon similar to stochastic resonance [2], [12]–[17].
Chaotic resonance was initially observed in systems with
chaos–chaos intermittency (CCI), in which a chaotic orbit
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hopped among separated attractor regions such as cubicmaps
and Chua’s circuits [2], [12]–[15]. In chaotic resonance, the
switching of an orbit among regions in CCI synchronizes
with weak external signals; the degree of synchronization is
maximized in the vicinity of attractor merging bifurcation
[2]. Subsequently, the study of chaotic resonance proceeded
to neural systemswithCCI, such as neural systems composed
of excitatory and inhibitory neurons [18], and associative
memory embedded with a chaotic neural network [19], [20].
Moreover, chaotic resonancewas studied for additional phys-
iological neural systems such as cerebellar learning systems
[16], [21], [22] and spiking neural systems [17], [23].

The typical applications of these synchronization phe-
nomena include the wide utilization of the mechanism of
stochastic resonance for telecommunications systems and
biomedical applications [24]–[27]. In the field of telecom-
munications systems, Tadokoro et al. applied the mechanism
of stochastic resonance to a BPSK receiver. This enabled the
receiver to improve its bit error rate performance at an ap-
propriate noise strength [27]. They also proposed a method
for enhancing the sensitivity of a wireless signal for node
positioning in a wireless sensor network [26]. In the field
of biomedical applications, Kurita et al. developed a wear-
able device to enhance the tactile sensitivity of a surgeon’s
hands by applying appropriate vibration [24], [25]. Enders
et al. and Seo et al. utilized this method to realize stochas-
tic resonance in human sensory systems by applying vibro-
tactile noise and proposed a method for improving haptic
sensations and a rehabilitation method for paralyzed patients
[28], [29]. However, the applications of chaotic resonance
have not been reported thus far, even though chaotic reso-
nance was reported to have higher sensitivity compared to
stochastic resonance [19]. A plausible reason for this is that
it is necessary to adjust a chaotic state appropriately for syn-
chronization in chaotic resonance by adjusting internal sys-
tem parameters. However, this adjustment is considerably
difficult in numerous cases, particularly biological systems.
To find a solution to this problem, we previously proposed
a chaos control method named the “reduced region of orbit
(RRO) method” [30]. The RRO method enables the condi-
tion for attractor merging bifurcation to be adjusted by in-
creasing/decreasing the local maximum/minimum values of
amap function through external feedback signals. Therefore,
this method optimizes the chaotic state for synchronization,
and it has been applied to a cubic map [30], neural systems
composed of excitatory and inhibitory neurons [31], [32],
and Chua’s circuit [33]. Therefore, the RRO method has the
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potential to accelerate the application of chaotic resonance.
In the synchronization among coupled chaotic oscilla-

tors, various types of synchronization phenomena have been
reported, such as chaos synchronization and phase synchro-
nization (review in [1]). The applications of chaos synchro-
nization have been progressing to sensor network systems
and secure communication systems [34]–[36]. Moreover,
the phenomenon of chaotic itinerancy is known in coupled
chaotic systems. Here, the transition between several regions
of an attractor occurs through dynamical switching between
chaotic synchronized and desynchronized states [37]. Park
et al. developed a nonlinear oscillator network based on the
Bonhoeffer-van der Pol model to generate the movement pat-
terns of snake-like robots [38]. However, these applications
are restricted to cases in which internal system parameters
can be controlled. In contrast, the RRO method can be ap-
plied even in situations where it is difficult to control internal
system parameters. Previously, our application of the RRO
method to a system of coupled cubic maps confirmed that
CCI synchronization occurs close to attractor merging bi-
furcation [39]. Additive stochastic noise is known to have
the effect of inducing attractor merging bifurcation [2], [32].
Therefore, the application of additive stochastic noise is an-
other suitable method to induce CCI synchronization. How-
ever, CCI synchronization induced by additive stochastic
noise has not been evaluated in coupled nonlinear oscilla-
tors, and a comparison with CCI synchronization induced
by RRO method is required to determine which method is
more suitable.

In our previous study, the RROmethod realized a higher
sensitivity and degree of synchronization than the method
that applies additive stochastic noise in the case of CCI syn-
chronization against aweak input signal in a one-dimensional
chaotic system [32]. Therefore, we hypothesized that the
RRO method has higher sensitivity than the additive noise
method even in CCI synchronization among nonlinear oscil-
lators, which can be treated as higher-dimensional chaotic
systems. To prove this hypothesis, the present study com-
pared the synchronization performances of the RRO method
and the method that applies additive stochastic noise, with-
out controlling internal system parameters, as methods of
inducing CCI synchronization in coupled chaotic systems.
For this purpose, we evaluated the CCI synchronization in
coupled cubic maps with RRO feedback signals and with the
application of stochastic noise. The topology of the coupled
cubic map networks was selected to include realistic net-
work structures; hence, a ring-type network, a small-world
network, and a random network were adopted.

2. Material and Methods

2.1 Cubic Map System with External Feedback Signals
and Additive Noise

A discrete cubic map is a simple chaotic system in which
CCI occurs. A cubic map with RRO feedback Ku(x) and
Gaussian white noise Dξ (t) is defined as follows:

x(t + 1) = F (x(t)) + Ku(x(t)) + Dξ (t), (1)
F (x) = (ax − x3) exp(−x2/b), (2)
u(x) = −(x − xd) exp(−(x − xd)2/(2σ2)). (3)

Here, D, K , and xd are the strength of the noise (the mean
and standard deviation of ξ (t) are zero and 1.0, respectively),
the strength of the feedback control, and the point dividing
each attractor, respectively. In this study, we set xd = 0
because the cubic map of Eq. (2) consists of two symmetric
attractor regions (i.e., positive and negative x(t) regions).
In the absence of external noise (D = 0) and an external
feedback signal (K = 0), CCI, in which the chaotic orbit
of x(t) hops between the positive and negative regions of
x(t), arises under the condition F ( fmax) < 0, F ( fmin) > 0
[30]. Here, fmax,min indicates the local maximum of the
minimum of a map function. Internal parameter a is set
as a = 2.81, 2.82, and 2.83, and the chaotic attractor of
x(t) is divided into separate positive and negative regions
under conditions free from an external signals and noise.
Figure 1(a), which serves as an example of the dynamics of
x(t), shows the map function, its orbit, and the time series
of x(t) at a = 2.83.

Under the condition of F ( fmax) > 0, F ( fmin) < 0,
where CCI does not occur, an external feedback signal
with negative feedback strength (K < 0) induces the ef-
fect of increasing the absolute values of fmax,min. CCI
occurs for sufficiently large values of fmax,min that satisfy
F ( fmax) + Ku( fmax) < 0, F ( fmin) + Ku( fmin) > 0 [30]. In
this study, the other parameter of the RRO feedback signal
was set as σ = 0.6. Figure 1(b) shows the map function, its
orbit, and the time series of x(t) at a = 2.83 to demonstrate
the effect of RRO feedback signals with negative strength
(K = −0.3) under the noise-free condition (D = 0).

Even under the condition F ( fmax) > 0, F ( fmin) < 0
without RRO feedback signals (K = 0), additive stochastic
noise can induce CCI [32]. A typical example of CCI in-
duced by stochastic noise (D = 0.03) is shown in Fig. 1(c)
for a = 2.83.

2.2 Coupled Cubic Map System with External Feedback
Signals and Additive Noise

We used a ring-type network consisting of N cubic maps,
where the respective cubicmapswere joined by gap junctions
with strength J:

xi (t + 1) = F (xi (t)) + Ku(xi (t)) + Dξ (t)

+J (2M xi −
j=i+M∑

j=i−M, j,i

x j ) (i = 1, · · · , N ). (4)

Here, 2M indicates the mean degree of a node, and the peri-
odic boundary condition is applied at the beginning and end
of a network. In this study, M was set as [0.2N], where [·] in-
dicates a Gaussian symbol. In Eq. (4), if the ordinal diffusive
coupling is set such that

∑j=i+M
j=i−M, j,i x j − 2M xi , according
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Fig. 1 Effect of attractor merging induced by reduced region of orbit (RRO) feedback and additive
stochastic noise. (a) The map function of F (x) (blue solid line) and orbit x(t) (black solid line) (upper
part) and the time series of x(t) (lower part) in the case without RRO feedback signals or additive
stochastic noise (K = 0, D = 0) at a = 2.83. The orbit is confined to either the positive or negative x(t)
region, depending on initial value x(0). The red and green circles indicate the values of F ( fmax) > 0
and F ( fmin) < 0, respectively, i.e., the condition of separated attractors is satisfied. (b) The map
function of F (x)+Ku(x) and orbit x(t) (upper part) and the time series of x(t) (lower part) in the case
of RRO feedback signals with negative feedback strength (K = −0.3) under the noise-free condition
(D = 0). The orbit exhibits chaos–chaos intermittency (CCI), where the orbit hops between positive
and negative x(t) regions. The red and green circles indicate the values of F ( fmax)+Ku( fmax) < 0 and
F ( fmin)+Ku( fmin) > 0, respectively, i.e., the condition of CCI is satisfied. (c) Themap function ofF (x)
and orbit x(t) (upper row) and the time series of x(t) (lower row) when using additive stochastic noise
(D = 0.03, K = 0). Even though the condition under which CCI arises does not occur (F ( fmax) > 0
and F ( fmin) < 0), the additive stochastic noise induces CCI.

to the structure of the cubic map, the opposite-phase syn-
chronization of CCI occurs at sufficient coupling strength.
In this study, we used the inverse sign of diffusive coupling
to evaluate synchronization with the coordinate phase [39].

In addition to ring-type networks, a small-world net-
work and a random network were evaluated. These networks
are produced by the Watts–Strogatz model [40]. Practically,
the gap junctions are randomly rewired from the above ring-
type network according to rewiring probability β. In this
study, we used the ring-type network (β = 0), small-world
network (β = 0.3), and random network (β = 1.0).

2.3 Evaluation Index

We evaluated the synchronization of CCI by determining
the correlation coefficient between Xi (t) and X j (t) (i, j =
1, 2, · · · , N , i , j). Here, Xi, j denotes the binarized time
series of xi (t) and x j (t) such that Xi, j (t) = 1 in the case of
xi, j (t) ≥ 0, whereas Xi, j (t) = −1 in the case of xi, j (t) < 0.
The correlation coefficient of Xi (t) and X j (t) is defined as
follows:

C(τ) =
Ci j (τ)√
CiiCj j

(5)

Ci j (τ) = 〈(Xi (t + τ) − 〈Xi〉)(X j (t) − 〈X j〉)〉 (6)

Cii = 〈(Xi (t) − 〈Xi〉)2〉 (7)
Cj j = 〈(X j (t) − 〈X j〉)2〉, (8)

where 〈·〉 indicates temporal average t.
Synchronization stability was quantified by utilizing

the maximum transverse Lyapunov exponent [1]. This
evaluation was conducted using the method developed by
Dabrowski [41]. According to Dabrowski’s method, the
temporal evolution of the perturbation vector, ds

k (t⊥) (k =
1, 2, · · · , M), from the manifold corresponding to complete
synchronization during t⊥ ∈ [0 : τ⊥] is calculated, where the
initial perturbation, ds

k (0), is applied at t = t0 + (k − 1)τ⊥.
The inner product between the perturbation vector, ds

k (τ⊥),
and its temporal derivative is given by

λks =
ds

k (τ⊥) · dds
k (τ⊥)
dt

|ds
k (τ⊥) |2

. (9)

Here, · denotes the inner product. Themaximum transverse
Lyapunov exponent is defined as follows:

λ⊥ =
1

τ⊥M

M∑
k=1

λks . (10)

Here, we set τ⊥ = 5 and |ds
k (0) | = 10−6, and λ⊥ > 0
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indicates the state of instability of synchronization among
xi (t).

3. Results

We evaluated the CCI synchronization in the coupled cubic
map (N = 20). Each of the upper rows in Fig. 2 shows the
correlation coefficient of the binarized time series of x(t):
C(τ = 0) as a function of RRO feedback strength K and the
strength of the gap junction, J, under the noise-free condi-
tion (D = 0). The results indicate that CCI does not occur in
small-|K | regions, which correspond to the white regions in
the figure. As the value of |K | increases, attractor merging
bifurcation occurs, with maxτ C(τ) exhibiting a peak in the
vicinity of attractor merging bifurcation. This tendency is
confirmed for all network topologies (ring, small-world, and
random networks). That is, RRO feedback induces attractor
merging bifurcation, and the CCI synchronization exhibits
a peak in the vicinity of this bifurcation. The lower rows
of Fig. 2 show C(τ = 0) as a function of noise strength D
and the strength of the gap junction, J, without RRO feed-
back (K = 0). CCI does not occur in small-D regions,
which correspond to the white regions in the figure. An in-
crease in the value of D causes attractor merging bifurcation,
with C(τ = 0) exhibiting a peak in the vicinity of attractor
merging bifurcation. This tendency is also confirmed for all
network topologies. That is, in addition to the RRO feed-
back strength, the additive stochastic noise induces attractor
merging bifurcation, and the CCI synchronization exhibits
a peak close to this bifurcation. A typical time series of
xi (t) is shown in Fig. 3(a) for a small-world network jointed
by a gap junction (J = 3.0 × 10−3) corresponding to that
shown in Fig. 2(b) with a = 2.82. This result shows that the
RRO feedback signal and additive stochastic noise induce
CCI synchronization (C(τ = 0) ≈ 0.65). On the other hand,
Fig. 3(b) shows the time series of xi (t) in the cases where
K and the noise strength D have larger absolute values than
the appropriate ones shown in Fig. 3(a). Owing to the ef-
fect of a larger RRO feedback signal or additive stochastic
noise, the CCI frequency becomes high; consequently, CCI
synchronization does not occur (C(τ = 0) . 0.1).

In addition to CCI synchronization, we investigated
the synchronization stability of xi (t) in the coupled cubic
maps. In the parameter regions corresponding to Fig. 2,
the transverse Lyapunov exponent, λ⊥, exhibits positive val-
ues, λ⊥ ≈ 0.15, with the RRO feedback signal and additive
stochastic noise. Therefore, the instability of the synchro-
nization of xi (t) (λ⊥ > 0) is maintained even if CCI syn-
chronization is achieved.

CCI synchronization was additionally evaluated for a
larger network. Figure 4 shows the correlation coefficient,
C(τ = 0), as a function of network size N in the case of
CCI synchronization induced by RRO feedback signals and
additive stochastic noise. In the case of RRO feedback sig-
nals, K is set to achieve the maximum C(τ = 0) in the range
of −0.05 ≤ K ≤ 0. In the case of additive stochastic noise,
D is set to achieve the maximum C(τ = 0) in the range of

0 ≤ D ≤ 0.025. Here, two kinds of gap junctions were used,
J = 3.0 × 10−3 and 5.0 × 10−4, and the internal parameter a
was set as a = 2.82. These results show that CCI synchro-
nization decreases as N increases. In theweaker gap junction
(J = 5.0×10−4), the degree of CCI synchronization induced
by the RRO feedback signals is higher than that induced by
stochastic noise; this tendency is particularly significant for
small networks with N . 80.

4. Discussion and Conclusion

In this study, we controlled CCI synchronization in a cou-
pled cubic map system by adjusting the negative strength
of RRO feedback and by utilizing additive stochastic noise.
As the index of this synchronization, we utilized the trans-
verse Lyapunov exponent and the correlation of the timing of
CCI among coupled cubic maps. The results indicated that
the degree of CCI synchronization reaches a maximum in
the vicinity of attractor merging bifurcation, thereby main-
taining the synchronization instability among orbits in both
cases. These tendencies are preserved for the different inter-
nal parameter settings and network topologies. However,
CCI synchronization degrades as network size increases.
Moreover, a comparison between the CCI synchronization
induced by the RRO feedback signal and that induced by
additive stochastic noise revealed that the former achieves a
higher degree of synchronization.

First, the reason why CCI synchronization reaches a
maximum in the vicinity of attractor merging bifurcation
must be considered. Close to the attractor merging bifurca-
tion point, autonomous CCI seldom occurs when coupling
does not occur. Under this condition, the perturbation caused
by the CCI from other oscillators induces CCI in the cou-
pled network. This interaction achieves a high degree of
synchronization. This tendency is congruent with the case
of positive RRO feedback strength in our previous study
[39]. In addition, the degree of synchronization of CCI
against a weak external signal was reported to exhibit a peak
close to attractor merging bifurcation in systems with CCI
[2], [12]–[15], [30]–[32]. Moreover, our previous studies
demonstrated that the degree of synchronization induced by
adjusting the order parameter to control attractor merging
bifurcation was higher than that induced by stochastic noise;
this tendency was particularly significant for a weak input
signal [19], [32]. The results obtained in this study are con-
gruent with this finding.

It is also necessary to compare the RRO feedback
method with conventional chaos control methods [42]–[45]
and nonlinear control methods for synchronization [46]–
[49]. Conventional chaos control methods, such as the
Ott–Grebogi–Yorke method and H∞ method [42]–[45], have
been used to remove chaotic behavior and to reach an equi-
librium state or a stable periodic state. However, the RRO
feedback method does not remove the chaotic state and in-
stead achieves a transition to the appropriate chaotic state
for synchronization. Nonlinear control methods have been
proposed for achieving chaos synchronization; these meth-



1090
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.9 SEPTEMBER 2020

Fig. 2 CCI synchronization in the coupled cubic maps (N = 20). The correlation coefficient of the
binarized time series of x(t): C (τ = 0) as a function of RRO feedback strength K and the strength of
the gap junction, J , in the noise-free condition (D = 0) (upper row). Correlation coefficient C (τ = 0)
as a function of the strength of additive noise D and strength of the gap junction, J , (lower row) in
the absence of RRO feedback signals (K = 0). (a) Ring network example corresponding to rewiring
probability β = 0. (b) Small-world network example corresponding to β = 0.3. (c) Random network
example corresponding to β = 1.0. The RRO feedback strength and the additive stochastic noise induce
attractor merging bifurcation, and the CCI synchronization exhibits a peak close to this bifurcation.

ods utilize Lyapunov stability, active control, and converse
Lyapunov theories [46]–[49]. In contrast to these methods,
the RRO feedback method maintains the instability of syn-
chronization among nonlinear oscillators. In recent years,
the co-existing states of synchronization and asynchroniza-
tion, which are typified by chaotic itinerancy [50] and the
Chimera state [51], have been utilized to generate the mov-
ing patterns of snake-like robots, instead of using complete
synchronization [38], [52]. The RRO feedback method can

also be utilized for these applications.
Furthermore, we must discuss the adoptability of the

control methods based on RRO feedback signals and addi-
tive stochastic noise. In our previous study, we evaluated
the control of CCI synchronization by RRO feedback sig-
nals with positive strength in coupled cubic maps [39]. In
the case of positive RRO feedback strength, the frequency
of CCI decreases with increasing feedback strength, and the
degree of synchronization reaches amaximum in the proxim-
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Fig. 3 Typical time series of xi (t) in the coupled cubic maps for a small-world network topology
(β = 0.3) at a = 2.82 and J = 3 × 10−3. (a) Typical time series in a state for CCI synchronization.
The upper and lower rows correspond to the CCI synchronization induced by the RRO feedback signal
(K = −0.02) and that induced by additive stochastic noise (D = 0.0075), respectively. (b) Typical time
series of xi (t) when CCI synchronization does not occur. The upper and lower rows correspond to the
time series with the RRO method (K = −0.03) and that with the method applying additive stochastic
noise (D = 0.015), respectively.

ity of attractor merging bifurcation. In contrast, for negative
feedback strength, CCI is induced under the condition of sep-
arated attractors as the absolute value of negative feedback
strength increases, and the degree of CCI exhibits a peak
close to attractor merging bifurcation. In contrast to RRO
feedback signals, additive stochastic noise only induces CCI
and does not decrease the frequency of CCI. Therefore, the
control of RRO feedback signals ismore adoptable compared
to additive noise.

Moreover, we must consider why the degrees of CCI
synchronization exhibited almost the same profiles in their
dependencies on the RRO feedback strength and noise
strength among different network topologies (see Figs. 2 and
4). It is known that a random rewiring process in the Watts–
Strogatz model induces synchronization states [53], [54].
Therefore, the small-world network and random network
generally reach the synchronization state more easily than
ring networks. However, in this study, the degree of a node
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Fig. 4 Correlation coefficient C (τ = 0) as a function of network size N in CCI synchronization
induced by RRO feedback signals and additive stochastic noise. The upper and lower rows indicate the
situations with a gap junction of J = 3.0 × 10−3 and J = 5.0 × 10−4, respectively, where the internal
parameter a is set as a = 2.82. Error bars indicate the standard deviation among ten trials.

is set to a large value (the mean degree of a node corresponds
to 2M , where M is set to [0.2N]). In such a highly dense net-
work, the effect of the rewiring process of theWatts–Strogatz
model is insignificant for the synchronization state, which is
why no significant difference was observed in the synchro-
nization profiles among different network topologies. On
the other hand, with a smaller degree of a node, differences
among network topologies might be significant, but the pa-
rameter regions where CCI synchronization appears rigidly
are restricted. To find these parameter regions, the depen-
dence of CCI synchronization on the internal parameter, net-
work size, noise strength, and RRO feedback strength needs
to be evaluated.

A limitation of this study is that the application of the
RRO feedback method to an actual nonlinear system, such as
a typical biomedical application, requires the RRO feedback
method to be applied to continuous nonlinear systems. For
this purpose, we developed preliminary RRO methods and
applied them to Chua’s circuit system [33]. In the future, we
plan to use this method by considering CCI synchronization
in coupled continuous chaotic neural systems. Moreover,
we will evaluate the CCI synchronization in networks with
different topologies under a small degree of a node.

In conclusion, in this study, we evaluated the control
of CCI synchronization by RRO feedback signals and ad-
ditive stochastic noise in coupled cubic maps. The results
confirmed that even though CCI synchronization can be re-

alized using both control methods in the vicinity of induced
attractor merging, the RRO feedback method exhibits higher
adoptability and a higher degree of CCI synchronization
compared to additive stochastic noise. The widespread ap-
plication of various types of synchronization is in progress.
The advantages of the RRO feedbackmethodmight facilitate
these applications.
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