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Active Vibration Control of Nonlinear 2DOF Mechanical Systems
via IDA-PBC
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SUMMARY This paper proposes an active vibration-suppression con-
trolmethod for the systemswithmultiple disturbances using only the relative
displacements and velocities. The controller can suppress the vibration of
the main body in the world coordinate, where a velocity disturbance and
a force disturbance affect the system simultaneously. The added device
plays a similar role as an accelerometer, but we avoid the algebraic loop.
The main idea of the feedback law is to convert a nonlinear system into
an aseismatic desired system by using the energy shaping technique. A
parameter selection procedure is derived by combining the constraints of
nonlinear IDA-PBC and the evaluation of the control performance of the
linearly approximated system. The effectiveness of the proposed method is
confirmed by simulations for an example.
key words: nonlinear control, vibration measurement, sensors

1. Introduction

Vibration suppression is a basic problem in the design of
mechanical systems, and active vibration suppression meth-
ods have been used in actual mechanical systems for some
decades. From the viewpoint of vibration suppression ef-
fect, active vibration control can give us much better vi-
bration suppression performance than passive methods [1].
Unfortunately, most of active vibration control methods are
based on the assumption that all the states are exactly known
[2]–[6]. If the state is the relative information with refer-
ence plane, it will be easy to be observed by sensors. On
the other hand, if the reference plane is vibrating, it is diffi-
cult to observe the absolute position and velocity directly by
inexpensive sensors.

Although it is possible to observe the absolute informa-
tion by the development of sensor technology, it should be
pointed out that there are some problems such as expensive
equipment and limited-frequency characteristics. We can
use cheap MEMS accelerometers nowadays, and the meth-
ods using an accelerometer to obtain absolute information
are developed [7], whereas they will result in the generation
of an algebraic loop, and such methods are difficult to be
applied in nonlinear cases. The methods using observer can
estimate the absolute information [8], but those methods are
also difficult to be applied in nonlinear case and it is essen-
tial to remember that they typically lead to a degradation in
performance.

In automobile industry, many works on the suspension
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design using robust control method against the unmeasured
external vibration have been developed during the last two
decades. The robust controller can be designed by Linear-
Quadratic-Gaussian (LQG) methodology [8], H∞ technique
[9], [10], saturated adaptive robust control (ARC) strategy
[11] and so on. Especially, the works based on H∞ technique
show good performance on the robustness with respect to
the uncertainties due to sensors. Even so, in order to apply
these methods to nonlinear systems, we often need to solve
Hamilton-Jacobi equations.

Motivated by aforementioned issues, Aoki et al. [12]
proposed a method that sets a device similar to tuned mass
damper (TMD) [13] on the controlled object and utilizes in-
terconnection and damping assignment passivity-based con-
trol (IDA-PBC) method [14], which is a very general energy
shaping control method, to gain the ideal vibration suppres-
sion performance. In that research, Aoki et.al use the device
like an accelerometer, but they considered its dynamics so
that the algebraic loop is avoided. They use IDA-PBC to con-
vert the controlled system to the systemwith skyhook damper
[5]. Although Aoki et al. [12] were successful in suppress-
ing the vibration onlywith relative displacement and velocity
and without any accelerometer signal, the method only han-
dles the linear case and simple nonlinear-spring case.

In this paper, we obtain an IDA-PBC vibration suppres-
sion controller for more general port Hamiltonian systems.
We first identify a class of port Hamiltonian systems with
force and velocity disturbances, which is a general system
expression for the cases with a floating nonlinear mechani-
cal structure with additional spring and damper. We show a
control law including some free parameters with some con-
straints. The controller uses only relative information, which
can be easily measured. We propose a new parameter de-
sign method, which is more accomplished than that of [12].
The parameter selection can be made constructively. Finally,
we show an example with simulation results, which verify
the good vibration effect of the proposed controller. The
stability of the nonlinear closed-loop system is guaranteed
theoretically by the IDA-PBC method.

Compared to the preliminary study [15] of this research,
the parameter design method in this paper is more sophisti-
cated than that in [15]. With this new method, the parameter
design become flexible. Moreover, we expect that the param-
eter design that is robust against the parameter uncertainties
becomes possible by the new scheme, and it is our future
work.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Conventional vibration suppression method.

2. Motivation of the Proposed Method

Let us consider a simple linear structure like Fig. 1(a), where
u, F, k, c and z denote feedback input, force disturbance,
elastic coefficient of the spring, damping coefficient, and dis-
placement of the floor, respectively. If we know the absolute
displacement of the main body, it is easy to suppress the vi-
bration through active vibration control methods. One of the
most commonly applied method is skyhook damper method,
where the input force works as a virtual damper that is set
between main body and rigid ceiling as showed in Fig. 1(b).
With this method, we can realize ideal control performance.
However, the reference point of the absolute position is lost
due to the floor vibration, making it difficult to obtain the
absolute information of the main body which is required for
the skyhook damper method.

We can obtain the absolute information indirectly via
an accelerometer. A direct feedback of the acceleration sig-
nal causes a static loop, and integration of the acceleration
signal to obtain the velocity causes a drift problem. Fil-
tering techniques may solve the static-loop problem, but a
frequency-domain design is often required due to undesired
phase-lag of the filter, which cannot be applied to nonlinear
systems.

Therefore, in this paper we propose a new vibration-
suppression control that utilizes only relative informations.
To obtain more rich information from the measurements
of the relative movements, we assume that there exists an
additional mechanical degree-of-freedom (DOF) in the con-
trolled object. This approach is almost equivalent to consid-
ering the internal dynamics of an accelerometer precisely.
In addition to the cases with accelerometers, our method can
be applied to the systems in which additional (nonlinear)
dynamic structure is naturally contained. In these cases, the
additional structure may have a mass that cannot be ignored,
and the motion the additional structure has a phase lag even
for the low frequncy range.

3. Controlled Object and Problem Setting

In this section, we specify a class of port Hamiltonian sys-
tems with force and velocity disturbances, which commonly
appear in vibration suppression problem. In our research, we
set a nonlinear additional mass on the main body as shown
in Fig. 2(a), where q1 denote the relative displacement of
the additional mass and q̃2 denote the displacement of the
main body in world coordinate. The system is a part of a

Fig. 2 Structure of controlled object.

controlled object, but is not the target system itself.
We assume that there exists a symmetry on the change

of q̃2, which derives a lawof conservation ofmomentumwith
respect to the movement of the whole mass to q̃2 direction
by the Noether’s theorem [16]. According to the symmetry,
the Hamiltonian of this system is not the function of q̃2, i.e.
the inertia matrix and the potential energy only depend on
q1. Consequently, the Hamiltonian of the system of Fig. 2(a)
can be written as

H̃ (q1, p) =
1
2

p>M (q1)−1p + V1(q1)

M (q1) =
[
m1(q1) m2(q1)
m2(q1) m3(q1)

] (1)

p = M (q1)
(
q̇1
˙̃q2

)
, (2)

and the friction coefficient matrix becomes C̃ = diag(µ, 0),
where µ > 0 is the friction coefficient of the additional
movement. The positive-definite matrix M (q1) is the in-
ertia matrix, V1(q1) is the potential energy of the internal
structure, and p is the generalized momentum. We as-
sume that V1(q1) is positive definite with respect to q1. The
law of conservation of momentum of the basic structure is
p2 = m2(q1)q̇1 + m3(q1) ˙̃q2 = const. We assume that there
exists an interconnection between the motion of q1 and q̃2,
and thus m2(q1) , 0.

By adding a potential force V2(q2) and a damping term
cq̇2 with respect to the relative movement between the main
body and a vibrating object, a force disturbance F, and a
control input u, we obatin the controlled object like Fig. 2(b).
We assume that the control force and the force disturbance
act on the main body. The Hamiltonian of the controlled
system is

H (p, q) = H̃ (q1, p) + V2(q2)
q = (q1, q2)>, q2 = q̃2 − z(t),

(3)

where z and q2 denote the displacement of the vibrating
object and the relative displacement of main body from the
object, respectively. We let the additional potential V2(q2)
be positive definite with respect to q2 as well. The definition
(2) of p can be rewritten as

p = M (q1)
(
q̇ − aω

)
, (4)

where ω = ż is a velocity disturbance, and a = (0,−1)>.
Notice that p is defined in the world coordinate, while q is a
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relative displacement vector.
Thus, the controlled object can be expressed by a port-

Hamiltonian system (PH system)

ẋ = (J − R)
∂H
∂x

>

+ Dω + B(u + F), (5)

where x = (q>, p>)> is the state, and

J =
[

O I
−I O

]
, R =

[
O O
O C

]
, C = C̃ + C̃a =

[
µ 0
0 c

]
,

B = (0 0 0 1)>,
D = (a> − (Ca)>)> = (0 − 1 0 c)>.

Our main purpose is the vibration suppression of q̃2
against the velocity disturbance ω(t) and the force distur-
bance F (t). Note that q̃2 ≈ 0 means q2 ≈ −z(t). Since the
second element of D is −1, a feedforward term of ω exists
in the dynamics of q2, and therefore suppression of p will
achieve the control objective. In this study, we construct an
IDA passivity-based controller using only the relative dis-
placements q and velocities q̇, which can be easily measured
by sensors. Note that our control law is not a function of q
and p but q and q̇, because p is defined in the world coordi-
nate and (4) includes ω.

4. Application of IDA-PBC

4.1 Overview

In this section, we define the dynamics of desired system
at first, and then obain a matching condition between the
controlled system and the desired system. The matching
condition clearfy the degree of freedom in the controller de-
sign and the expression of feedback law with free parameters
as well as equality and inequality constraints.

4.2 Desired System

We construct the desired system with artificial strucutre ma-
trix as follows:

ẋ = (Jd (q1) − Rd (q1))
∂Hd

∂x

>

+ Dd (q1)ω

+ Ddp (q1)p · ω + Ddω (q1)ω2 + BF,
(6)

where

Hd (x) =
1
2

p>Md (q1)−1p + Vd (q1, q2) (7)

denotes the Hamiltonian of desired system, and

Md (q1) =
[
md1(q1) md2(q1)
md2(q1) md3(q1)

]
,

Jd (q1) =
[

O M (q1)−1Md (q1)
−Md (q1)M (q1)−1 J2(q1)

]
,

J2(q1) =
[

0 je (q1)
− je (q1) 0

]
,

Rd (q1)=
[
O O
O Cd (q1)

]
, Cd (q1)=

[
cd1(q1) cd2(q1)
cd2(q1) cd3(q1)

]
,

Dd (q1) = (0 − 1 0 d1(q1))>,

Ddp (q1) =
[
0 0 0 d2(q1)
0 0 0 d3(q1)

]>
,

Ddω (q1) = (0 0 0 d4(q1))>.

Jd (q1), Rd (q1),Vd (q), and Md (q1) denote an artificial skew-
symmetric structure matrix, a positive semidefinite damping
matrix, a potential energy, and the inertia matrix in the de-
sired Hamiltonian, respectively.

4.3 Application of IDA-PBC Method

We can derive the expression of feedback law with equality
and inequality constraints on the parameters of the desired
system bymatching the dynamics of desired systemwith that
of controlled system as follows:

(Jd − Rd)
∂Hd

∂x

>

= (J − R)
∂H
∂x

>

+ Bu

+ (D − Dd)ω − Ddp (q1)p · ω − Ddω (q1)ω2.

(8)

For convenience of calculations, we set

S(q1) = M−1(q1) =
[
s1(q1) s2(q1)
s2(q1) s3(q1)

]

Sd (q1) = M−1
d (q1) =

[
sd1(q1) sd2(q1)
sd2(q1) sd3(q1)

]
.

(9)

Hereafter, by omitting ‘(q1)’, we simply express them as S,
Sd , si and sdi . Each side of (8) is four dimensional vector.
The first two components of (8) are already satisfied for all
x and ω. We can easily derive the equality constraints of
parameters by extracting the coefficients of p, q and thier
higher-order terms. By focusing on the coefficients of p2

1,
p1p2 and p2

2 in the third component of (8), we obtain

sd1
′ =

|Sd |s1
′

s1sd3 − s2sd2

sd2
′ =

|Sd |s2
′

s1sd3 − s2sd2

sd3
′ =

|Sd |s3
′

s1sd3 − s2sd2
,

(10)

where ∗′ means the derivative with respect to q1.
The coefficients of p1 and p2 in the third component of

(8) derive the following relations:

cd1(q1) =
µ

|Sd |
(s1sd3 − s2sd2) (11)

je (q1) = cd2(q1) +
µ

|Sd |
(s1sd2 − s2sd1). (12)

The rest of the third component of (8) leads an equation for
the potential energy
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s2sd2 − s1sd3
|Sd |

·
∂Vd

∂q1
+

s3sd2 − s2sd3
|Sd |

·
∂Vd

∂q2
+ V ′1 = 0.

The general solution of the above equation is

Vd (q) = P

q2 +

∫ q1

0

s3sd2 − s2sd3
s1sd3 − s2sd2

�����q1=τ

dτ


+

∫ q1

0

V ′1 |Sd |

s1sd3 − s2sd2

�����q1=τ

dτ,

(13)

where P will be an arbitrary positive-definite function.
By solving the forth equation of (8) with respect to u,

we can obtain a feedback law u = αraw(q, p, ω). Notice that
the feedback should be a function of q and q̇ only. Hence,
we decompose αraw as

αraw
(
q, M (q1)(q̇ − aω), ω

)
= α(q, q̇)+αrest(q, q̇, ω)ω.

The coefficient αrest(·) should be identically zero, and thus
we decompose it again as

αrest(q, S(q1)p + aω,ω) =
α1(q1) + α2(q1)p1 + α3(q1)p2 + α4(q1)ω.

By solving αi (q1) = 0 (i = 1, . . . , 4)with respect to
d1(q1), . . . , d4(q1) and applying (10), we obtain additional
equality constraints

d1(q1) =
1
|S |
{(s1sd3 − s2sd2)cd3(q1)

+ (s1sd2 − s2sd1)( je (q1) + cd2(q1)}
(14)

(d2(q1) d3(q1)) = g(q1) · (0 1)M ′S (15)

d4(q1) =
g(q1)

2
· (0 1)M ′(0 1)>, (16)

where M ′ = ∂M/∂q1 and

g(q1) =
s2sd1 − s1sd2
s1sd3 − s2sd2

.

The control input can be written as

u = α(q, q̇)

=
(s2sd3 − s3sd2)cd3 − (s3sd1 − s2sd2)(cd2 + je)

|S |
q̇1

+ (c − d1(q1))q̇2 +
g(q1)

2
· q̇>M ′q̇ +

∂V2(q2)
∂q2

+
s1sd2 − s2sd1

|Sd |
·
∂Vd

∂q1
−

s3sd1 − s2sd2
|Sd |

·
∂Vd

∂q2
.

(17)

Because of the feature of IDA-PBC, the closed-loop system
is identical to the desired system. Therefore, the asymptotic
stability of zero-disturbance case can be guaranteed by the
nature of port-Hamiltonian system. Thus we need to ensure
the positive definiteness of Md,Vd and Cd , and the following
inequality constraints can be derived:

sd3(q1) > 0, |Sd (q1) | > 0, (18)

s1sd3 − s2sd2 > 0, ∀q1, (19)
|Cd (q1) | > 0, (20)
P[σ] > 0, σ , 0. (21)

Inequalities (18) show the positive definiteness of the inertia
matrix of the desired system. We can show cd1(q1) > 0
from (19) and (11), and therefore (19) and (20) means that
the damping matrix of the desired system is positive definite.
Because of (19), the positivity of the second term of (13)
will be automatically satisfied if q1V ′1 ≥ 0. Hence, under
the constraint (21), the potential energy function Vd (q) is
positive definite.

We can gain sdi (q1) by solving (10), while the initial
value Sd (0) = Sd0 is a degree of freedom. The inequality
constraints of parameters are (18), (19), (20), and (21). The
equality constraints of parameters are (11), (12), (13), (14),
(15), (16), and (17).

Note that the asymtotic satbility is guaranteed by the
positive definiteness of Md , Vd and Cd . Therefore, stability
of the numerical solution process of differential equation
(10) is not required when desgining the control law.

In next section, we derive the guideline of parameter
selection in order that we can obtain an aseismatic desired
system.

5. Guideline for Parameter Selection

5.1 Linear Approximation

To design the parameters of desired system, we need to know
what role the each parameters play in vibration dynamics.
However, because of the nonlinear term, the praticalmeaning
of parameters in inertia matrix is unclear. Hence, we will
derive the guideline of the parameter selection based on
the linearly approximated systems of (5) and (6) at first,
which determines the low-order terms of the free parameters.
Then we will apply it into nonlinear case. By the quadratic
approximation of H , the Hamiltonian of the linearized plant
is

HL (p, q) =
1
2

p>S0p +
1
2

(K1q2
1 + K2q2

2 ),

where

S0 =

[
s10 s20
s20 s30

]
= S(0)

K1 =
∂2V1

∂q2
1

(0), K2 =
∂2V2

∂q2
2

(0).

The linearized controlled object can be described as

ẋ =
[

0 I
−I −C

] (
diag(K1, K2)q

S0p

)
+

(
a
−Ca

)
ω. (22)

The quadratic approximation of Hd can be also obtained as

HdL (p, q) =
1
2
{p>Sd0p + Kd1q2

1 + Kd2(q2 + hq1)2},
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where

Sd0 =

[
sd10 sd20
sd20 sd30

]
= Sd (0),

h =
s30sd20 − s20sd30
s10sd30 − s20sd20

(23)

Kd1 =
K1 |Sd0 |

s10sd30 − s20sd20
, Kd2 =

∂2P(y ′)
∂ y ′2

�����y′=0
.

(24)

The linearized desired system is

ẋ = (Jd0 − Rd0)
(
Kd0q
Sd0p

)
+ Dw0ω + BF, (25)

where

Jd0 =

[
O M−1

0 Md0
−Md0M−1

0 J20

]
, J20 =

[
0 je0
− je0 0

]

Md0 = S−1
d0 =

[
md1 md2
md2 md3

]
, Kd0 = diag(Kd1, Kd2)

Rd0 =

[
O O
O Cd0

]
, Cd0 =

[
cd10 cd20
cd20 cd30

]

Dw0 = (0 − 1 0 d10)>

5.2 Coordinate Transformation

The diagnolized inertia matrix can help us clarify the struc-
ture of linearized system, thus we consider new transformed
variables

q̂ = L−1q, p̂ = L>p, (26)

where

L =
[
r0 −r0
0 1

]
, (27)

r0 =
m20
m10
= −

s20
s30

. (28)

To simplify the problem, we choose Sd0 such that h defined
by (23) becomes zero, i.e.

s20
s30
=

sd20
sd30

. (29)

Under the new constraint (29),

r0 =
md20
md10

= −
sd20
sd30

is also satisfied as well as (28).
The coordinate of main mass q2 is maintained with

this coordinate transformation, i.e. q̂2 = q2. Please recall
that the control objective is the vibration suppression of the
main body. Then, the linear approximation of (4) can be
transformed to

p̂ = L>M0L( ˙̂q − L−1L>aω) = M̂ ( ˙̂q − âω),

where

M̂ = L>M0L = diag.(m̂1, m̂2)

m̂1 = m10r2
0, m̂2 = m30 − m10r2

0

â = L−1L>a = (−1 − 1)>.

Consequently, the linearized controlled object (22) can be
transformed to( ˙̂q

˙̂p

)
=

[
0 I
−I −Ĉ

] (
K̂ q̂
Ŝp̂

)
+

(
â
−Ĉâ

)
ω, (30)

where

Ŝ = M̂−1 = diag(m̂−1
1 , m̂−1

2 )

K̂ = LTdiag(K1, K2)L =
[

K̂1 −K̂1
−K̂1 K̂1 + K̂2

]

Ĉ = LTCL =
[

Ĉ1 −Ĉ1
−Ĉ1 Ĉ1 + Ĉ2

]

K̂1 = K1r2
0, K̂2 = K2, Ĉ1 = µr2

0, Ĉ2 = c.

Under the assumption (29), the inertia matrix of the
linearized desired system (25) in the new coordinate is

M̂d = L>Md0L = diag(m̂d1, m̂d2)

= diag(md10r2
0,md30 − md10r2

0 ),

which is also a diagonal matrix under the constraint of (29).
The linearized desired system is also converted into( ˙̂q

˙̂p

)
= ( Ĵd − R̂d)

(
K̂d q̂
Ŝd p̂

)
+ D̂dω + B̂F, (31)

where

Ĵd =
[

O M̂−1M̂d

−M̂d M̂−1 Ĵ2

]
, Ĵ2 = LT J20L,

Ŝd = M̂−1
d = diag(m̂−1

d1, m̂
−1
d2),

K̂d = LT

[
Kd1 0
0 Kd2

]
L =

[
K̂d1 −K̂d1
−K̂d1 K̂d1 + K̂d2

]
,

K̂d1 = Kd1r2
0, K̂d2 = Kd2,

R̂d = diag (O, Ĉd),

Ĉd = LTCd0L =
[
Ĉd1 + Ĉd2 −Ĉd2
−Ĉd2 Ĉd2 + Ĉd3 + Ĉd4

]
,

Ĉd1 = r0cd2, Ĉd2 = r2
0cd10 − r0cd2,

Ĉd3 = cd30 − r0cd20 − d10, Ĉd4 = d10,

D̂d = diag(L−1, LT )Dw0 = (−1 − 1 0 d10)>,

B̂ = diag(L−1, LT )B = B.

The linearized controlled object (30) can be considered
as amass-spring-damper (MSD) systemwith a device similar
to tuned mass damper (TMD) in Fig. 3(a). When we ignore
the difference between J and Ĵd , the linearized desired sys-
tem (31) is regarded as an MSD system with a TMD-like
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Fig. 3 Linearized system.

device and multiple skyhook dampers in Fig. 3(b). Thus, in
linearized case, the feedback law in this research realizes the
virtual skyhook dampers by only relative displacements and
velocities.

5.3 Parameter Design

We define mass ratios

r1 =
m̂d1
m̂1
=

md10
m10

, r2 =
m̂d2
m̂2

. (32)

The values r1 and r2 are positive, if and only if Sd0 > 0.
From the definition (32), the inequality constraint (20)

can be rewritten as

|Cd0 | = µd10r1r2 −
[
cd20 − µr0(r1 − r2)

]2 > 0. (33)

From the view point of energy, the small dissipation matrix
is unsuitable for the control objective. Thus we set cd20 as

cd20 = µr0(r1 − r2), (34)

which maximizes |Cd0 | for fixed r1 and r2. Hence, positive
r1, r2, and d10 make Cd0 and Md0 positive definite, and
the asymptotical stability of the linearized desired system is
guaranteed. We will design d10, r1, and r2 such that |Cd0 | is
sufficiently large, under the new constraint (34).

Under the assumptions (29) and (34), we obtain

cd30 = r2d10 +
µr2

0 (r2 − r1)2

r1
. (35)

The value of skyhook-damper coefficient of the mainbody
becomes

Ĉd3 = d10(r2 − 1) +
µr2

0r2(r2 − r1)
r1

. (36)

Obviously, large d10, r2 and small r1 can make skyhook
damper coefficient (36) be large. However, large d10 will
lead to the increasement of the high frequency gain from z
to q2, bacause d10 indicates the damping coefficient between
the vibrating object and the main body, as seen in Fig. 3(b).

Hence, we choose small d10 first, and design small
r1 and large r2 so that skyhook damper term coefficient
Ĉd3 is sufficiently large, because of (36). From empirical
knowledges, small d10 and large Ĉd3 in Fig. 3(b)make a good

vibration suppression effect.
The selection (34) makes Ĉd1, which is the coefficient

of the skyhook damper of the additional mass in Fig. 3(b),
negative, but |Cd0 | > 0 is guaranteed by a large cd30. A large
r2 also decreases the low-frequency gain from F as

GFq̃2 (0) =
Kd2
r2

. (37)

The above parameter selection guideline is more so-
phisticated than that in Aoki, et al. [12]. The parameter
selection procedure is summarized as follows.

1. Choose sufficiently small d10 > 0, sufficiently small
r1 > 0, and sufficiently large r2 > 0. Select a small
low-frequency gain with r2 and Kd2 in (37). Then
design a positive-definite function P[·] by (24). From
(29) and (32), Sd0 (> 0) is determined.

2. Calculate Sd (q1) by solving the differential equations
(10) with the initial condition Sd (0) = Sd0.

3. Check the conditions (18) and (19). If these inequalities
are not satisfied for all q1, return to the first step and
choose the parameters again.

4. Set cd1(q1) as (11). The values of cd2(0) = cd20 and
cd3(0) = cd30 are determined by (34) and (35), respec-
tively, and thenCd0 = Cd (0) > 0 is guaranteed. Choose
the high-order terms of cd2(q1) and cd3(q1) adequately
so that Cd (q1) > 0.

5. Calculate je (q1), Vd (q), and d1(q1) by (12), (13), and
(14), respectively.

6. Obtain the control law (17).

Although the design procedure is constructive, the high-
order terms of cd2 and cd3 should be chosen to satisfy
Cd (q1) > 0. Along with the increasing of q1, the prac-
tical meaning of inertia matrix in desired system will be
far different from that of linear approximated case. There-
fore, Cd (q1) far from the origin must be varied along with
changes of the inertia matrix. On the other way, large |q1 |
often means that the current vibration is violent, hence it is
natural to make the feedback gain high when |q1 | reaches a
threshold. The idea of control barrier function may be uti-
lized for this purpose, but this topic is one of our future work.
In this paper, the parameter selection guideline is focusing
on making the skyhook damper term large, while the free
parameter selection in this proposed method can control not
only the skyhook damper term but also the mass and spring
term. The problem of how to adjust those terms to suppress
the vibration in a wider frequency domain will depend on the
sensitivity from the free-parameter selection to the control
performance, and that is also our future work.

6. An Example and Simulation

In this section, in order to verify the vibration suppression
effect of the proposed feedback law (17), we will construct a
control system for an example and make simulations for the
system.

We consider a main body (cart) with a pendulum like
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Fig. 4 Cart and pendulum system.

Fig. 4, where mp , mc , l, c, µ, and K2 denote mass of the
pendulum, mass of the cart, length of massless bar, viscosity
dumper coefficient between the cart and the vibrating wall,
rotational friction coefficient at the axis of the pendulum,
and elastic coefficient between the cart and the vibrating
wall, respectively. We choose the variables q1, q̃2, z, F,
and u as swing angle of the pendulum, displacement of the
cart in world coordinate, displacement disturbance of the
basement, force disturbance on main body, and input force,
respectively. Here we set the parameters of controlled object
as mp = 0.2, mc = 10, l = 5, c = 2, µ = 10, and K2 = 3.
The disturbances are z = sin(bt) and F = 100 cos(bt) for
b = 1 and b = 10.

To verify the performance of the proposed method, we
perform simulations for the open loop system, the closed-
loop system using the proposed feedback law, and the closed-
loop system using conventional method which is skyhook
damper method. We consider the skyhook damper feedback
law

u = −Ĉd3 ˙̃q2,

where Ĉd3 is the same value as the desired skyhook damper
used in our proposed method. However, we apply the sky-
hook damper method with the assumption that absolute dis-
placement and velocity of the cart are measurable, while
our proposed method only uses relative displacement and
velocity information.

According to the proposed guideline of parameter se-
lection in section 5, we firstly setting small d10, samll r1 and
large r2 as d10 = 2, r1 = 15 and r2 = 1000. Since a small
low-frequency gain GFq̃2 (0) is preferred, we design the part
of the desired potential energy fucntion P[·] as P[γ] = 5γ2,
so that GFq̃2 (0) = 0.005. By setting cd2(q1) = cd20 and
cd3(q1) = cd30, we can ensure that the inequality constraints
(18), (19) and (20) are satisfied.

Through the simulations, we evaluate the displacements
of the main body q̃2 whose vibration should be attenuated.
Figures 5 and 6 show the time responses of the cart displace-
ment in the open loop system and closed-loop systems, when
b = 1 and 10, respectively. We can see that the vibration of
main body is suppressed effectively in the closed-loop system
with the proposed controller, while the open-loop system has
only a small vibration suppression effect. On the other hand,
there is no obvious difference between the performance of

Fig. 5 Time responses of the cart displacement (b = 1).

Fig. 6 Time responses of the cart displacement (b = 10).

skyhook damper method and the one of proposed method.
Thus, we confirmed that the proposed method can

achieve the same good vibration suppression effect as the
skyhook damper method without world-coordinate measure-
ments.

7. Conclusion

In this paper, we have solved vibration suppression problem
of the general port-Hamiltonian system via designing IDA-
PBC controller. The considered system can be expressed as
any floating nonlinear mechanical structure with spring and
damper. We have shown the matching condition between
the controlled system and the desired system. We show a
control law including some free parameters with some con-
straints. The controller uses only relative information, which
can be easily measured. We propose a new parameter design
method for more generalized nonlinear controlled objects
than the previous work [12]. We show differential equations
that determine the inertia matrix of the desired closed-loop
system. The stability of the nonlinear closed-loop system is
guaranteed theoretically by the IDA-PBC method. We have
proposed an efficient parameter selection scheme achieving
a good vibration suppression effect. Under the proposed pa-
rameter selection, the proposed control law realized a virtual
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skyhook damper using only relative informations. Simula-
tion results for an example verify the good vibration effect
of the proposed controller.
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