
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020
451

PAPER Special Section on Mathematical Systems Science and its Applications

Template-Based Monte-Carlo Test-Suite Generation
for Large and Complex Simulink Models∗

Takashi TOMITA†a), Nonmember, Daisuke ISHII††, Member, Toru MURAKAMI†††,
Shigeki TAKEUCHI†††, Nonmembers, and Toshiaki AOKI†, Member

SUMMARY MATLAB/Simulink is the de facto standard tool for the
model-based development (MBD) of control software for automotive sys-
tems. A Simulink model developed in MBD for real automotive systems
involves complex computation as well as tens of thousands of blocks. In
this paper, we focus on decision coverage (DC), condition coverage (CC)
and modified condition/decision coverage (MC/DC) criteria, and propose a
Monte-Carlo test suite generation method for large and complex Simulink
models. In the method, a candidate test case is generated by assigning ran-
dom values to the parameters of signal templates with specific waveforms.
We try to find contributable candidates in a plausible and understandable
search space, specified by a set of templates. We implemented the method
as a tool, and our experimental evaluation showed that the tool was able
to generate test suites for industrial implementation models with higher
coverages and shorter execution times than Simulink Design Verifier. Ad-
ditionally, the tool includes a fast coverage measurement engine, which
demonstrated better performance than Simulink Coverage in our experi-
ments.
key words: model-based development, MATLAB/Simulink, test case gener-
ation, Monte-Carlo method, template-based method

1. Introduction

1.1 Background

Along with the evolution of electronic control technology,
various modules have gradually electronized in the automo-
tive, aircraft, and aerospace industries. How to ensure the
safety and reliability of electronic control units (ECUs) for
such modules has been a difficult challenge. IEC 61508 [3],
a basic functional safety standard for electronic systems in
general industry, and ISO 26262 [4], the specialized stan-
dard for the automotive industry, were published as inter-
national standards. Over the past decade, many companies
have focused on developing hybrid vehicles, electric vehi-
cles, driving assistance systems, and automated driving sys-
tems. Hence, effective and efficient methods and techniques
are strongly required for developing safe and reliable soft-
ware for larger and more complex ECUs.

Manuscript received April 14, 2019.
Manuscript revised August 30, 2019.
†The authors are with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923-1292, Japan.
††The author is with University of Fukui, Fukui-shi, 910-8507

Japan.
†††The authors are with Gaio Technology Co., Tokyo, 140-0002

Japan.
∗This paper is a merged and revised version of parts of [1] and

[2].
a) E-mail: tomita@jaist.ac.jp

DOI: 10.1587/transfun.2019MAP0010

Model-based development (MBD) is widely employed
in the development of safe and reliable software for ECUs.
Usually, such software (i.e., controller) controls a target sys-
tem (i.e., plant) using feedback loops. In MBD, both the
controller and plant are simulatable, and their behaviors can
be checked by numerical simulation. A specification model
for a controller is initially defined as, e.g., a system of differ-
ential equations, and then refined and discretized into an im-
plementation model as a fixed-point and discrete-time sys-
tem with concrete data definitions and additional features,
e.g., overflow measures. This model refinement can be vali-
dated and verified because the models are mathematical and
simulatable. Finally, such implementation models can be
converted into code automatically. The quality of software
is guaranteed by traceable model refinement and automatic
code generation. MATLAB∗∗/Simulink∗∗∗ is widely used as
a de facto standard MBD tool, which provides an environ-
ment for numerical operation, graphical modeling, simula-
tion, and code generation.

Simulink models contain complex computations. Fur-
thermore, the scale of these models becomes quite large for
practical developments. We believe that testing has the po-
tential to deal with such models and enables us to ensure the
quality of the models. In fact, IEC 61508 and ISO 26262
recommend the use of some coverage criteria for testing. In
model testing, a test case is a group of input signals (and ex-
pected output signals), and a test suite is a set of test cases.
Model refinement in MBD is justified by back-to-back con-
formance testing with numerical simulation. Also white-
box testing based on decision coverage (DC), condition
coverage (CC), and modified condition/decision coverage
(MC/DC) criteria is widely employed. Typically, a release
version of software must pass the tests of a full (or high,
for some criteria) coverage test suite. MATLAB/Simulink
has toolboxes to assist efficient testing, which conform to
IEC 61508 and ISO 26262. Simulink Design Verifier∗∗∗∗

(SLDV) provides functions to detect design errors and gen-
erate test cases. Simulink Coverage∗∗∗∗∗ (SLC) provides cov-
erage measurement functions for various criteria including
DC, CC and MC/DC.

∗∗https://www.mathworks.com/products/matlab.html
∗∗∗https://www.mathworks.com/products/simulink.html
∗∗∗∗https://www.mathworks.com/products/sldesignverifier.html
∗∗∗∗∗https://www.mathworks.com/products/simulink-coverage.html

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

452
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020

1.2 Challenges

There are several problems in the testing process of MBD
for practical ECU software. First, it is difficult to obtain a
full (or even high) coverage test suite for a practical model,
which is large and complex. In some cases, it has tens of
thousands of operations, which are called blocks in MAT-
LAB/Simulink. Such blocks include (possibly non-linear)
mathematical operation blocks, logical operation blocks,
switch blocks, delay blocks and (conditional) subsystem
blocks. SLDV provides a test case generator, but it cannot
fully deal with practical models because SLDV mainly re-
lies on formal analysis, wherein non-linear arithmetic leads
to undecidability. Additionally, each test case is a set of
time-series data. A large model has complex internal states
as well as more than a hundred of inputs. A number of time-
steps are sometimes required to observe a series of transi-
tions of such states. So the search space for test cases be-
comes huge. Formal analysis does not generally scale even
in the case that is theoretically decidable. Hence, we need
a feasible test generation method. The Monte-Carlo method
is often used for this purpose. This approach tries to find
suitable test cases from many randomly generated candi-
dates. However, we may need a useful guide for finding
contributable test cases because of the massive search space
we handle.

Second, the coverage measurement function cvsim
provided by SLC is terribly slow when compared to the
naive simulation function sim provided by the standard
Simulink. In the Monte-Carlo approach, this is critical be-
cause we need to generate many candidates and collate their
coverage statistics. Even if we build a good test suite, we
need to spend an unacceptable amount of time for checking
whether the practical model passes the test suite. Cover-
age measurement consists of the following parts: numeri-
cal simulation with signal data logging of a given test case,
and identification of time-steps that meet the coverage ob-
jectives. It is necessary to accelerate this coverage measure-
ment procedure to improve the efficiency of the overall test-
ing process.

1.3 Contributions

The contributions of this paper are twofold. First, we pro-
pose a template-based Monte-Carlo method [1] to automat-
ically generate a test suite that achieves high DC, CC and
MC/DC in MATLAB/Simulink. Second, we realize the pro-
posed method as a tool [2] with an efficient coverage mea-
surement engine that is critical to its performance and scal-
ability.

The template-based Monte-Carlo method tries to find
comprehensible test cases. A candidate test case is gener-
ated by assigning random values to templates that provide
parameterized signals with specific waveforms. Therefore,
the candidates are chosen from a plausible and understand-
able search space specified by a set of templates.

In terms of coverage measurement, we independently
implement an engine that exploits fast simulation modes
and array operations, which are standard features of MAT-
LAB/Simulink. This implementation is used to accelerate
the signal-simulation/coverage-measurement loop, which is
essential for Monte-Carlo optimization-based tools that deal
with practical models.

Then, we carried out experiments to evaluate the effec-
tiveness of the template-based method and the performance
of the tool. We confirmed that our method can produce
stimulating signals much more efficiently than naive random
signal generation methods, and our tool is able to generate
higher-coverage test suites in much less time than SLDV, for
real implementation models developed by industry.

1.4 Organization of the Paper

The remainder of the paper is organized as follows: Sec-
tion 2 introduces related work of the paper. Section 3
provides preliminary information about Simulink models
and coverage testing. Section 4 proposes a template-based
Monte-Carlo test-suite generation method. Section 5 de-
scribes the implementation of our method. Section 6 reports
evaluation experiments. Finally, we conclude in Sect. 7.

2. Related Work

Simulink Design Verifier (SLDV) is a first-party MAT-
LAB/Simulink toolbox that generates test cases mainly us-
ing a formal analysis. SLDV uses rational approximations
of floating-point arithmetic and tries to identify suspicious
test cases. Additionally, there are some third-party tools
based on formal methods, e.g., BTC† Embedded Tester [5]
and AutoMOTGen [6]. Embedded Tester converts a model
into a C code and generates test cases based on formal analy-
sis of the C code. AutoMOTGen converts a Simulink model
into a formal model, and uses model checking techniques to
check whether the formal model meets formally described
test objectives. However, many practical models cannot be
fully dealt with by them due to limitations related to com-
putability and computational complexity. Additionally, a
test case produced by them may consist of input signals
with any complex waveforms. In contrast, our method gen-
erates test cases by template-based Monte-Carlo approach.
Although it may fail to output full-coverage test suites even
for simple models, our method produces only understand-
able test cases and deals with any simulatable model even if
it has non-linear arithmetic.

Reactis†† is a third-party tool that consists of simula-
tor, tester, and verifier. The tester tries to find a test case
by combining a Monte-Carlo method and a guided simu-
lation [7]. Guided simulation generates a new candidate
test case from a previous one by changing its suffix after
a certain time-step, which is determined based on backward

†https://www.btc-es.de/
††http://www.reactive-systems.com/

TOMITA et al.: TEMPLATE-BASED MONTE-CARLO TEST-SUITE GENERATION FOR LARGE AND COMPLEX SIMULINK MODELS
453

data-flow analysis. SmartTestGen [8], [9] is another tool that
integrates different techniques: random testing, constraint
solving, model checking, and heuristics. An input signal in-
cluded in a test case generated by them may have any wave-
form. In contrast, our method generates understandable can-
didates based on templates that specify the characteristics of
the entire waveform of the input signal.

A randomized directed testing (REDIRECT) method
[10] for state/transition coverage testing, a model-checking
based method [11] for mutation coverage testing, and an
output-diversity based method [12], [13] for fault revealing
were proposed. These methods aim for a test case genera-
tion with criteria different from DC, CC and MC/DC.

Simulink Coverage (SLC) is a first-party toolbox for
coverage testing. The details of its implementation are un-
known, but the coverage measurement function cvsim does
not support fast simulation modes and is much slower than
the naive simulation function sim. In contrast, our tool was
implemented from scratch using only standard functions in
MATLAB/Simulink, and is much faster than SLC and also
supports fast simulation modes.

3. Preliminaries

3.1 Simulink Models

MATLAB is a general-purpose numerical computing envi-
ronment with an efficient handling of arrays, matrices, im-
ages, and signals. There are many first-party toolboxes, e.g.,
Simulink, SLDV and SLC.

Simulink is a MATLAB toolbox for modeling and sim-
ulation purpose. A Simulink model is a block diagram that
specifies a dynamical system. A block is a processing unit
in Simulink and varies in various types, e.g., input/output,
mathematical operator, logical/relational operator, (multi-
port) switch, delay, and (conditional) subsystem. Blocks
are connected with lines, which transfer Boolean, integer,
or floating/fixed-point data at each time step. Delay blocks
relay data after specified delay times, and thus they brings
in internal states within a model. A subsystem represents a
hierarchical module in a Simulink model, and is interfaced
with their parent system via input/output ports that are im-
plemented with input/output blocks internally. Furthermore,
a subsystem is often equipped with control ports, e.g., en-
able and trigger ports, for selective activation/inactivation of
the subsystem with external signals; also, a subsystem may
mask their low-level structure, where the mask is configured
with the mask variables. Usually, variables in MATLAB are
stored in a base workspace. A Simulink model may refer
variables in the base workspace.

The behavior of a Simulink model is characterized in
terms of signals (i.e., time-series data). Inputs/outputs of
blocks, subsystems and the model itself are represented as
signals. In a simulation, an input signal is given to each
input port of them and processed based on their descrip-
tion. Processed signals are propagated to their successors
via lines connected with their output ports.

Fig. 1 Example of a harness model. A signal builder block “Inputs”
provides test cases for “Test Unit” subsystem copied from a target model
via an adapter subsystem “Size-Type.”

Simulink has several simulation modes: normal, accel-
erator, and rapid accelerator (or shortly rapid). A normal
mode simulator runs within the MATLAB/Simulink envi-
ronment. An accelerator-mode simulator is generated as an
execution engine in memory. A rapid-mode simulator is
generated as a stand-alone execution file. Each mode re-
quires to compile a Simulink model into an intermediate
representation. For the normal and accelerator modes, we
can omit recompilation by enabling the fast restart feature.
The rapid mode requires generating an excutable file in ev-
ery simulation. The accelerator and rapid modes require
API communications between MATLAB/Simulink and the
simulator processes.

3.2 Test Case/Suite

For the ease of testing a target model, we use a harness
model (Fig. 1). A harness model consists of (i) a subsys-
tem (“Test Unit”) that contains a copy of the target model,
(ii) a signal builder block (“Inputs”) that provides a group
of input signals for the target model, and (iii) a subsys-
tem (“Size-Type”) that configures data types and sampling
rates of each input signals. Because a signal builder block
generates only double-typed signals, this “Size-Type”
subsystem casts each input into the signal of an appropriate
type. SLDV and SLC have functions to construct a harness
model of a model under testing.

A test case is a group of input signals, and a test suite is
a set of test cases. In Simulink, a signal block (cf. “Inputs”
in Fig. 1) can be considered as a test suite; we can add,
change, or remove a test case in a signal builder block using
the signalbuilder function.

3.3 Test Objectives and Coverage Criteria

The objective of a model test is to attain a high model cov-
erage, which measures how exhaustively the objects in a
model are exercised, given a test case. For a test suite, the
coverage of every test case is accumulated. Various cover-
age criteria are proposed. In the DC, CC and MC/DC crite-
ria, a measured object is a block whose activity affects the
logical characteristics (i.e., data flow pattern) of the model;
thus, the test objective is broken down to the objectives for
those blocks.

(1) Decision coverage (DC)

The DC criterion checks that all the possible decisional out-

454
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020

Table 1 Relations among templates, its parameters, and instantiated signals.

Template Template Parameters Instantiated signal s

Constant v ∈ D s(t) = v.

Linear b, a ∈ D s(t) = a−b
Tstop

t + b.

NLinear
n ∈ N>0, v1, . . . , vn+2 ∈ D,

t′1, . . . , t
′
n ∈ (0,Tstop) where t′1 < . . . < t′n

s(t) =


v2−v1

t′1
t + v1 if 0 ≤ t < t′1,

vi+2−vi+1
t′i+1−t′i

(t − t′i) + vi+1 if 1 ≤ i < n and t′i ≤ t < t′i+1,

vn+2−vn+1
Tstop−t′n

(t − t′n) + vn+1 if t′n ≤ t.

Step b, a ∈ D, t′ ∈ (0,Tstop) s(t) =

b if t′ < t,
a otherwise.

NStep
n ∈ N>1, v1, . . . , vn+1 ∈ D,

t′1, . . . , t
′
n ∈ (0,Tstop) where t′1 < . . . < t′n

s(t) =


v1 if 0 ≤ t < t′1,
vi+1 if 1 ≤ i < n and t′i ≤ t < t′i+1,

vn+1 if t′n ≤ t.

Sine
a ∈ D>0, f ∈ [2π/Tstop, π/2Tsmpl],

p ∈ [0, 2π], b ∈ D where b + a, b − a ∈ D
s(t) = a sin(f t + p) + b.

Square
a ∈ D>0, f ∈ [2π/Tstop, π/Tsmpl],

p ∈ [0, 2π], b ∈ D where b + a ∈ D, d ∈ (0, 1) s(t) =

b + a if f t+p
2π − b

f t+p
2π c < d,

b otherwise.

Triangle
a ∈ D>0, f ∈ [2π/Tstop, π/Tsmpl],

p ∈ [0, 2π], b ∈ D where b + a ∈ D, d ∈ [0, 1] s(t) =

 a
d ·

(f t+p
2π − b

f t+p
2π c

)
+ b if f t+p

2π − b
f t+p
2π c ≤ d , 0,

− a
1−d ·

(f t+p
2π − b

f t+p
2π c − d

)
+ b + a otherwise.

comes of every block occur at some time step in a simula-
tion. The coverage represents the percentage of the number
of observed outcomes. Target blocks of the DC criterion
are logical operators, (multiport) switches, subsystems with
control ports, etc. Their decisional outcomes are Boolean
outputs for logical operators, indices of passing inputs for
switches, enabled/disabled for subsystems, etc.

(2) Condition coverage (CC)

The CC criterion checks that all the (satisfiable) atomic con-
ditions of every block become true at some time step and
become false at another time step. The coverage repre-
sents the percentage of observed conditional outcomes. Tar-
get blocks for the CC criterion are relational operators, log-
ical operators, etc.

(3) Modified condition/decision coverage (MC/DC)

The MC/DC criterion checks that, for every block, each
atomic condition affects its decisional outcomes indepen-
dently. The coverage is defined as the percentage of ob-
served witness pairs of atomic conditions. Target blocks for
the MC/DC criterion are multi-input logical operators, etc.
An example witness for the i-th condition of “AND” opera-
tor is the pair of the outcome “all inputs are true (and thus
the output is true) at some time” and the outcome “only the
i-th input is false (the output is false) at some time.”

4. Template-Based Monte-Carlo Method

4.1 Signal Templates

In general, a test case is characterized as a group of input
signals with arbitrary waveforms. However, in MBD, the
input signals to a controller are provided by other electronic

modules that are likely to be well-controlled, or by physical
objects that are dominated by physical laws. In our expe-
rience, it is frequently sufficient to consider input signals
with several specific waveforms to achieve high DC, CC,
and MC/DC. For instance, when a model contains a band-
pass filter circuit, which only passes a wave-shaped signal
with a specific frequency, we need to give such signal to
exercise the downstream of the circuit. Some circuits are
exercised by a signal keeping a specific constant value for
a certain time whereas others are activated by a signal that
changes its value suddenly and significantly. Therefore, we
focus on a collection of such specific signals. For a test case
consisting of them, the behavior of a model is relatively easy
to understand for a design engineer. Thus it is helpful for re-
fining the given model.

We introduce templates for input signals, and search
test cases within the subset of instances of the templates.
In this paper, we provide templates Constant, Linear,
NLinear, Step, NStep, Sine, Square, and Triangle,
each of which represents constant, linear, piecewise-
linear, single-step, multiple-step (in other words, piecewise-
constant), sine-wave, square-wave, or triangle-wave sig-
nals, respectively (Table 1). Note that we set the upper
bound of the number n of pieces for NLinear and NStep
templates in practice.

An individual input signal can be instantiated by choos-
ing a template and assigning concrete values to parameters,
based on (i) the range D of its data type, (ii) user-specified
ranges, and (iii) its sampling time Tsmpl, and (iv) stop time
Tstop of the target model, and then rounded based on the data
type and the sampling time.

TOMITA et al.: TEMPLATE-BASED MONTE-CARLO TEST-SUITE GENERATION FOR LARGE AND COMPLEX SIMULINK MODELS
455

Algorithm 1 Template-based Monte-Carlo test-suite gener-
ation
Inputs: Simulink model mdl, and template setting tmp
Outputs: Test suite ts
1: ts := ∅;
2: tsc := null coverage;
3: repeat
4: cand := generateTestCaseFromTemplates(mdl, tmp);
5: sd := simulate(mdl, cand);
6: candc := measureCoverage(mdl, sd);
7: if a covering area of candc is not subset of that of tsc then
8: ts := ts ∪ {cand};
9: tsc := accumulateCoverage(tsc, candc);

10: end if
11: until tsc achieves full coverage
12: return ts;

4.2 Algorithm

We propose a template-based algorithm for Monte-Carlo
test-suite generation as shown in Algorithm 1. First, we gen-
erate randomly an entire candidate test case (i.e., a group of
input signals) based on a template setting specifying a set
of available templates and the ranges of their parameters for
each input (Line 4). Each input signal is instantiated from
one of templates in Table 1. All templates in Table 1 are
available and the ranges of their parameters are assumed as
wide as possible by default, however, a user can customize
the setting. Second, we simulate the target model for the
candidate with signal logging (Line 5). Third, we measure
its coverage from the simulation log (Line 6). Fourth, if the
candidate is contributable to the coverage, we add it to the
test suite (Lines 7–10). The steps are repeated until the test
suite achieves full coverage.

If, for each DC, CC, or MC/DC objective of the tar-
get model, there exists a test case meeting the objective in
the set T of possible test cases instantiated from the avail-
able templates, and if each candidate is chosen randomly
and uniformly from T , Algorithm 1 returns a full coverage
test suite eventually.

However, there is generally no ground for the existence
of a suitable test case in T for each objective. Additionally,
if a specific value is required to meet an DC, CC, or MC/DC
objective, the probability to choose it by random and uni-
form sampling is very low. Therefore, we practically set
the maximum number of repetitions, i.e., that of candidates.
When the size of the test suite reaches the maximum num-
ber, the procedure will halt even if the test suite does not
achieve full coverage.

4.3 Discussions

The template-based approach has several benefits. First, it is
efficient in generating a test case. A general signal is naive
time-series data, so it has as many parameters as the time-
steps of a simulation. A number of parameters are required
to be examined to observe a complex behavior in a simula-
tion with a certain length. On the other hand, a template-
based signal is characterized by only a few parameters,

which is independent of the length of a simulation. When
an appropriate template is selected, test case generation be-
comes efficient by assigning concrete values for the reduced
number of parameters. Second, the intention of a test case
becomes understandable. The definition of a template de-
termines the waveform of instantiated signals. Ramp-like,
pulse-like and sawtooth signals can be instantiated from the
NLinear, NStep (or Square) and Triangle templates, re-
spectively. According to the definitions of templates, we
can easily classify the signals and understand their charac-
teristics. Additionally, we can extend our method by adding
another template as needed.

As a trade-off of the benefits, the template-based ap-
proach cannot deal with complex shaped signals, and hence
it may be impossible to cover some objective using any
template-based test case. Additionally, it is difficult, or
rather impossible, to know whether a given objective can be
covered with signals instantiated from available templates,
in advance. Note that there is another issue in handling a
complex-shaped signal with a template because it might be
an unrealistic signal.

A general advantage of Monte-Carlo approaches is that
we can deal with any model, e.g., that involving non-linear
computation. The Monte-Carlo test suite generation does
not require to analyze the behavioral characteristics of the
target model. We need only an analysis for coverage mea-
surement. A static/dynamic analysis of the target model en-
ables us to predict a hopeful search space (i.e., templates
and the ranges of their parameters in the template-based
method), but it is optional.

As a general disadvantage of naive Monte-Carlo ap-
proaches, we cannot deny the possibility that we fail to solve
even a small problem. The difficulty of static formal anal-
ysis, e.g., constraint solving, strongly depends on the com-
plexity of operations, i.e., the number/types of signals and
blocks. On the other hand, that of our naive Monte-Carlo
approach depends on only the size of the search space for
test cases, i.e., the product of ranges of parameters of (tem-
plates assigned for) top-level input signals. So, if a desired
test case can be instantiated only by a combination of values
in a very narrow region against the search space, we may
not find it within an acceptable length of time. This is be-
cause it is almost impossible to randomly choose a specific
value from a nearly continuous search space without a user-
specific limitation. This kind of difficulty is typically related
with a DC/CC objective checking that a floating/fixed-point
input value is equivalent to another input or constant. How-
ever, such cases are very rare in practical models.

5. Implementation

We implemented the template-based Monte-Carlo method
as a tool, which contains an efficient coverage measurement
engine as a replacement for the first-party implementation
cvsim of SLC.

A design overview of our tool is provided in Fig. 2. The
tool consists of a structure analyzer, test case generator,

456
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020

Fig. 2 Overview of the tool.

simulator, and metric measurer, and realizes Algorithm 1 by
cooperation among them. The structure analyzer performs
preprocesses for test generation. The test case generator
generates new candidate test cases (Line 4 in Algorithm 1).
The simulator configures the logging settings of the harness
model and simulates it (Line 5 in Algorithm 1). The metric
measurer receives simulation logs of test cases, and evalu-
ates/compares/accumulates the coverages of the test cases
(Lines 6, 7, 9 and 10 in Algorithm 1).

These modules are implemented as MATLAB scripts,
and call standard MATLAB/Simulink functions for analysis,
modification, and simulation of Simulink models.

5.1 Structure Analyzer

Our tool performs a static analysis of the structure of the
model as a preprocess for test suite generation, simulation,
and metric measurement. The primary functional features
of the structure analyzer are: (1) listing of all blocks and
connections between them as well as their parameter val-
ues, (2) detection of the signal builder block and the adapter
subsystem of a harness, and (3) identification of all target
blocks for DC, CC and MC/DC and the lines connected to
their inputs from the target model.

The analyzer scans all blocks, including lower-level
blocks in masked subsystems, recognizes their predecessors,
successors and higher/lower-level blocks, and determines
their concrete parameter values (e.g., a value of a constant
block, a threshold of a switch block) based on mask vari-
ables of their higher-level subsystems and variables in the
base workspace of the MATLAB environment.

Signals flowing on the lines between blocks may be
multiplexed using multiplexer or bus-related blocks. Hence,
the analyzer also temporally compiles the model and col-
lects the multiplicity and data-type information for each of
the lines.

5.2 Test Case Generator

The test case generator prepares a signal for each top-level
input of “Test Unit,” based on a template. The primary
functional features of the test case generator are: (1) pars-
ing of a text file specifying a template setting, (2) random

value generation, and (3) test case instantiation based on the
templates and the random values.

A template setting specifies available templates and
ranges (maximum and minimum values) of the parameters
for each top-level input of “Test Unit” Note that multi-
ple ranges may be available for each parameter. Each range
may be adjusted based on the data type recognized by the
analyzer. Currently, our tool supports templates given in Ta-
ble 1. A user can customize a template setting by giving a
text file. An example of lines of such template setting file is
given as follows.

The example specifies three templates for the top-level input
named “In 1.” The first line specifies a Step template with
parameter constraints b ∈ [0, 10], a ∈ [10, 20] and t′ ∈ [0, 5].
The first line specifies another Step template with parame-
ter constraints b ∈ [10, 20], a ∈ [0, 10] and t′ ∈ [5, 10]. The
third line specifies a NStep template with parameter con-
straints n ∈ [2, 5] and v1, . . . , vn+1 ∈ [0, 5] ∪ [15, 20] and
t′1, . . . , t

′
n ∈ [0,Tstop].

The generator chooses one from the available templates
(resp., ranges) for each input (resp., for each parameter of a
chosen template) randomly and uniformly, and then instan-
tiates a candidate test case by assigning uniformly-random
values to the parameters from the chosen ranges. Note that,
we can specifically assign a certain value to a parameter of
interest by using a singleton range. Therefore, we can re-
duce the disadvantage of Monte-Carlo approach, i.e., we can
obtain a signal instantiated by a combination of specific val-
ues with a certain probability if we know each of them in
advance.

Then the candidate is temporarily added to the test suite
(Line 8 in Algorithm 1) by editing “Inputs,” i.e., calling
the signalbuilder function. If the candidate is not con-
tributable, the generator replaces it by the next candidate.

5.3 Simulator

The simulator is a wrapper for a standard Simulink simu-
lation function sim. The primary functional features of the
simulator are: (1) making a mapping table between output

TOMITA et al.: TEMPLATE-BASED MONTE-CARLO TEST-SUITE GENERATION FOR LARGE AND COMPLEX SIMULINK MODELS
457

ports and signal identifiers, (2) configuring the simulation
settings, e.g., on signal logging and simulation mode, and
(3) simulating the harness model for a test case in an arbi-
trary simulation mode.

Based on block information provided by the analyzer,
the simulator gives unique names to each output port of the
predecessors of target blocks of DC, CC, and MC/DC crite-
ria. Hence, we can access the logged signal flowing out of a
given output port via the corresponding name.

The simulator activates the newest test case by call-
ing the signalbuilder function and then invokes the sim
function. Here, simulation can be performed with any sim-
ulation mode: normal, accelerator, or rapid.

5.4 Metric Measurer

The metric measurer collects signal data of interest from
the simulation log and evaluates the metrics for that test
case. The primary functional features of the metric mea-
surer are: (1) coverage measurement for a test case, (2) com-
paring/accumulating coverages of test cases/suites, and (3)
reporting the accumulated coverage result for a test suite.

For each target block of the DC, CC, and MC/DC cri-
teria, the measurer reads the signal logs fed into the block,
which are identified by the names given by the analyzer.

5.4.1 Coverage Measurement

According to the types of conditions and/or decisions and
parameters of a block, the measurer evaluates the outcomes
of the conditions and/or decisions at each step. The cov-
erage for the block is derived from the time series of the
outcomes. Then, the measurer sums up the coverages for
each target block to calculate the coverage for the test case.
The coverage for a test suite is obtained by summing the
individual coverages for each test case.

5.4.2 Comparison with SLC

In this section, we explain our coverage measurement en-
gine, and contrast it with the coverage measurement func-
tion cvsim provided by SLC. As SLC is a proprietary soft-
ware, our observation here is based on our experiments.

(1) Features of SLC coverage measurement

Normal mode is the only simulation mode supported by
cvsim. Accelerator and rapid modes are not supported. In-
stead, we can pause simulation and immediately obtain in-
termediate results. Based on this observational evidence, we
inferred that cvsim repeats the following steps: (i) advanc-
ing the simulation by a step, (ii) checking whether each de-
cision/condition holds, and incrementing a counter for each
objective if it is satisfied at that time. This approach pro-
cesses a time series data in a for-loop and is very inefficient.

(2) Features of our coverage measurement

In contrast, our tool employs the following approach: First,

based on structure analysis, we enable logging for all output
ports, which provide signals feeding in blocks that should
be measured. Second, a target harness model is simulated
until completion without pause. Finally, we check whether
every decision/condition holds for each step and count the
number of steps that satisfy decisions/conditions by apply-
ing array/matrix operations to the simulation log. In this ap-
proach, we can use any simulation mode because we assume
that simulations are pauseless. Therefore, we can accelerate
coverage measurement by using fast simulation modes and
efficient array/matrix operations of MATLAB/Simulink.

6. Evaluation

This section shows experimental evaluations. All of the
experiments were done with macOS 10.13.4 and MAT-
LAB/Simulink (including SLDV and SLC) R2017b on a PC
with a 2.8 GHz Intel Core i7 CPU and 16 GB of RAM.

6.1 Basic Evaluation

First, we report the results of basic experiments with small
models to evaluate the effectiveness of our template-based
method proposed in Sect. 4. In the experiments, we used
three models m1, m2 and m3 given in Fig. 3. SLDV can gen-
erate a full coverage test suite for m1 and m2, but cannot for
m3 even with more than an hour.

Fig. 3 Small models for basic experiments. For m1, the value range of
its input signal is [0, 1000], its detect threshold is 500 for a time step. For
m2, the value range of its input signal is [0, 1000], its detect threshold is 0.1
for 10 time steps. For m3, the value range of its input signal is [−1, 1], its
pass frequency is around 0.63-0.68 rad/s, its detect threshold is 0.9. For all
of them, sample time is 1s and stop time is 1, 000s.

458
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020

(1) Descriptions

We compared the following randomized methods.

1. Uniform Random: For each time step, a value of an
input signal is uniformly and randomly chosen from
the value range.

2. Wiener-process: The initial value of an input signal is
uniformly and randomly chosen from the value range.
A change for each time step follows a (truncated) nor-
mal distribution N(0, σ2) where the standard deviation
σ is uniformly and randomly chosen, once for each test
case, from a hundredth of the width of the value range.

3. Our method (Algorithm 1): A test case is generated by
our method with the following setting, called “ALL”:
all templates in Fig. 1 are enabled, and any additional
constraints for template parameters are not given. For
only m3, we also use the following setting, called “SS”:
“Sine” template with constraints “amplitude and bias
is fixed to 1 and 0, respectively” and “Square” tem-
plate with constraints “amplitude and bias is fixed to 2
and −1, respectively” are enabled, and all other tem-
plates are disabled.

We observed 10 trials for each of them and models. For
each trial, we repeatedly generated candidate test cases (up
to 1,000) and measured its coverage, and scored the number
of candidates required to achieve full coverage.

(2) Results

The results are summarized in Table 2. Hyphens mean that
the numbers of candidates exceed 1,000. Each trial com-
pletes up to few minutes. Random signals are extremely un-
stable, thus only sudden changes were normally observed.
Wiener-process signals with smaller variances are more sta-
ble, therefore steady states were observed when its variances
were enough small. The results indicate that these naive
types of random signals is suitable only in limited cases.
Our template-based method assumes various types of sig-
nal templates, so got to normally produce stimulating sig-
nals. For m3, our method required a suitable template setting
to efficiently generate contributable test cases, because few
templates are suitable for band-pass filter and the conditions
for parameters to pass the filter are strict. Although, for each
input signal, the range of its values and considered types of
its waveforms are usually limited and known by modeling
engineers. So it is expected to improve the efficiency of our
method by giving a suitable template setting as suggestions
based on such their knowledge.

6.2 Practical Evaluation

Second, we report two experimental results to practically
evaluate the quality of the generated test suites (Sect. 6.2.1)
and the coverage measurement performance (Sect. 6.2.2) of
our tool introduced in Sect. 5.

In the experiments, we focused on implementation

Table 2 Sorted numbers (from the best case to the worst case) of candi-
dates to fully cover objectives in small models m1, m2 and m3.

Trials Unif. Random Wiener Proc. Our Method
All SS

m1 m2 m3 m1 m2 m3 m1 m2 m3

Best 1 - - - 470 - 1 1 - 1
2nd 1 - - - 625 - 2 1 - 12
3rd 1 - - - - - 3 1 - 17
4th 1 - - - - - 3 1 - 24
5th 1 - - - - - 3 2 - 25
6th 1 - - - - - 3 2 - 34
7th 1 - - - - - 4 2 - 48
8th 1 - - - - - 11 2 - 67
9th 1 - - - - - 12 3 - 78

Worst 1 - - - - - 16 11 - 79

Table 3 Summary of experimental models M1 and M2.

Attributes M1 M2

#Inputs 2 51
#uint8-typed signals 0 7
#int16-typed signals 1 3
#uint16-typed signals 0 1
#single-typed signals 0 40
#double-typed signals 1 0

#Blocks 476 2374
#RelationalOperator blocks 16 120
#Logic blocks 7 7
#Switch blocks 1 152
#MultiPortSwitch blocks 33 42
#Abs blocks 0 1
#MinMax blocks 0 1
#If blocks 0 11

#Subsystems 29 145
#Enable subsystems 2 4
#Trigger subsystems 5 0
#IfAction subsystems 0 24

#Objectives 200 710
#DC objectives 123 428
#CC objectives 64 268
#MC/DC objectives 13 14

StopTime 3.0 7.0
SampleTime (base) 1/20000 1/1000

models of realistic applications. To the best of our knowl-
edge, there are no open benchmarks of such models. We
have evaluated our tool with several industrial models and
obtained good results, however, all of the models are confi-
dential and most of the results cannot be open. In this paper,
we report the summarized results for (closed-source) two
Simulink models M1 and M2 developed as real products in
the industry; statistical data are summarized in Table 3. Note
that, two and (at least) 56 objectives in M1 and M2, respec-
tively, are unsatisfiable. They are detected by SLDV and
confirmed manually.

6.2.1 Quality of Generated Test Suite

In the first experiment, we compared the coverages of test
suites generated by our tool with those generated by SLDV.

TOMITA et al.: TEMPLATE-BASED MONTE-CARLO TEST-SUITE GENERATION FOR LARGE AND COMPLEX SIMULINK MODELS
459

Table 4 Comparison between qualities of generated test suites.

Model Tool Coverage Size of test suite #Candidates Execution time (sec)

M1
Our tool

Best 198/200 5 9 29.9
Average 198/200 6.6 69.5 209.3
Worst 198/200 10 151 445.5

SLDV 144/213 7 - >600

M2
Our tool

Best 395/710 6 16 >600
Average 367.9/710 8.5 16 >600
Worst 335/710 11 16 >600

SLDV 232/549 8 - >600

(1) Description

We generated test suites for M1 and M2 in two ways, using
either our tool or SLDV. Then, we compared the coverages,
sizes of test suites (i.e., numbers of contributable test cases),
number of candidates (for our tool), and execution times.
The timeout was set to 600 seconds.

For our tool with the Monte-Carlo approach, we per-
formed 20 trials for each model. Increasing the number
of trials was effective when revealing the characteristics of
the target models, but had only a minor benefit to evalu-
ate the quality of a Monte-Carlo based tool. The simula-
tions in all trials were performed in accelerator mode with
the fast restart option. We used the following template set-
tings: for M1, we enabled the templates suggested by indus-
try engineers for both top-level inputs: Step for the int16-
typed input, and Constant, Linear and Sine for the other
double-typed input. The engineers also provided the ranges
of the parameter values. For M2, we enabled Step and
Linear templates for every top-level input. We used the
default ranges of the parameter values (i.e., those of the cor-
responding data types for the inputs).

In contrast, we only observed one SLDV trial for each
model due to its non-randomness.

(2) Results

Our results are summarized in Table 4. Our tool employs a
randomized method, so we list the best, average, and worst
values among the 20 trials. The execution times for our tool
include the time taken for the structure analysis. The differ-
ences between the total numbers of DC, CC, and MC/DC
objectives on M1 are due to the differences between the
MC/DC objective counting policies. Our tool (resp., SLDV)
count 1 (resp., 2) for each witness pair of MC/DC criterion.
Additionally, SLDV ignored the unsupported objectives on
M2, e.g., those related to blocks in the downstream of non-
linear arithmetic. This is clear because the total number of
objectives was less than double the number of relational op-
erator blocks and (multiport) switches.

The experimental results demonstrate that our tool can
achieve higher coverage than SLDV, with shorter execution
times, against practical implementation models. In the case
of the medium-sized model M1, the coverage achieved by
SLDV was only 70%, but all trials of our tool achieved prac-
tically full coverage (because 2 objectives are unsatisfiable)
with short execution times, thanks partly to suggestive tem-

Table 5 Comparison on performance on coverage measuring.

Model Tool Sim. mode Exec. time (sec)

M1
Our tool

Normal 1.8
Accelerator 2.9

Rapid 10.2
SLC Normal 50.6

M2
Our tool

Normal 54.6
Accelerator 38.5

Rapid 30.0
SLC Normal 258.4

plate settings from the engineers. Neither tools achieved full
coverage in the case of large model M2, but all trials of our
tool covered more objectives than SLDV even without sug-
gestive template settings.

6.2.2 Performance on Coverage Measurement

In the second experiment, we compared the performances
on coverage measurement of our tool to that of SLC.

(1) Description

For M1 and M2, we observed execution times of coverage
measurement of our tool and SLC under each available sim-
ulation mode. For each model, we used a test suite consist-
ing of 20 test cases generated by our tool.

We enable the fast restart option in the normal and ac-
celerator modes, so the execution times did not include the
recompilation for simulation. In the case of rapid mode, the
fast restart option must be disabled, and the recompilation
is unavoidable for each simulation. Hence, in this case, the
execution times included every recompilation time for sim-
ulation.

(2) Results

We assessed the execution times of coverage measurement
of our tool and SLC, and then calculated the average time
per test case. Note that the coverage measurement has no
randomness, and therefore, for each tool and each model,
the execution times for test cases were almost the same. Our
results are summarized in Table 5.

The experimental results confirm that our tool performs
better than SLC. Our tool evaluated the coverage about 5
times faster than SLC in each simulation mode. In particu-
lar, our tool ran more than 25 times faster than SLC in some
cases. In the case of M1, the faster simulation modes were
slower than the normal mode. We conjecture that the re-

460
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.2 FEBRUARY 2020

compilation and API communication overheads of the faster
simulation modes have a more significant effect when test-
ing smaller models. Actually, in our manual measurement,
most of execution times in the rapid mode were taken for
recompilation. Conversely, we conclude that using faster
simulation modes is very effectively when measuring test
coverage for large models.

7. Conclusions

In this paper, we proposed a scalable test suite generation
method, based on signal templates, for practical Simulink
models, and implemented it as a tool. The tool succeeded
in dealing with real implementation models used in indus-
try and generated a higher-coverage test suite than the first-
party toolbox SLDV. Moreover, the tool evaluates test cov-
erage much faster than the first-party toolbox SLC. This en-
ables it to generate and check more candidates per hour.
Thus, we can obtain effective test cases within a reasonable
length of time.

In the future, we will improve the sophistication of
the tool based on the results of trials in real development
teams. Furthermore, we will combine the current method
with light-weight formal analysis that can narrow the range
of values of template parameters. In contrast to using con-
servative approximations in purely formal approaches, we
may accept loose approximations for this light-weight anal-
ysis. It is enough useful to extract hopeful regions from
the search space. Heuristic techniques will improve the effi-
ciency of test suite generation.

References

[1] T. Tomita, D. Ishii, T. Murakami, S. Takeuchi, and T. Aoki,
“Template-based Monte-Carlo test generation for Simulink mod-
els,” Cyber Physical Systems. Design, Modeling, and Evaluation,
R. Chamberlain, W. Taha, and M. Törngren, eds., LNCS 11267,
pp.63–78, Springer International Publishing, 2019.

[2] T. Tomita, D. Ishii, T. Murakami, S. Takeuchi, and T. Aoki, “A scal-
able Monte-Carlo test-case generation tool for large and complex
Simulink models,” Proc. 11th Workshop on Modelling in Software
Engineering, MiSE’19, pp.39–46, IEEE Press, 2019.

[3] International Electrotechnical Commission, “IEC 61508 func-
tional safety of electrical/electronic/programmable electronic safety-
related systems.”

[4] International Organization for Standardization, “ISO 26262 road ve-
hicles – functional safety.”

[5] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller, “Incremental bounded model checking for embedded
software,” Formal Aspects of Computing, vol.29, no.5, pp.911–931,
Sept. 2017.

[6] S. Mohalik, A.A. Gadkari, A. Yeolekar, K. Shashidhar, and
S. Ramesh, “Automatic test case generation from Simulink/Stateflow
models using model checking,” Softw. Test. Verif. Reliab., vol.24,
no.2, pp.155–180, 2014.

[7] S. Sims and D.C. DuVarney, “Experience report: The Reactis val-
idation tool,” Proc. 12th ACM SIGPLAN International Conference
on Functional Programming, ICFP’07, pp.137–140, New York, NY,
USA, ACM, 2007.

[8] P. Peranandam, S. Raviram, M. Satpathy, A. Yeolekar, A. Gadkari,
and S. Ramesh, “An integrated test generation tool for enhanced cov-
erage of Simulink/Stateflow models,” Proc. Conference on Design,

Automation and Test in Europe, DATE’12, pp.308–311, San Jose,
CA, USA, EDA Consortium, 2012.

[9] S. Raviram, P. Peranandam, M. Satpathy, and S. Ramesh,
“SmartTestGen+: A test suite booster for enhanced structural cov-
erage,” Theoretical Aspects of Computing – ICTAC 2012, A. Roy-
choudhury and M. D’Souza, eds., pp.164–167, Berlin, Heidelberg,
Springer Berlin Heidelberg, 2012.

[10] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized di-
rected testing (REDIRECT) for Simulink/Stateflow models,” Proc.
8th ACM International Conference on Embedded Software, EM-
SOFT’08, pp.217–226, New York, NY, USA, ACM, 2008.

[11] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare,
P. Rümmer, and G. Weissenbacher, “Mutation-based test case gen-
eration for Simulink models,” Formal Methods for Components
and Objects, F.S. de Boer, M.M. Bonsangue, S. Hallerstede, and
M. Leuschel, eds., pp.208–227, Berlin, Heidelberg, Springer Berlin
Heidelberg, 2010.

[12] R. Matinnejad, S. Nejati, L.C. Briand, and T. Bruckmann, “Au-
tomated test suite generation for time-continuous Simulink mod-
els,” Proc. 38th International Conference on Software Engineering,
ICSE’16, pp.595–606, New York, NY, USA, ACM, 2016.

[13] R. Matinnejad, S. Nejati, L.C. Briand, and T. Bruckmann, “Sim-
CoTest: A test suite generation tool for Simulink/Stateflow con-
trollers,” Proc. 38th International Conference on Software Engineer-
ing Companion, ICSE’16, pp.585–588, New York, NY, USA, ACM,
2016.

Takashi Tomita received the B.S., M.S.,
and Ph.D. degrees in engineering from Tokyo
Institute of Technology in 2007, 2009, and 2013,
respectively. During 2013–2015, he was a re-
searcher in the institute. Since 2015, he has been
an assistant professor at Japan Advanced Insti-
tute of Science and Technology. He is engaged
in the researches on formal methods, quantita-
tive verification, probabilistic/statistical model
checking, specification verification, automated
program synthesis, and systems biology.

Daisuke Ishii received the B.Eng., M.Eng.,
and Ph.D. degrees in computer science from
Waseda University in 2001, 2003, and 2010,
respectively. He was a research fellow at IN-
RIA/LINA in France (2010–2011), a research
fellow of the JSPS at National Institute of Infor-
matics (2011–2013), and an assistant professor
at Tokyo Institute of Technology (2013–2015).
He is currently an associate professor at Uni-
versity of Fukui. His research interests include
interval analysis and formal methods for hybrid

systems.

http://dx.doi.org/10.1007/978-3-030-17910-6_5
http://dx.doi.org/10.1007/978-3-030-17910-6_5
http://dx.doi.org/10.1007/978-3-030-17910-6_5
http://dx.doi.org/10.1007/978-3-030-17910-6_5
http://dx.doi.org/10.1007/978-3-030-17910-6_5
http://dx.doi.org/10.1109/mise.2019.00014
http://dx.doi.org/10.1109/mise.2019.00014
http://dx.doi.org/10.1109/mise.2019.00014
http://dx.doi.org/10.1109/mise.2019.00014
http://dx.doi.org/10.1007/s00165-017-0419-1
http://dx.doi.org/10.1007/s00165-017-0419-1
http://dx.doi.org/10.1007/s00165-017-0419-1
http://dx.doi.org/10.1007/s00165-017-0419-1
http://dx.doi.org/10.1002/stvr.1489
http://dx.doi.org/10.1002/stvr.1489
http://dx.doi.org/10.1002/stvr.1489
http://dx.doi.org/10.1002/stvr.1489
http://dx.doi.org/10.1145/1291151.1291172
http://dx.doi.org/10.1145/1291151.1291172
http://dx.doi.org/10.1145/1291151.1291172
http://dx.doi.org/10.1145/1291151.1291172
http://dx.doi.org/10.1109/date.2012.6176485
http://dx.doi.org/10.1109/date.2012.6176485
http://dx.doi.org/10.1109/date.2012.6176485
http://dx.doi.org/10.1109/date.2012.6176485
http://dx.doi.org/10.1109/date.2012.6176485
http://dx.doi.org/10.1007/978-3-642-32943-2_13
http://dx.doi.org/10.1007/978-3-642-32943-2_13
http://dx.doi.org/10.1007/978-3-642-32943-2_13
http://dx.doi.org/10.1007/978-3-642-32943-2_13
http://dx.doi.org/10.1007/978-3-642-32943-2_13
http://dx.doi.org/10.1145/1450058.1450088
http://dx.doi.org/10.1145/1450058.1450088
http://dx.doi.org/10.1145/1450058.1450088
http://dx.doi.org/10.1145/1450058.1450088
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1007/978-3-642-17071-3_11
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
https://ieeexplore.ieee.org/document/7883346
https://ieeexplore.ieee.org/document/7883346
https://ieeexplore.ieee.org/document/7883346
https://ieeexplore.ieee.org/document/7883346
https://ieeexplore.ieee.org/document/7883346

TOMITA et al.: TEMPLATE-BASED MONTE-CARLO TEST-SUITE GENERATION FOR LARGE AND COMPLEX SIMULINK MODELS
461

Toru Murakami was a manager of En-
gineering Department, Cybernet Systems Cor-
poration (an agent company of MathWorks in
Japan), until 2011. Currently, He is a model-
based development expert in Technology De-
velopment Division, Gaio Technology Corpo-
ration. He is engaged as a chief consultant on
the model-based development in OEM/supplier
companies.

Shigeki Takeuchi was a system architect
and manager of in-vehicle infotainment system
with the model-based development in Sony Cor-
poration until 2013. Currently, He is a deputy
general manager in Technology Development
Division, Gaio Technology Corporation. He
has examined model-based systems engineering
that integrates the model-based design and the
model-based test for OEM/supplier companies.

Toshiaki Aoki is a professor in Division of
Transdisciplinary Sciences and School of Infor-
mation Science, JAIST. He received B.S. degree
from Science University of Tokyo (1994), M.S.
and Ph.D. from Japan Advanced Institute of Sci-
ence and Technology (1996, 1999). His research
interests include formal methods, formal verifi-
cation, theorem proving, model checking, auto-
motive systems and embedded systems.

