Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.
Hiromi ARAI
the RIKEN Center for Advanced Intelligence Project,JST PRESTO
Keita EMURA
the National Institute of Information and Communications Technology (NICT)
Takuya HAYASHI
the Digital Garage, Inc.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hiromi ARAI, Keita EMURA, Takuya HAYASHI, "Privacy-Preserving Data Analysis: Providing Traceability without Big Brother" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 1, pp. 2-19, January 2021, doi: 10.1587/transfun.2020CIP0001.
Abstract: Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020CIP0001/_p
Copy
@ARTICLE{e104-a_1_2,
author={Hiromi ARAI, Keita EMURA, Takuya HAYASHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Privacy-Preserving Data Analysis: Providing Traceability without Big Brother},
year={2021},
volume={E104-A},
number={1},
pages={2-19},
abstract={Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.},
keywords={},
doi={10.1587/transfun.2020CIP0001},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Privacy-Preserving Data Analysis: Providing Traceability without Big Brother
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2
EP - 19
AU - Hiromi ARAI
AU - Keita EMURA
AU - Takuya HAYASHI
PY - 2021
DO - 10.1587/transfun.2020CIP0001
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2021
AB - Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.
ER -