
162
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

PAPER Special Section on Cryptography and Information Security

To Get Lost is to Learn the Way: An Analysis of Multi-Step Social
Engineering Attacks on the Web∗

Takashi KOIDE†,††a), Nonmember, Daiki CHIBA†, Mitsuaki AKIYAMA†, Katsunari YOSHIOKA††,†††,
and Tsutomu MATSUMOTO††,†††, Members

SUMMARY Web-based social engineering (SE) attacks manipulate
users to perform specific actions, such as downloading malware and ex-
posing personal information. Aiming to effectively lure users, some SE
attacks, which we call multi-step SE attacks, constitute a sequence of web
pages starting from a landing page and require browser interactions at each
web page. Also, different browser interactions executed on a web page of-
ten branch to multiple sequences to redirect users to different SE attacks.
Although common systems analyze only landing pages or conduct browser
interactions limited to a specific attack, little effort has been made to follow
such sequences of web pages to collect multi-step SE attacks. We pro-
pose StraySheep, a system to automatically crawl a sequence of web pages
and detect diverse multi-step SE attacks. We evaluate the effectiveness of
StraySheep’s three modules (landing-page-collection, web-crawling, and
SE-detection) in terms of the rate of collected landing pages leading to SE
attacks, efficiency of web crawling to reach more SE attacks, and accuracy
in detecting the attacks. Our experimental results indicate that StraySheep
can lead to 20% more SE attacks than Alexa top sites and search results
of trend words, crawl five times more efficiently than a simple crawling
module, and detect SE attacks with 95.5% accuracy. We demonstrate that
StraySheep can collect various SE attacks, not limited to a specific attack.
We also clarify attackers’ techniques for tricking users and browser inter-
actions, redirecting users to attacks.
key words: social engineering attacks, browser automation, web crawler

1. Introduction

Attackers use social engineering (SE) techniques to lure
users into taking specific actions. Modern web-based at-
tacks leverage SE for malware infections [2], [3] and on-
line frauds [4]–[6], which are called web-based SE attacks
(or simply SE attacks). Attackers skillfully guide a user’s
browser interaction through attractive web content or warn-
ing messages to make users download malware or leak sen-
sitive information. For example, to download pirated games,
a user clicks a download button on an illegal downloading
web page. Then, a popup window with a virus-infection
alert is displayed. A user who believes the fake informa-
tion clicks a “confirm” button and downloads fake anti-virus

Manuscript received March 13, 2020.
Manuscript revised September 23, 2020.
†The authors are with NTT Secure Platform Laboratories, To-

kyo, 180-8585 Japan.
††The authors are with Graduate School of Environment and

Information Sciences, Yokohama National University, Yokohama-
shi, 240-8501 Japan.
†††The authors are with Institute of Advanced Sciences, Yoko-

hama National University, Yokohama-shi, 240-8501 Japan.
∗This paper is the extended version of the paper presented at

ASIA CCS ’20 [1].
a) E-mail: takashi.koide.fk@hco.ntt.co.jp

DOI: 10.1587/transfun.2020CIP0005

software [7].
Common systems to automatically collect SE attacks

involve accessing web pages collected from search en-
gines [5], [6], [8]. These systems use a web browser to crawl
web pages and identify a particular SE attack by extracting
features only from each web page. However, some types
of SE attacks constitute a sequence of web pages starting
from a landing page and require browser interaction (e.g.,
clicking an HTML element) at each web page to reach the
attacks, which we call multi-step SE attacks. This is be-
cause each web page gradually convinces a user by using
different psychological tactics [3]. Also, different browser
interactions executed on a web page often branch to mul-
tiple sequences, redirecting users to different SE attacks,
because there are multiple attack scenarios corresponding
to a user’s interests or psychological vulnerabilities. Al-
though current systems analyze only landing pages or con-
duct browser interactions limited to a specific attack, little
effort has been made to follow such sequences of web pages
to collect multi-step SE attacks.

We propose StraySheep, a system to automatically
crawl the sequence of web pages and detect diverse multi-
step SE attacks derived from a landing page. StraySheep
is based on two key ideas. The first idea is to simulate the
multi-step browsing behaviors of users, that is, intention-
ally follow the sequence of web pages by selecting possi-
ble elements that psychologically attract users to lead them
to SE attacks. StraySheep not only follows a single se-
quence of web pages but also crawls multiple sequences
derived from a landing page. The second idea is to ex-
tract features from reached web pages as well as an en-
tire sequence of web pages. Unlike previous approaches
that extract features from a single web page they have vis-
ited [5], [6] or identify malicious URL chains automati-
cally caused without user interactions (i.e., URL redirec-
tions) [9]–[11], StraySheep extracts features from the en-
tire sequence of web pages it has actively and recursively
followed. That is, StraySheep analyzes image and linguis-
tic characteristics of reached web pages, browser events
(e.g., displaying popup windows and alerts) that occurred
before reaching the web page, and browser interactions that
lead users to SE attacks. These features represent common
characteristics of all SE attacks, i.e., persuading and de-
ceiving users. Therefore, by combining these features to
classify sequences, StraySheep detects various multi-step
SE attacks more accurately. We implemented StraySheep

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
163

with three distinct modules (landing-page-collection, web-
crawling, and SE-detection) to automatically collect landing
pages, crawl the web pages branching from them, and detect
SE attacks using the results of web crawling, respectively.

To determine the effectiveness of StraySheep’s three
modules, we conducted three evaluations: the rate of col-
lected landing pages leading to SE attacks, the efficiency
of web crawling to reach more SE attacks, and accuracy
in detecting the attacks. The first evaluation demonstrated
that landing pages gathered by the landing-page-collection
module led to 20% more SE attacks than Alexa top sites and
search results of trend words. The second evaluation demon-
strated that the web-crawling module is five times more ef-
ficient at crawling than simple crawling modules. The third
evaluation revealed that the SE-detection module identified
SE attacks with 95.5% accuracy.

We analyzed collected multi-step SE attacks StraySheep
in detail. As a result of categorizing SE attacks, we found
that StraySheep reached a variety of SE attacks such as mal-
ware downloads, unwanted browser extension installs, sur-
vey scams, and technical support scams. We also found that
30% of SE attacks were reached from 25 different advertis-
ing providers.

The main contributions of this paper are as follows:

• We propose StraySheep, which detects multi-step SE
attacks by automatically and recursively crawling se-
quences of web pages branching from landing pages.
StraySheep can crawl and detect these attacks by sim-
ulating multi-step browsing behaviors of users and ex-
tracting features from an entire sequence of web pages.

• We evaluated StraySheep’s three modules. The
landing-page-collection module led to 20% more SE
attacks than Alexa top sites and search results of trend
words. The web-crawling module was five times more
efficient at crawling than a simple crawling module.
The SE-detection module identified SE attacks with
95.5% accuracy.

• We conducted a detailed analysis of multi-step SE
attacks collected using StraySheep. We found that
StraySheep collected various SE attacks, not limited
to a specific attack. We analyzed attackers’ techniques
of luring users and browser interactions leading users
to attacks.

2. Background

SE is used to manipulate people into performing a particular
action by exploiting their psychology and has been widely
used in various types of web-based attacks, such as mal-
ware downloads [3], [12], malicious browser extension in-
stalls [13]–[15], survey scams [6], and technical support
scams [4], [5]. Malware downloads and malicious browser
extension installs are achieved by masquerading as legiti-
mate software. Survey scams recruit users attracted by fake
survey rewards to trick them into providing sensitive infor-
mation and accessing web pages controlled by attackers.

Fig. 1 Sequence of web pages in multi-step SE attacks and phases in
each web page.

Technical support scams are carried out by persuading users
to make a call to a fake technical support desk and install
keystroke loggers, remote access tools, or malware.

Multi-step SE attacks use multiple web pages leverag-
ing different psychological tactics to effectively lure users to
the succeeding web page. Figure 1 shows a sequence of web
pages in multi-step SE attacks and three simplified phases
in each web page: user attraction, browser interaction, and
web navigation. Therefore, the three phases can be repeated
multiple times, starting from a landing page, which appears
in response to clicking on a search-engine result or social-
media link. Different user interactions on a single web page
also lead to different SE attacks.

2.1 User Attraction

The user-attraction phase attracts a user psychologically by
using the content of the web page to deceive and persuade
the user to induce browser interaction [3]. For example,
these web pages advertise free downloads of video games,
threaten users with fake virus warnings, and request bogus
software updates. The main purpose of this psychological
attraction is to make the user interact with an HTML ele-
ment (e.g., a and div) that navigates to malware downloads
or a web page controlled by an attacker. We call such HTML
elements lure elements. What is common with lure elements
is that they contain words or shapes indicating the behavior
or category of an element. A lure element is characterized
by its visual effects, such as easily understandable download
buttons containing “Click here to download” and movie play
buttons containing “WATCH NOW” or a triangle pointing
right. A lure element is also characterized by containing
words such as “download-btn” and “video-play-link”
in their text content and document object model (DOM) at-
tributes such as id, class, and alt. Multiple lure elements
may be arranged on a single web page. In this case, clicking
these lure elements results in different SE attacks.

2.2 Browser Interaction

Users who are acted upon by the previous user-attraction
phase are guided to interact with lure elements on the web
page. This browser-interaction phase is mainly an explicit
click on the lure element but also includes an unintended

164
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

click [8]. For example, unintended clicks include clicking
an overlay on the entire web page, context menu, and the
browser’s back button. These clicks are forcibly generated
by JavaScript to redirect a user to a new web page or show
a popup window against the user’s intention.

2.3 Web Navigation

In the web-navigation phase, browser events occur as a re-
sult of browser interaction. These browser events redirect to
another web page in the current window or a new window
(popup), display alert dialogs, and download files. Web-
page redirection occurs in an intermediate step of a multi-
step SE attack, guiding the user to the next web page. On
the next page, another user attraction, browser interaction,
and web navigation could occur again. The purpose of re-
peatedly making a user reach multiple web pages without
completing the attack on one web page is to gradually con-
vince the user and increase the success rate of the attack.
For example, to increase the attack-success rate of a user
who watches a movie on an illegal streaming site, attackers
display a popup that offers a dedicated video player with an
alert dialog such as “Please install HD Player to continue.”
instead of providing an automatic software download on the
first web page. Also, the multiple sequences of web pages in
a multi-step SE attack often branch from the landing or in-
termediate web pages because such web pages contain two
or more lure elements leading to different pages.

2.4 Problems on Collecting SE Attacks

There are three approaches to automatically collect SE at-
tacks: tracing web traffic, archiving with a crawler, and
crawling with a web browser. We give a brief introduction
of these approaches and their limitations then present the
requirements of collecting SE attacks.

The first approach is of reconstructing SE attacks
from web traffic obtained through passive network moni-
toring [3]. To take measures against SE attacks, revealing
a single SE attack reached from the landing page is use-
ful, but uncovering all attacks that branch from web pages
is more critical. However, this approach is used to observe
only a single sequence of web pages accessed by the user.
Also, it cannot be used to observe SE attacks starting from
arbitrary web pages. That is, it cannot be used to observe
attacks from which a user was not affected but another user
could be affected.

The second approach is to visit each web page us-
ing crawlers such as Heritrix [16] and GNU Wget. Such
crawlers extract links from a downloaded HTML source
code of a web page and crawl them recursively. This ap-
proach can solve the problem with the first approach, in
which it cannot collect SE attacks that the user did not
reach because it can input an arbitrary URL. However, these
crawlers can only execute simple content downloads and
static content parsing. SE attacks often use web content dy-
namically generated by JavaScript, which require user inter-

actions to navigate to the next pages; thus, these types of
crawlers cannot collect most SE attacks.

The third approach is of web-browser automation using
a tool such as Selenium [17]. Web-browser automation en-
ables us to simulate user interaction to all elements on each
web page. With this approach, we can solve the problems
with the second approach. If we apply the idea of following
all links with the second approach to web-browser automa-
tion, that is, clicking all elements on each web page, we can
ideally collect all multi-step SE attacks derived from a land-
ing page. However, recursively following all elements takes
a significant amount of time because the browser requires
time to run JavaScript and render web pages.

In summary, to efficiently observe multi-step SE at-
tacks in a short time, the number of elements to crawl must
be reduced by selecting possible lure elements from thou-
sands of HTML elements on each web page. To analyze
multi-step SE attacks in detail, it is also necessary to recur-
sively follow multiple sequences of web pages that lead to
SE attacks derived from a landing page rather than tracing
only a single sequence of web pages. Therefore, require-
ments for collecting and analyzing multi-step SE attacks are
crawling with the web-browser-automation approach, se-
lecting lure elements that will likely lead to SE attacks, and
recursively interacting with lure elements.

3. StraySheep

We propose a system called StraySheep that automati-
cally collects landing pages that lead to SE attacks, crawls
web pages, and detects multi-step SE attacks. StraySheep
consists of three modules: landing-page-collection, web-
crawling, and SE-detection. An overview of StraySheep is
shown in Fig. 2. The landing-page-collection module gath-
ers URLs of web pages leading to SE attacks by leveraging
search engines and social media. The web-crawling mod-
ule starts recursive web crawling from the URLs collected
by the landing-page-collection module, selects and clicks on
lure elements, and outputs a WebTree. A WebTree consists
of tree-like abstract data, including logs such as web nav-
igation, browser interaction, and snapshot (screenshot and
HTML source code) observed at each web page branching
from a landing page. The SE-detection module extracts fea-
tures from a WebTree and identifies the multi-step SE attack
using a classification model.

3.1 Landing-Page-Collection Module

The landing-page-collection module leverages search en-
gines and social media to find landing pages as input for
the web-crawling module. Many SE attacks use web pages
that have copyright infringement, such as illegal downloads
and free video streaming, to draw the attention of incau-
tious users [8], [18]. To induce a user to access such
web pages, attackers use search-engine-optimization tech-
niques [19]–[21] and post messages on social media, which
include links to the landing pages [22]–[24]. Examples of

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
165

Fig. 2 StraySheep overview.

such social-media postings are an instruction video for ille-
gally installing software and a message introducing a free
game download site. To collect such landing pages ef-
fectively, the landing-page-collection module uses a web-
search-based approach consisting of two steps: generating
search queries and searching and scraping.

3.1.1 Generating Search Queries

The landing-page-collection module generates search
queries to search the URLs of possible landing pages lead-
ing to SE attacks. To generate the search queries, we de-
sign the module so that it collects core keywords, which
stand for a title or name of paid content (e.g., “Godzilla” and
“Microsoft Office”) and concatenates them with predefined
qualifiers (e.g., “free download,” “crack,” and “stream on-
line”). To collect core keywords, the module automatically
scrapes popular electronic commerce (EC) sites and online
database sites by using predefined scraping logic in accor-
dance with each site and groups the core keywords by con-
tent category (e.g., video, software, and music). These core
keywords can regularly be updated by recollecting ranking
and new release information.

The aim of using qualifiers is (1) limiting the coverage
of search results including illegal downloads and streaming,
not legitimate sites, and (2) increasing the variation in search
results. We manually prepare qualifiers in advance using au-
tosuggest/related search functions on a search engine. When
a user queries a certain word in a search engine, these search
functions provide a list of corresponding keyword predic-
tions. We input some titles of paid content to the search
engine and collect qualifiers for each category because the
qualifiers we require vary depending on the core keyword’s
category. For example, qualifiers of video are “stream”,
“movie”, and “online”. For another example, qualifiers of
the software category are “download”, “crack”, and “key”.

3.1.2 Searching and Scraping

This module retrieves URLs from a search engine or social
media by using the generated search queries. It inputs them
into the search engine and search forms on social media to
widely collect corresponding URLs. Some social media do
not always provide comprehensive search results due to a
minimum required search function; thus, the module also

Fig. 3 Conceptual model of WebTree.

uses a search engine to collect social-media postings. Fi-
nally, it outputs the URLs collected from the search results
and links scraped from social media postings as input for the
web-crawling module.

3.2 Web-Crawling Module

The web-crawling module automates a web browser to
recursively crawl a URL collected by the landing-page-
collection module and outputs a WebTree as a crawling re-
sult. Figure 3 shows a conceptual model of a WebTree rep-
resenting sequences of web pages derived from the land-
ing page and visited by the web-clawing module. The
web-crawling module starts from the landing page, clicks
on multiple lure elements on the web pages, and recur-
sively follows multiple web pages derived from the land-
ing page. The depth indicates the recursion count of web
crawls. The depth increases when this module reaches a
web page that completes loading and is waiting for browser
interaction. This module uses Selenium and our original
browser extension to automatically control and monitor a
web browser. For the prototype of our system, we chose
Google Chrome as a browser, but Selenium can also con-
trol other web browsers; thus, the web-crawling module can
use different browsers. In the following section, we describe
two components of the web-crawling module: selecting and
operating.

3.2.1 Selecting Component

The selecting component collects a lure element that causes

166
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

web navigation leading to SE attacks by analyzing an
HTML source code and a screenshot of a web page. As
mentioned in Sect. 2.1, a word representing the category
or action of an element tends to be used for the lure el-
ement’s DOM attributes, text content, and the text drawn
inside the button graphic, for example, “download” in
“download-btn” of the class attribute and “click” in
“Click Now” of the text drawn inside a clickable button.
To select elements containing such keywords as lure ele-
ments, we design the selecting component so that it parses
an HTML source code and executes image processing of a
web page’s screenshot. The purpose of the selecting com-
ponent is not to accurately detect elements leading to SE at-
tacks but to select possible lure elements to reduce the num-
ber of elements with which to interact. By following only
selected elements, the web-crawling module can efficiently
reach diverse SE attacks. Note that there could be multi-
ple lure elements on the same web page; thus, this com-
ponent analyzes all elements on the web page. The reason
the selecting component also executes image processing is
to complement the acquisition of character strings drawn in
the button image (i.e., img element), which cannot be ac-
quired from the HTML source code. This component also
identifies lure elements by their shape such as the triangular
video play button.

We explain a statistical method of preparing keywords
for selecting lure elements. We compare elements that have
actually redirected users to SE attacks (lure elements) with
other elements that have not redirected users to any SE at-
tacks (non lure elements) and extract words specific to lure
elements. More specifically, we extract attribute, text con-
tent, and strings drawn on buttons from the collected ele-
ments and divide these words into two documents: a docu-
ment of lure elements and one of non lure elements. We then
calculate the term frequency-inverse document frequency
(tf-idf) of the two documents and manually choose words
that have high tf-idf values from the lure-element document.
The process of keyword selection is shown in Sect. 4.2.

In the analysis of HTML source codes, if an element
matches at least one of the following four rules, this compo-
nent determines it to be a lure element.

• One of the keywords is used in the element’s text con-
tent.

• A keyword is set in id, class, or alt DOM attributes.
• A keyword is used as the file name indicated by the

URL of the link (a element) or image (img element).
• An executable file (e.g., .exe or .dmg) or a compressed

file (e.g., .zip or .rar) is used as a link extension.

The purpose of the analysis of image processing is
to find rectangular buttons and video play buttons. This
component extracts character strings written in each ele-
ment from the screenshot and matches keywords used in
the HTML source code analysis. This component leverages
OpenCV to find rectangle contours representing the button
areas in the screenshot and identify the coordinates and size
of buttons. It also uses optical character recognition (OCR)

using Tesseract OCR [25] to extract character strings from
the rectangles the component found. This component exe-
cutes keyword matching with extracted character strings and
determines an element containing one of the keywords in
the area to be a lure element. To acquire video play buttons
as lure elements, the module also finds a triangle contour
pointing right. Finally, the component outputs multiple lure
elements that may lead to SE attacks from the web page.

3.2.2 Operating Component

The operating component executes browser interactions
(i.e., clicking on lure elements), monitors web navigation,
and constructs a WebTree. It simulates clicking on lure el-
ements with the CTRL key pressed to open the web page in
a new browser tab because the current page may be trans-
ferred to another web page by a simple clicking. As a result,
links or popup windows can be opened in new tabs with-
out changing the original tab. The operating module also
clicks a body element, body element with context click, and
the browser’s back button to simulate unintended clicks de-
scribed in Sect. 2.2. When the new tab is opened, the select-
ing component finds lure elements again, and the operating
component executes browser interactions with a depth-first
order, unless it reaches a predetermined maximum depth.
We explain the maximum depth we used in the following
experiment in Sect. 4.2.

The operating component also monitors web naviga-
tion. For monitoring JavaScript function calls, this com-
ponent hooks the existing JavaScript function to detect the
executed JavaScript function name and its argument. The
JavaScript functions to be monitored by this component
are alert(), window.open(), and the installation func-
tion of the browser extension (e.g., chrome.webstore.
install()). The function alert() is frequently used in
SE attacks that threaten a user by suddenly displaying dialog
with messages inducing user anxiety. The window.open()
function opens a new browser window and is used for popup
advertisements. This component also hooks the installa-
tion function of the browser extension and detects what
type of browser extension was installed from the argument.
This component also monitors URL redirection, which nav-
igates a user to another URL. URL redirection is divided
into client-side redirection and server-side redirection. A
web browser may conduct client-side redirection such as
JavaScript function location.href when this component
clicks the lure element. On the other hand, a web server
conducts server-side redirection to navigate to another web
page before loading a web page. This component monitors
the URLs the browser passed during server-side redirection
to identify the server that navigates users to SE attacks, such
as advertising providers.

The operating component conducts browser interac-
tions and monitors web navigation until it finishes clicking
on all selected lure elements. This component aggregates
information from sequences of web pages (i.e., screenshots,
the HTML source codes of web pages, browser interactions,

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
167

and web navigation) and finally outputs a WebTree as input
for the SE-detection module.

3.3 SE-Detection Module

The SE-detection module extracts features from a WebTree
output by the web-crawling module and identifies multi-step
SE attacks using a classification model. This module first
extracts sequences from the WebTree. A sequence is de-
fined as a series of rendered web pages from the landing
page (a root node) to the last pages (leaf nodes). Note that
the sequence does not represent a URL redirection chain (an
automatic process of forwarding a user to another URL mul-
tiple times) but a series of displayed web pages through user
interaction. This module then extracts features from each
sequence that reaches web pages of depth of two or more.
Unlike conventional methods that examine structural simi-
larity of URL redirection chains [9]–[11], this module ex-
tracts features specific to multi-step SE attacks from the en-
tire sequence: contents of web pages, browser interactions
that trigger page transitions, and web navigation. Finally,
it identifies whether the last page of each sequence is the
SE page using a classifier and outputs URLs of the detected
web pages. Ground truth data for identifying SE attacks is
explained in Sect. 4.3.

3.3.1 Feature Extraction

To classify web pages that trick users into interacting, it is
common to use information that can be acquired after visit-

ing the web page, such as image and HTML features [6], [8].
However, if a classifier uses such features, it cannot detect
an SE page similar to the legitimate page, such as a fake
software-update web page that closely resembles a legiti-
mate Flash update page or fake infection-alert page using
the logo of security vendors. Therefore, we designed feature
vectors using not only features extracted from a single web
page but also all features extracted from the entire sequence.
Specifically, it analyzes the last page of the sequence, page
before the last page (previous page), and the entire sequence,
as shown in Fig. 4. Table 1 shows features extracted from
each sequence and grouped into the three phases of SE at-
tacks: user attraction, browser interaction, and web naviga-
tion. To the best of our knowledge, StraySheep is the first
system that automatically collects these features from the
entire sequence by recursively crawling web pages from the
landing page. In terms of the user-attraction-based features,
StraySheep extracts appearance, meaning of a document,
and structure of HTML from the last and previous pages.

Fig. 4 Example of extracting features from a sequence.

Table 1 List of features SE-detection module uses.

Target Feature # of dimensions

User attraction Last page Image features (Bag-of-visual-words) 128
Last page Color histogram 30
Last page Linguistic features (Doc2Vec) 300
Last page HTML tag histogram 40
Last page Length of text field 1
Previous page Image features (Bag-of-visual-words) 128
Previous page Color histogram 30
Previous page Linguistic features (Doc2Vec) 300
Previous page HTML tag histogram 40
Previous page Length of text field 1

Browser interaction Sequence # body clicks 1
Sequence # body context clicks 1
Sequence # left clicks 1
Sequence # back button clicks 1
Sequence # <a>tags clicked 1
Sequence # <iframe>tags clicked 1
Previous page Coordinates (x,y) 2
Previous page Size (width, height) 2

Web navigation Sequence Depth 1
Sequence # alert dialogues 1
Sequence # popup windows 1
Sequence # server side redirections 1
Sequence # client side redirections 1
Last page File downloads 1
Last page Extension installs 1
Previous page File downloads 1
Previous page Extension installs 1

168
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

It then finds features based on browser interaction, such as
actions performed on the web pages and lure elements from
the previous page and entire sequence. The SE-detection
module also analyzes web navigation that occurred on the
last page, the previous page, and the entire sequence. We ex-
plain a feature extraction method for each SE-attack phase
below in detail.
User Attraction The appearance of a web page and the se-
mantic properties of text content include the intention of
the attacker to trick a user. The HTML document struc-
ture is also an important indicator for analyzing the simi-
larity of web pages using the same document template. The
SE-detection module extracts image and linguistic features
from the last and previous pages of the sequence. It also
calculates an HTML tag histogram, RGB color histogram,
and the length of the text field from both the last and pre-
vious pages. These features are useful for identifying web
pages that use the same page templates and images as other
malicious web pages. To extract image features, we use
AKAZE [26], which is a bag-of-visual words algorithm that
detects local image features. The SE-detection module ex-
tracts 128-dimensional image features from the screenshots
of the last and previous pages using a trained model we pre-
viously constructed. We use Doc2Vec [27] as a document-
modelling algorithm to extract linguistic features. The pur-
pose of this is to capture attackers’ intentions, such as de-
ceiving or threatening users, based on linguistic character-
istics. The module extracts the 300-dimensional features
from the text content of the last and previous pages by using
a doc2vec model trained beforehand. The text content of a
web-page document is extracted by cleaning out HTML tags
from an HTML source code. The SE-detection module also
calculates a histogram of the RGB (red, green, and blue) val-
ues of the screenshot with ten bins for each color and a his-
togram of HTML tags of the text content. This module uses
up to 40 HTML tags (e.g., a div, and img) frequently ap-
pearing on the web pages we collected in advance. It counts
the number of characters in the text content.
Browser Interaction The SE-detection module analyzes
lure elements and actions that caused SE attacks. Browser
interaction is an important indicator that characterizes multi-
step SE attacks because the destination web pages change
depending on the types of actions taken by users and clicked
elements. To extract features from browser interactions, we
design this module so that it counts the number of left clicks
and unintended clicks (body clicks, body-context clicks, and
back-button clicks) the web-crawling module performed in
the sequence. This module also counts the types of clicked
lure elements (a and iframe) in the sequence and deter-
mines the size (x,y) and coordinates (width, height) of lure
elements on the previous page.
Web Navigation The SE-detection module analyzes
browser events that occurred as a result of browser inter-
action. File downloads and extension install indicate events
that are directly related to SE attacks such as malware down-
loads and unwanted extension installs. Since SE attacks
are often delivered via advertising providers, redirection has

characteristics unique to SE attacks. The method of naviga-
tion (e.g., redirection and popup window) is important for
analyzing SE attacks. This module determines whether file
downloads and extension installs occurred on the last and
previous pages. It counts the times popup windows were
displayed and the number of URLs observed during server-
side and client-side redirection. It also checks the number
of displayed alert dialogues and the length of the sequence,
i.e., crawling depth.

3.3.2 Classifier

We combine the features extracted from sequences to create
features vectors and construct a binary classifier to identify
SE web pages. We use Random Forest as a learning algo-
rithm because we can measure the importance of each fea-
ture that contributes to the classification. Evaluation results
compared with other algorithms are given in Sect. 4.5.

4. Evaluation

We evaluated the three modules of StraySheep (landing-
page-collection, web-crawling, and SE-detection). We first
evaluated the qualitative advantage of StraySheep by com-
paring it with previous systems for collecting SE attacks.
We then evaluated the effectiveness of the landing-page-
collection module by comparing its two collection methods
(search engine and social media) to three baseline URL-
collection methods in terms of the number of landing pages
leading to SE attacks and total visited malicious pages and
domain names. Also, we conducted a crawling experiment
to determine the efficiency of the web-crawling module by
comparing its crawling method with two baseline crawling
methods in terms of the number of malicious domain names
reached per unit of time. Finally, we confirmed the effec-
tiveness of the SE-detection module in terms of detection
accuracy.

4.1 Qualitative Evaluation

We qualitatively compared StraySheep with the previous
systems to collect SE attacks from five perspectives. Table 2
summarizes the results.
Collecting method. The previous systems [2], [3] for
passively observing HTTP traffic to analyze SE attacks,
can only collect attacks triggered by users’ real download
events. On the other hand, actively crawling arbitrary web
pages with StraySheep enables us to proactively detect SE
attacks before many users reach the web pages.
Interacting with elements. To observe multi-step SE at-
tacks, we need to interact with HTML elements and recur-
sively follow page transitions. Surveylance [6] is a system
to detect survey gateways, which are landing pages display-
ing survey requests, and interact with their survey content
and survey publisher sites. A system proposed by Rafique
et al. [8] detects free live streaming (FLIS) pages and in-
teracts with overlay video ads on them. While these sys-

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
169

Table 2 Comparison between proposed and previous systems.

StraySheep Surveylance [6] Rafique et al. [8] ROBOVIC [4] Srinivasan et al. [5] TrueClick [18] WebWitness [2], [3]

Collecting method Active Active Active Active Active Active Passive

Interacting with HTML elements G# (survey filling) G# (overlay video ad) # # # #
Following multiple lure elements
on web page # # # # # #

Features (image) # # #
Features (HTML) # # # #
Features (linguistic) G# (heuristic) # #
Features (sequence) # # G# (heuristic) # # G# (network level)

Source of landing-page collection Search engine, social media Search engine Search engine Parked domain, URL shortener Search engine File sharing site Depending on users

Type of SE attacks to collect All multi-step SE attacks Survey scams FLIS aggregator pages Tech support scams Tech support scams Trick banners SE downloads

 : Fully Covered, G#: Partially Covered, #: Not Covered

tems focus on survey scams or FLIS services, StraySheep
can collect various SE attacks and observe different types of
survey scams originating from web pages deeper than the
landing pages (see Sect. 5.1).
Extracting features. As stated in Sect. 3.3, StraySheep ex-
tracts features such as images, HTML structures, and lin-
guistic context from reached web pages and analyzes se-
quences to accurately detect multi-step SE attacks. As
shown in Table 2, none of the previous systems use all the
features used in StraySheep.
Source of landing-page collection. StraySheep collects
landing pages from two common platforms: search engines
and social media. StraySheep is the only system that uses
both platforms.
Type of SE attacks to collect. While the previous systems
are limited to detecting a specific attack, StraySheep col-
lects various multi-step SE attacks by following lure ele-
ments on each web page.

In summary, StraySheep is the first system to collect
multi-step SE attacks not limited to specific attacks by re-
cursively following multiple lure elements on web pages.
StraySheep also detects multi-step SE attacks by extracting
various types of features from reached web pages and se-
quences.

4.2 Experimental Setup

We implemented StraySheep for Google Chrome 69 with
Ubuntu 16.04. It simultaneously ran up to 32 instances on a
virtual machine assigned with Intel Xeon 32 logical proces-
sors and 256-GB RAM. For the browser setting, a user agent
was set as Google Chrome of Windows 7, and browser cook-
ies were reset for every landing-page access. Our crawl-
ing experiment spanned from November to December 2018,
and StraySheep used a single IP address. We need to set
a timeout for performance evaluation because the two base-
line web-crawling modules mentioned in Sect. 4.4 require
an enormous amount of time (a few weeks at most) to com-
plete web crawling. About 90% of web crawling conducted
with StraySheep finished within an hour in our preliminary
experiment (similar results are shown in Fig. 5); therefore,
we set the timeout to one hour. To find the best maximum
depth for collecting the most malicious domain names when
we used the timeout, we changed the depth from two to
six. The number of malicious domain names monotonically

increased up to depth four and decreased as the depth in-
creased. Therefore, we set the maximum depth to four in
the following experiments.

To determine keywords for selecting lure elements,
we followed the statistical method described in Sect. 3.2.1.
First, we manually browsed landing pages (e.g., game
download, movie streaming, and torrent sites) and clicked
on various HTML elements. We also browsed intermediate
pages navigated from them, such as fake virus alerts, file
downloading, and advertising pages served by URL short-
eners. We then gathered 1,447 lure elements from 978 web
pages, which we confirmed finally led to SE attacks. To
determine if the reached web pages contained SE attacks,
we used URL/domain blacklists (Google Safe Browsing,
Symantec DeepSight [28], and hpHosts [29]) to match vis-
ited web pages and checked the MD5 hash values of the
downloaded binaries with VirusTotal. We defined an SE
page, which matched the blacklist whose label was associ-
ated with SE attacks (e.g., phishing, tech support scam, and
survey scam) or started downloading malware or potentially
unwanted programs (PUPs) [30], [31]. We used the same
method of checking SE pages in the following experiments.
We randomly selected 5,000 non-lure elements that did not
redirect to any SE pages from the landing and intermediate
pages. We created lure and non-lure elements’ documents
containing words extracted from attributes and text content
to calculate tf-idf. Finally, we chose 31 keywords specific
to the lure elements by excluding proper nouns (e.g., game
and movie titles) and words with zero tf-idf values.

4.3 Effectiveness of URL Collection

To show the effectiveness of StraySheep’s landing-page-
collection module, we validated landing pages collected by
this module; thus, we used the web-crawling module to re-
cursively crawl the landing pages and identified whether vis-
ited web pages caused SE attacks. We compared the number
of collected landing pages that led to SE attacks across the
five methods, i.e., the landing-page-collection module’s two
methods (search engine and social media) and three baseline
methods (Alexa top sites, trend words, and core keywords).
We collected 5k landing pages for each method.
Search Engine (StraySheep’s Method) This method col-
lected a total of 3k core keywords from EC/database sites,
such as amazon.com, steampowered.com, billboard.com,

170
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

Table 3 Results of web crawling starting from landing page collected with each method.

Search Engine (StraySheep) Social Media (StraySheep) Alexa Top Sites (Baseline) Trend Words (Baseline) Core Keywords (Baseline)

of landing pages 5,000 5,000 5,000 5,000 5,000
of landing pages lead to SE attacks 1,060 (21.2%) 808 (16.2%) 33 (0.7%) 65 (1.3%) 46 (0.9%)

of unique visited URLs 50,587 25,722 27,818 16,240 30,133
of unique URLs of visited SE pages 4,716 (9.3%) 1,633 (6.3%) 80 (0.3%) 105 (0.6%) 628 (2.1%)

of unique visited domains 4,984 3,619 8,046 3,537 4,507
of unique domains of visited SE pages 446 (8.9%) 151 (4.2%) 42 (0.5%) 27 (0.6%) 95 (2.1%)

of unique downloaded Malware samples 160 186 50 3 41

and imdb.com, which we chose from Alexa top 500 sites.
These core keywords were divided into five categories: soft-
ware (game and applications), video (movie, animation, and
TV series), music, eBook, and comic. We can increase
the variety of landing pages by collecting different types
of core keywords, which are often used in illegal sites to
lure users. This method generated 90k search queries by
concatenating the core keywords with an average of 30 pre-
defined qualifiers for each category. When we search for
only core keywords, many legitimate sites, such as official
sites of movies or games, are included in the search results.
However, we can collect more landings pages leading to SE
attacks, including illegal sites, by adding qualifiers to core
keywords. It searched the queries using Microsoft Bing Web
Search API [32] (Bing API) and collected about 1M unique
URLs. In that web search, it gathered URLs from up to 30
search results for each search query. Note that the search
queries containing the same core keywords with different
qualifiers sometimes returned duplicate search results, and
some search queries returned less than 30 search results. Fi-
nally, we randomly sampled 5k URLs from the collected 1M
URLs to crawl for the crawling experiment.
Social Media (StraySheep’s Method) This method also
searched seven social-media platforms (Facebook, Twitter,
Youtube, Dailymotion, Vimeo, Flickr, and GoogleMap) us-
ing the same search queries as the above search-engine ex-
periment. Attackers post fake messages on social media
such as free downloads of games and streaming of movies
to lure users into accessing their links. By collecting such
social media posts, we can also gather landing pages that do
not appear in search engine results. This method extracted
links from posting messages (from Facebook, Twitter, and
Flickr), descriptions of uploaded video (from Youtube, Dai-
lymotion, and Vimeo), and descriptions of GoogleMap’s My
Maps. It used search forms on Youtube, Dailymotion, and
Facebook because they have flexible search mechanisms and
searched Bing API for the other social-media platforms to
gather up to 30 social media postings for each search query.
It searched for 10k search queries (sampled from 90k search
queries) for each social-media platform and found a total of
130k unique social-media postings. These search queries
often returned less than 30 search queries. This method then
gathered 45k unique links by scraping these 130k social-
media postings. Some social-media postings did not include
any links or included multiple links. Finally, we randomly
sampled 5k URLs from the 45k links for the crawling ex-
periment.

Alexa Top Sites (Baseline Method) We gathered the top 5k
domain names from Alexa top sites and converted them to
5k URLs by adding “http://” to the domain names.
Trend Words (Baseline Method) We searched the top 1k
trend words collected from Google Trends using Bing API
and randomly selected 5k URLs from the 30k search results
(retrieved 30 results per query).
Core Keywords (Baseline Method) We simply searched
the same set of 3k core keywords we used for the above
Search Engine method and randomly sampled 5k URLs
from the 90k search results (retrieved 30 results per query).

Table 3 lists the results of web crawling for each
method. The landing pages that led to SE attacks and col-
lected with the search-engine and social-media methods ac-
counted for 21.2 and 16.2% for each 5k landing pages.
While, those of the three baseline methods (Alexa top sites,
trend words, and core keywords) were much smaller, 0.7,
1.3, and 0.9%, respectively. From the results of the search-
engine and social-media methods, the numbers of unique
visited URLs and domain names were larger than those of
the three baseline methods. Since StraySheep’s methods,
which use qualifiers, collected about 20 times as many land-
ing pages lead to SE attacks as the baseline method (Core
Keywords) when using the same set of core keywords, qual-
ifiers are effective in collecting landing pages. The number
of malware samples reached from the URLs collected with
the search-engine and social-media methods was also larger
than that of the other three methods.

4.4 Efficiency of Web Crawling

To evaluate the efficiency of StraySheep’s web-crawling
module, especially the function to follow lure elements se-
lected by the selecting component, we compared the ratio
of SE pages in visited web pages and the time to reach
SE attacks among three web-crawling modules: that of
StraySheep’s web-crawling module and two baseline web-
crawling modules. Then, we compared the crawling perfor-
mance of StraySheep with that of TrueClick [18].
Comparison of crawling performance with baseline web-
crawling modules and StraySheep We implemented the
two baseline modules: ElementCrawler, which extracts all
visible elements on the web pages and simply clicks them,
and LinkCrawler, which purely selects all the link ele-
ments (HTML a tag with href attribute) and clicks them.
Note that elements selected by ElementCrawler contain
all those selected by LinkCrawler or StraySheep’s web-

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
171

Table 4 Results for each web-crawling module.

StraySheep ElementCrawler LinkCrawler
SE pages Total SE pages Total SE pages Total

of Total pages 9,374 (5.4%) 173,060 13,559 (2.4%) 562,708 19,241 (3.6%) 540,822
of Unique visited pages 6,283 (8.5%) 73,906 5,998 (3.1%) 191,901 5,445 (3.0%) 180,920
of Unique visited domains 513 (6.7%) 7,660 437 (3.2%) 13,545 335 (3.4%) 9,734

crawling module. ElementCrawler and LinkCrawler are
alternative implementations of StraySheep’s web-crawling
module, which are implemented by replacing the selecting
component (see Sect. 3.2.1) with the function of selecting
all elements or all links from an HTML source code. The
landing pages we input to the three modules were the same
10k URLs as those collected by the landing-page-collection
module, as mentioned in Sect. 4.3, which are the 5k URLs
collected from a search engine and another 5k URLs col-
lected from social media. We newly crawled the 10k land-
ing pages using ElementCrawler and LinkCrawler under the
same condition mentioned in Sect. 4.3. We compared these
crawling results with those of the above experiment in which
StraySheep’s web-crawling module crawled the 10k land-
ing pages. In the same manner as the above experiment, we
identified SE pages using blacklists and VirusTotal.

Table 4 shows the number of total pages, unique vis-
ited pages, and domain names for each web-crawling mod-
ule. The numbers of unique visited pages and domain names
of SE pages visited with StraySheep’s web-crawling mod-
ule were 6,283 pages and 513 domain names, which were
larger than those of the baseline modules, and the percent-
ages of pages and domain names of SE pages were also
larger than those of the baseline modules (8.5 and 6.7%,
respectively). Although the numbers of total pages of Ele-
mentCrawler and LinkCrawler were three times larger than
that with StraySheep’s web-crawling module, StraySheep’s
web-crawling module had the best percentage (5.4%) for
all SE pages. This is because StraySheep’s web-crawling
module selected lure elements from thousands of elements
to crawl web pages likely to cause SE attacks, while El-
ementCrawler and LinkCrawler simply took turns to click
elements and reached many benign web pages. In short,
ElementCrawler may crawl all potential SE attacks by tak-
ing an enormous amount of time; however, StraySheep can
reach SE attacks in a shorter time by selecting lure elements.

Next, we analyzed the efficiency of each web-crawling
module by comparing the time taken to complete visit-
ing web pages branching from the landing page. Figure 5
is a cumulative distribution function (CDF) of the time
for each web-crawling module, which shows the percent-
age of web crawling finished at a certain time out of all
web crawling starting from 10k landing pages. We found
that 88.5% of StraySheep’s web crawling module finished
within one-hour timeout. In contrast, ElementCrawler fin-
ished only 22.8% of web crawling within the timeout, and
LinkCrawler finished 29.9%. The average time to complete
the web crawling for each landing page was 14 minutes
for StraySheep’s web-crawling module, 49 minutes for El-

Fig. 5 CDF of time taken to complete web crawling for each landing
page within a 1-hour timeout. Horizontal lines mean the percentage of web
crawling completed before timeout.

ementCrawler, and 47 minutes for LinkCrawler.
To measure the web-crawling modules’ ability to reach

SE attacks per total crawling time, we calculated crawling
efficiency.

Crawling Efficiency [/sec] =
Unique domains of visited SE pages

Total crawling time [sec]
.

Crawling efficiency indicates the ability to reach the
unique domain names of SE pages per unit of time. Higher
crawling efficiency implies that the module can efficiently
reach new SE pages.

We show the crawling efficiency for each web-crawling
module in Table 5. Total crawling time in Table 5 repre-
sents the sum of the times to complete crawling 10k land-
ing pages. The crawling efficiency of StraySheep’s web-
crawling module was 4.1 times higher than that of Ele-
mentCrawler and 5.1 times higher than that of LinkCrawler,
making it the most efficient module to reach SE attacks. As
described in Sect. 3.2.1, since StraySheep’s web-crawling
module detected lure elements that led to SE pages by using
the selecting component, it visited more SE pages in less
time than the two baseline modules.

We also examined the ability to visit SE attacks that
can be reached via multiple web pages. Table 6 shows the
number of unique domain names observed at each depth.
Note that each depth may have duplicate domains because
the web-crawling modules visited the same domains at dif-
ferent depths. Also, the number of domain names observed
at a depth of 1 was the same because each module visited the
same landing pages. The number of domains of SE pages
show that StraySheep’s web-crawling module efficiently

172
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

Table 5 Crawling efficiency of each web-crawling module.

StraySheep ElementCrawler LinkCrawler

of unique domains of visited SE pages 513 437 335
Total crawling time [sec] 8,429,288 29,698,118 28,421,460
Crawling efficiency [/sec] 6.1 · 10−5 1.5 · 10−5 1.2 · 10−5

Table 6 Unique domain names observed at each depth.

Depth StraySheep ElementCrawler LinkCrawler
SE Total SE Total SE Total

1 91 (2.2%) 4,187 91(2.2%) 4,187 91(2.2%) 4,187
2 223 (5.5%) 4,043 159 (4.1%) 3,882 126 (4.6%) 2,726
3 231 (6.3%) 3,692 171 (3.5%) 4,895 148 (3.9%) 3,844
4 348 (9.4%) 3,685 299 (2.8%) 10,694 303 (3.4%) 8,939

visited more domains of SE attacks at every depth than the
baseline modules. As the depth became deeper, the per-
centages of an SE page’s domains that ElementCrawler and
LinkCrawler detected decreased. On the contrary, the per-
centages of an SE page’s domains that StraySheep’s web-
crawling module visited were 5.5% at a depth of 2, 6.3% at
a depth of 3, and 9.4% at a depth of 4; thus, the deeper
StraySheep’s web-crawling module crawled, the more it
efficiently visited SE pages. As described in Sect. 3.2.1,
StraySheep selects lure elements that lead to SE attacks
so that the web-crawling module can reach more of an SE
page’s domains even though it crawls deeper.
Comparison of crawling performance with TrueClick
and StraySheep We also conducted an additional experi-
ment comparing the crawling performance of StraySheep
with that of TrueClick in terms of the ability to reach SE
pages and collect malware executables. TrueClick is a tool
that distinguishes fake advertisement banners (trick ban-
ners) from genuine download links. TrueClick has the sim-
ilar purpose as StraySheep for finding HTML elements that
are made to deceive users and direct to a malicious site or
malware executable, but it only finds elements displayed by
advertising providers regardless of the web site owner’s in-
tention.

Since the source code of TrueClick has not been pub-
lished, we re-implemented TrueClick based on the imple-
mentation details of the paper [18] using a manually col-
lected dataset containing 87 trick banners and 51 genuine
banners, which is almost equivalent to the amount of the
original dataset (165 trick banners and 94 genuine download
links), to train a machine learning model. The trained model
identifies trick banners with 98.6% accuracy. We then cre-
ated a baseline crawling module by replacing StraySheep’s
selecting component (Sect. 3.2.1) with TrueClick imple-
mentation.

To equivalently compare the crawling results under
the same experimental condition in terms of the period of
landing-page collection and web crawling, we have col-
lected 5k URLs in the same manner as that mentioned in
Sect. 4.4 and crawled them using both StraySheep’s web-
crawling module and the baseline module as of November
2019. Since this experiment was conducted at a differ-

Fig. 6 Overlap of SE pages’ domain names observed using StraySheep
and TrueClick.

ent period than the one explained above, we newly col-
lected 2.5k landing pages each from a search engine and
social media as input URLs. Table 7 summarizes the re-
sults. StraySheep visited more SE pages than TrueClick
because it follows not only trick banners but also buttons
and links intentionally placed by web site owners to lead to
SE attacks. While StraySheep successfully downloaded 266
malware samples, TrueClick downloaded only 1 malware
sample. This is because, in most cases, genuine download
links distribute malware samples instead of trick banners on
web pages redirected from the first trick banners on land-
ing pages. Table 8 shows the number of unique SE pages
observed at each depth. Similar to the results in Table 6,
Straysheep reached more SE attacks as it crawled deeper.
Conversely, the number of SE pages that TrueClick reached
considerably decreased deeper than depth three. The reason
for this is that as we crawl deeper from the landing page, the
number of trick banners decreases. Additionally, intention-
ally placed lure elements including genuine download links
mainly lead to SE attacks at deeper depths. Figure 6 shows
the overlap of SE pages’ domain names observed using each
crawler. Although StraySheep did not visit a small number
of SE pages dynamically served by ads, it covered most of
the SE pages observed by TrueClick. In summary, to collect
more multi-step SE attacks, we need not only to detect trick
banners but also follow lure elements.

4.5 Evaluating the SE Detection Module

We evaluated the effectiveness of StraySheep’s SE-
detection module using WebTrees, which are the outputs
of StraySheep’s web-crawling module. We used 30k Web-
Trees constructed from the results of web crawling starting
from 30k landing pages. These WebTrees consisted of the
10k landing pages crawled by StraySheep’s web-crawling
module (Sect. 4.4) and additional 20k landing pages. The

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
173

Table 7 Results of web crawling using StraySheep and TrueClick.

Unique visited pages (domain names) Unique visited SE pages (domain names) Unique malware samples

StraySheep 48,524 (5,809) 3,897 (219) 266
TrueClick 7,917 (2,978) 523 (78) 1

Table 8 Unique SE pages observed at each depth by using StraySheep and TrueClick.

depth
SE pages crawled using StraySheep
(domain names)

SE pages crawled by TrueClick
(domain names)

1 97 (44) 97 (44)
2 845 (86) 356 (35)
3 1068 (104) 48 (12)
4 2302 (106) 25 (12)

Unique SE pages 3,897 (219) 523 (78)

20k landing pages were collected and randomly sampled in
the same manner as for the 10k landing pages mentioned in
Sect. 4.3. We carried out the web crawling in the same en-
vironment in the same period to output additional 20k Web-
Trees.

To create datasets for evaluation, we extracted mali-
cious and benign sequences from the 30k WebTrees. The
30k WebTrees contained a total of 243,914 unique web
pages (13,415 unique domains) of visited web pages. To
label these web pages as SE pages, we used blacklists (same
as in Sects. 4.3 and 4.4) and VirusTotal. We labeled 51,501
unique web pages (unique 1,066 domains) as SE pages and
extracted 1,066 sequences, which reached 1,066 different
domain names from distinct landing pages. We excluded
unreachable or parking domain pages and created 1,045 se-
quences as the malicious dataset. To create a benign dataset,
we randomly sampled 1,045 sequences that did not visit SE
pages.

To evaluate the detection accuracy of the SE-detection
module, we conducted a 10-fold cross-validation (CV) on
the labeled dataset. The SE-detection module classified our
dataset with a precision of 97.4%, recall of 93.5%, and ac-
curacy of 95.5%. When we changed the learning algorithm
from random forest to support vector machine, logistic re-
gression, and decision tree, their accuracies were 93.6%,
90.8%, and 90.7%, respectively. The percentage of fea-
ture importance accounted for 65.2% of features extracted
from the last page (last page features), 28.2% of features
extracted from the previous page (previous page features),
and 6.6% of features extracted from the entire sequence (se-
quence features), as shown in Table 1.

Although the SE-detection module can accurately iden-
tify multi-step SE attacks, the evaluation result contained
some false positives and false negatives. We discuss ideas
for reducing these false positives and false negatives. The
false positives included popular shopping and casino sites
that were redirected from pop-up ads triggered by unin-
tended click. We can reduce these false positives by ex-
tracting long-term stable and popular domain names from
domain lists such as Alexa to create a white list. We also
found false negatives that were listed on blacklists but not

Fig. 7 ROC curves of SE detection results for each feature set.

detected by the SE-detection module. Since we only trained
web pages written in English in this experiment, Some web
pages written in non-English languages were included in
false negatives. Ad providers may change web pages to
serve depending on the region of a source IP address. There-
fore, we can accurately detect multi-step SE attacks by au-
tomatically translating web pages to English or by training
web pages written in a specific language corresponding to
the region of the source IP address.

To show the relationship between detection accuracy
and features, we divided the features into four feature sets:
last page, previous page, sequence, and the combination of
last and previous page (feature sets without our proposed se-
quence features). We conducted 10-fold CVs using all fea-
ture sets and four divided feature sets with the same dataset
discussed in Sect. 4.5. Figure 7 shows the receiver operat-
ing characteristic (ROC) curves for the classification results.
The most accurate result was the CV using all features in or-
der of the combination of last and previous page, last page,
sequence, and previous page feature sets. The area under
the curve (AUC) for each result was 0.965, 0.955, 0.948,
0.923, and 0.829. This experiment revealed that our origi-
nal page-level features that analyzed linguistic, image, and
HTML characteristics were useful in detecting various types

174
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

of SE attacks, i.e., not limited to a specific SE attack. How-
ever, we can classify more accurately by using the features
of a previous page and sequence together that StraySheep
automatically collects.

Some web pages had similar appearances to known
SE pages but were not blacklisted. To find such poten-
tially unknown SE pages, we leveraged the SE-detection
module to classify the remaining 192,620 sequences of the
11,304 domain names not used in the evaluation. As a re-
sult of manually excluding false positives (27 domains) from
the classification results, we found 359 unknown domain
names associated with SE attacks. We not only detected
web pages where page contents were shared across multiple
domain names to expand attack campaigns (e.g., Fig. 8 and
Fig. 9), but also discovered unreported domain names asso-
ciated with technical support scams and survey scams. This
process was conducted by analyzing screenshots to check
whether suggested software and extensions or login pages
are associated with legitimate services. One example of
the false positives was a Facebook login page opened by
a popup that redirected from an illegal software-download
blog by clicking a share button. Another example was a
download page of legitimate anti-virus products that trans-
ferred by clicking advertising in an iframe. We finally found
a total of 1,404 unique domain names (the 1,045 blacklisted
domain names and newly detected 359 domain names), and
56,922 sequences reached the 1,404 domain names. The
number of sequences’ steps (i.e., the number of page transi-
tions) from one to three is 11,855 (20.8%), 13,813 (24.3%),
and 31,254 (54.9%), respectively.

5. Detailed Analysis of Detected Multi-Step SE Attacks

We conducted a detailed analysis of the collected multi-step
SE attacks mentioned in Sect. 4.5 (1,404 domain names and
56,992 sequences). To show that StraySheep found a wide
variety of SE attacks, we categorized the observed SE page’s
domain names and investigated the attacker techniques to
deceive and persuade users for each SE attack category.
We then analyzed the browser interactions and advertising
providers that led to SE pages to clarify the cause of SE at-
tacks. Finally, we investigated network infrastructures host-
ing SE attacks.

5.1 SE Attack Categories

To clarify the types of multi-step SE attacks detected by
StraySheep, we categorized the 1,404 domain names into 11
categories, as shown in Table 9. We used labels of blacklists
(Google Safe Browsing, Symantec DeepSight, hpHosts) and
virus scan results of VirusTotal to categorize the attacks.
We leveraged AVClass [33] to classify detected binaries as
PUPs or malware. We also checked the appearance of these
domain names’ web pages to complement categorization.
PUP and Malware The most common categories we iden-
tified were PUP (566 domain names) and malware (310
domain names). These categories are SE attacks where

Table 9 SE attack categories.

Category SE domain names

PUP 566 (40.2%)
Malware 310 (22.1%)
Unwanted browser extension 181 (12.9%)
Multimedia scam 94 (6.7%)
Phishing 70 (5.0%)
Survey scam 25 (1.8%)
Tech support scam 20 (1.4%)
Fake browser history injection 16 (1.1%)
Malvertisement redirection 13 (0.9%)
Cryptojacking 3 (0.2%)
Other SE attacks 109 (7.8%)

Total 1,404 (100%)

PUPs and malware were downloaded due to browser inter-
actions. StraySheep downloaded 6,924 unique binary exe-
cutable files (e.g., .exe or .dmg). For example, we found
that these binaries were disguised as fake game installers,
fake anti-virus software, and fake Java/Flash updaters. Out
of the 6,924 binaries, we detected 1,591 unique binaries in-
cluding 1,090 malware samples and 501 PUPs by checking
their MD5 hash in VirusTotal and using AVClass. We con-
firmed that 3,336 unique binaries were never uploaded to
VirusTotal. Although the remaining 1,997 unique binaries
were already uploaded, they were not detected by any anti-
virus software in VirusTotal.

The 2,141 out of the 3,336 binaries that were not up-
loaded had 1,347 unique filenames, which were automat-
ically set according to the previous page (e.g., “[the title
of the previous page].exe.rename”). Figure 8 shows ex-
amples of these web pages. The web pages that down-
loaded these binaries contained instructions to entice users
to remove “.rename” and execute them. We found 504
unique domain names downloading these binaries. The
175 out of these 504 domain names matched the blacklists
and the other 329 domain names were newly detected by
StraySheep. The reason for making users change the file
extension is to circumvent the download-protection function
of web browsers. Since the hash values of these binaries also
changed at every downloading, none were ever uploaded to
VirusTotal. To check whether these binaries were malicious,
we chose ten samples from the binaries and uploaded them
to VirusTotal. Then, all ten samples were detected as “Start-
Surf” or “Prepscram” family names.
Unwanted Browser Extension We categorized 181 do-
main names as distributing unwanted browser exten-
sions. We confirmed that these domain names were de-
tected as “Fake Browser Extension Download” or “Un-
wanted Extension”, which led to install pages (https:/
/chrome.google.com/webstore) of 128 unique Google
Chrome browser extensions. However, we found that 119
(93.0%) extensions were still available on the browser ex-
tension install pages a month after the crawling. By investi-
gating these browser extensions, we found that 18 (14.1%)
extensions were search tool bars, and 14 (10.9%) extensions
were file converters. Security vendor blog postings and on-

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
175

Fig. 8 Examples malware-distribution pages that require user to rename
files and execute them.

line forums stated that some extensions were malicious ex-
tensions or browser hijackers that modify web browser set-
tings, track user’s browsing, and inject unwanted advertise-
ments [34]. As a result of our dynamic analysis of some
browser extensions using a real browser, we observed sus-
picious behavior such as displaying popup advertisements
and changing the default browser’s homepage and search
engine to web pages hard coded in many malware samples.
To determine the popularity of these browser extensions, we
searched each extension name on a search engine. We then
found that the search results of 100 extensions (78.1%) con-
sisted of one or more web pages explaining “How to remove
[browser extension name]” or “Virus removal guide”. Sur-
prisingly, most of these web pages introduced not only re-
moval methods but also suggested yet more fake removal
tools, which were detected as PUPs or malware. Attack-
ers prepared the web pages for tricking technically un-
sophisticated users who disrupt these browser extensions.
Thus, even if the users successfully remove the unwanted
browser extensions, they also become victims of other SE
attacks. StraySheep’s SE-detection module newly found 21
domain names out of the 181 domain names we categorized.
StraySheep successfully finds unwanted browser extensions
by analyzing distribution web pages and sequences that led

Fig. 9 Examples of multimedia scams.

to them instead of analyzing their source codes and behav-
iors.
Multimedia Scam We found web pages (94 domain names)
that ask for credit card registration in exchange for offer-
ing free access to movies or music. Their content, such as
input forms, logos, and background images, were shared
among each other. We call them multimedia scams in
this paper. Only 27.7% (26/94) of domain names were
listed in blacklists; however, StraySheep’s SE-detection
module newly found 72.3% (68/94) domain names. Some
security vendor blog postings and online forums reported
that these web pages fraudulently charge credit cards [35].
We found that some words (e.g., media, play, and
book) were frequently used in the domain names, such
as etnamedia.net, kelpmedia.com, dewymedia.com,
parryplay.com, cnidaplay.com, and mossyplay.com.

Figure 9 shows examples of multimedia scams. These
web pages suggest users to register for free membership to
obtain movies, music, or games. When users are tricked to
input their credit card numbers, the web pages fraudulently
charge them.
Phishing We observed 94 domain names detected as phish-
ing, which were attempting to steal user’s sensitive informa-
tion such as email addresses or passwords.
Survey Scam We found 25 survey scam domain names,

176
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

which spoofed famous companies and promised rewards
such as iPhones and gift cards. Although Surveylance [6]
only identified landing pages that have survey content and
interacted with them to reach survey scams, StraySheep
recursively followed lure elements to detect survey scams
reached from landing pages that did not have survey con-
tent.
Tech Support Scam We observed 20 tech support scam
domain names that displayed fake virus-infection messages
and telephone numbers of support centers to urge users to
call. StraySheep reached the scams from sequences of web
pages starting from the search engine’s results and social
media postings, which are not observed with other sys-
tems [4], [5].
Fake Browser History Injection We found 16 Fake
browser history injection attacks domain names, which in-
jected URLs into the browser’s history to force users to
redirect to another SE page when the browser’s back but-
ton is clicked. To interact with such attacks, StraySheep
attempted clicking the back button for each web page and
determined that the action led to other SE pages.
Malvertisement Redirection We found 13 Malvertisement
website redirect domains [36], [37] that also led users to
other SE pages.
Cryptojacking We found three Cryptojacking domain
names that secretly used user’s CPU resources to mine cryp-
tocurrencies by injecting JavaScript codes.
Other SE Attacks We observed various SE attacks other
than those mentioned above, such as one just indicates the
“Social engineering” label.

5.2 Common Infrastructures of Multi-Step SE Attacks

To clarify the common infrastructures of multi-step SE at-
tacks and attacker’s techniques leading to the attacks, we
analyzed the 56,922 sequences (see Sect. 5) that led to SE
pages.
SE Attacks Caused by Unintended Clicks We ob-
served opening popup/popunder windows caused by un-
intended clicks such as clicking anywhere on a web
page and on the browser’s back button. Such popups
are often set by JavaScript codes provided by advertis-
ing providers to the web page’s owner. The following
three files are the most frequently loaded on web pages
leading users to SE pages: “c1.popads[.]net/pop.js”,
“cdn.popcash[.]net/pop.js”, and “cdn.cpmstar[.]
com/cached/jspopunder v101.pack.js”. Since such
advertisements are common infrastructures for SE attack
distribution, they are used in various web pages. The se-
quences in which popups caused by unintended clicks oc-
curred were 20.0% (11,373/56,922) of all sequences. The
sequences in which popups caused by unintended clicks oc-
curred in the landing pages were 8.7% (4,952/56,922) of all
sequences. We also observed exit-driven redirections that
were triggered by clicking on the browser’s back button,
which was 4.5% (2,578/56,922) of all sequences.
Alert Dialog Of all sequences, 2.9% (1,651/56,922) in-

cluded a web page that displayed more than one alert dialog.
We found 66 distinct alert messages, such as those of fake
virus infection and fake rewards, which might strongly in-
fluence user psychology. To investigate the relationship be-
tween the content of alert messages and SE attacks, we cat-
egorized the 66 alert messages into the three attack classes
of comply, alarm, and entice. These classes were defined in
a previous study [3]. We found 30 Comply alerts that were
often used on fake Java/Flash update web pages for luring
users to install PUPs and malware, such as “Please install
Java to continue.” and “Your Flash Player might be out of
date. Please install update to continue.” We found 19 En-
tice alerts that made users input sensitive information, such
as “CONGRATULATIONS! Your IP address has been se-
lected to receive a Year of FREE Netflix!” We found 17
Alarm alerts that showed warning messages such as “IM-
MEDIATE ACTION REQUIRED We have detected a tro-
jan virus” with alert sounds in some cases (e.g., <audio
src=‘‘alert.mp3’’ autoplay>). Users were directed to
install fake anti-virus software or call fake technical support
centers.
Advertising Domain Names Online advertising often re-
sults in SE attacks [3], [6]. To analyze SE attacks de-
livered by advertising providers, we extracted advertising
providers’ domain names (ad domain) from server-side redi-
rection on the sequences. We leveraged public advertising
provider lists [38] to identify ad domains. Table 11 shows a
list of ad domains and the number of unique domain names
of SE pages redirected from each ad domain. We found
25 ad domains that led to SE attacks. Categories of SE
attacks frequently distributed by ad domains were multi-
media scam, unwanted browser extension, fake anti-virus
software (PUP/malware category), and fake Java update
(PUP/malware category). The ad domain that redirected to
the most SE page’s domain names was newstarads.com,
which led to 155 unique domain names. Two domain
names (doubleclick.net and googleadservices.com)
redirected to 89 and 79 unique domain names of unwanted
browser extension and they also redirected to the same
phishing domain names. We found that 30.4% (427/1,404)
of the total SE domain names were reached from these ad-
vertising domain names.
Prevalence of SE attacks We analyzed the statistics of user
accesses to measure how many users encountered multi-step
SE attacks. We used SimilarWeb†, Alexa Web Informa-
tion Service (AWIS)††, and DNSDB††† to investigate web-
site traffic volumes of 1,404 domain names that StraySheep
collected, as mentioned in Sect. 4. SimilarWeb and AWIS
provide website traffic statistics of domain names. DNSDB
is a passive DNS database that provides the total number of
DNS queries of domain names. Table 10 lists the numbers
of unique domain names newly observed at each depth in
ascending order and statistics (minimum, maximum, sum,

†https://www.similarweb.com/
††https://awis.alexa.com/
†††https://www.dnsdb.info/

https://www.similarweb.com/
https://awis.alexa.com/
https://www.dnsdb.info/

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
177

Table 10 Newly observed SE pages’ domain names at each depth in ascending order and their user
access investigated by SimilarWeb, Alexa Web Information Service, and DNSDB.

Depth # of domains SimilarWeb (total visits per month)
Alexa Web Information Service
(pageviews per million users) DNSDB (DNS queries)

of domain
names with
valid data

Min Max Sum Mean
of domain
names with
valid data

Min Max Sum Mean
of domain
names with
valid data

Min Max Sum Mean

1 94 39 16,616 110,300,000 184,891,612 4,740,811 68 0.01 41.70 143.49 2.11 83 1 30,896,251 58,835,762 708,865
2 680 261 9,926 205,800,000 1,483,161,357 5,682,611 344 0.01 631.50 1684.62 4.90 425 2 19,727,061 52,593,168 123,749
3 288 108 16,326 92,460,000 301,856,918 2,794,971 144 0.01 264.00 476.95 3.31 181 1 61,561,400 302,969,603 1,673,865
4 342 28 15,191 115,400,000 158,933,466 5,676,195 51 0.01 8.62 34.32 0.67 93 2 11,357,814 63,461,471 682,381

Total 1,404 436 9,926 205,800,000 2,128,843,353 4,882,668 607 0.01 631.50 2339.38 3.85 782 1 61,561,400 477,860,004 611,074

mean) of website traffic and DNS queries. Note that # do-
main names with valid data means the number of domain
names excluding the data that are zero or not available in
the data sources. Since most SE pages’ domain names were
observed at depth two, there were still 44.9% (630) of do-
main names observed at deeper depths. In other words, there
are many domain names at deeper depths that can only be
reached by following multiple web pages with StraySheep.
The statistics of user accesses and DNS queries show that
these websites have the same level of population with do-
main names observed at shallow depths, some of which are
covered by previous systems. For example, the mean of
SimilarWeb’s total visits at depth four (5,676,195) is almost
the same as that at depth two (5,682,611) and is larger than
that at depth one (4,740,811). Also, the sum of AWIS’s
pageviews per million at depths three and four is 511.27,
which is 21.9% of the total. In the data of DNSDB, the
number of valid domain names at depth three (181) is less
than depth two (425); however, the sum of DNS queries
(302,969,603) is larger than that at depth three (52,593,168).
Therefore, we showed that there are many malicious domain
names that StraySheep reaches by following multiple web
pages from landing pages. Also, these domain names, which
previous systems cannot reach, have a large number of user
accesses. One reason for this is that these domain names are
distributed by large-scale advertising providers, as shown in
Table 11.
IP Addresses Used for SE Attacks To analyze the relation-
ship between each SE page’s domain name, we leveraged
DNSDB. The DNSDB enables us to find IP addresses his-
torically associated with domain names. If the same IP ad-
dress is set in the A record of different domain names, we
assume that these domain names are related. As a result of
investigating the 1,404 domain names, we detected a total
of 96,544 IP addresses associated with 1,349 domain names
(55 domain names were not found in the DNSDB). Note
that multiple IP addresses were associated with one domain
name; thus, there are more IP addresses than domain names.
We found that 29.6% (28,617/96,544) of IP addresses were
shared among more than two domain names we detected,
and these IP addresses (28,617) were associated with 39.5%
(554/1,404) of domain names. The 554 domain names were
mainly used for multimedia scams, PUP/malware distribu-
tions, survey scams, and unwanted browser extension in-
stalls. We now focus on 94 multimedia scam domains and

Table 11 Advertising provider domain names redirected to SE domain
names.

Advertising provider # of unique SE domains redirected from ad provider

newstarads.com 155
traktrafficflow.com 134
mybestmv.com 123
revimedia.com 122
naganoadigei.com 99
doubleclick.net 90
googleadservices.com 80
adk2x.com 75
clksite.com 52
cobalten.com 41
bodelen.com 41
googlesyndication.com 36
cpmstar.com 29
go2affise.com 28
inclk.com 23
digitaldsp.com 21
dtiserv2.com 19
tradeadexchange.com 19
adf.ly 19
adreactor.com 19
friendlyduck.com 16
revcontent.com 16
servedbytrackingdesk.com 16
reimageplus.com 14
adnetworkperformance.com 14

All advertising provider 427

their corresponding 20,589 IP addresses. We found that
87.8% (18,086/20,589) IP addresses were shared among
more than two multimedia scam domains. One of these IP
addresses was shared with 84 multimedia scam domains we
detected.
Geographical Attribution We analyzed the geographical
attribution of IP addresses used for SE attacks. We used the
same 96,544 IP addresses as the above analysis. We queried
GeoIP2 Databases† for the country and Autonomous system
(AS) information associated with the IP addresses. Table 12
shows the top 10 countries whose IP addresses were used for
distributing SE attacks. United States accounted for 72.9%
of all IP addresses, Thailand for 2.3%, Mexico for 1.9%,
and Vietnam for 1.9%. Table 13 shows the top 10 ASes. We
confirmed CDNs and cloud hosting providers are frequently
abused for SE attacks. Amazon, Google, and Cloudflare ac-
counted for 50.5, 7.6, and 2.9%.

†https://www.maxmind.com/en/geoip2-databases

https://www.maxmind.com/en/geoip2-databases

178
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

Table 12 Top 10 countries mapped.

Country Percentage

UnitedStates 72.9%
Thailand 2.3%
Mexico 1.9%
Vietnam 1.9%
Canada 1.8%
Brazil 1.6%
Korea 1.4%
Indonesia 1.0%
Philippines 0.9%
Taiwan 0.8%

Table 13 Top 10 ASes hosting SE attacks.

AS Percentage

Amazon.com, Inc. 50.5%
Google LLC 7.6%
Cloudflare Inc 2.9%
Uninet S.A. de C.V. 1.0%
VNPT Corp 1.0%
Level 3 Parent, LLC 0.6%
JasTel Network International Gateway 0.6%
Telefonica Brasil 0.6%
TOT Public Company Limited 0.6%
FPT 0.4%

6. Discussion

In this section, we discuss the limitations of StraySheep and
ethical considerations during our study.

6.1 Limitations

There are limitations with StraySheep in terms of system
environment, system implementation, and evasion of our
system.
System Environment In the evaluation discussed in this pa-
per, StraySheep was run in a single environment. Some SE
pages may not serve the same web page every time due to
an ad network or cloaking technology. Specifically, a web-
site changes the web page to be delivered according to the
source IP address, web-browser environment, and browsing
history. In this case, there are SE attacks that cannot be
reached in the current StraySheep environment. However,
as described in Sect. 3.2, StraySheep does not depend on
the selected browser environment and connection network.
Thus, preparing multiple browser environments and connec-
tion networks enables us to collect environment-dependent
SE attacks.
System Implementation StraySheep implements web-
search-based URL collection methods; thus, attacks origi-
nating from other types of sources (e.g., email) are out of its
scope. Since SE attacks attempt to lure more users to their
web pages, attackers should prepare landing pages that can
be easily visited from popular web platforms, i.e., search
engines and social media. StraySheep covered these plat-
forms and retrieve landing pages using easily customizable

search queries. Since interacting HTML forms are not im-
plemented in StraySheep’s current web-crawling module, it
cannot crawl web pages that require login, account creation,
and survey. However, StraySheep’s SE-detection module
can identify these web pages because it uses not only fea-
tures of the reached web page but also features extracted
from the entire sequence.
Evasion There may be an evasion technique against
StraySheep’s web-crawling module to create a web page
that redirects users to SE attacks without preparing any lure
elements. This technique leads to a lowering of the collec-
tion efficiency of SE attacks of StraySheep. There may be
another evasion technique that introduces CAPTCHA au-
thentication in the middle of an SE attack. An SE attack with
CAPTCHA authentication cannot be collected with the cur-
rent implementation of StraySheep. However, these evasion
techniques greatly reduce the number of potential victims,
which leads to a reduction in the success rate of attacks.
Therefore, we believe that it is unlikely that an attacker ac-
tually carries them out, as it goes against the current trend
of SE attacks.

There may also be an evasion technique against
StraySheep’s SE-detection module designed as a classifi-
cation approach. Attackers modify an SE page’s appear-
ance to evade the future design and structure of web pages.
However, this module also extracts features from the entire
sequence of web pages, such as the occurrence of popup
windows displaying fake infection alerts and redirections
caused by a user’s unintended clicks. Thus, we believe it
is still difficult for attackers to evade because these features
represent attackers’ effective techniques to lure users to their
web pages.

6.2 Ethical Consideration

Our study followed research ethics principles and best prac-
tices [5], [36], [37], [39]. While we conducted parallel
crawling for various websites, each of our crawling sessions
sequentially traversed web content on the same website, so
only a restricted amount of traffic to the website was gener-
ated, which did not increase website workload. Our crawl-
ing carefully created web requests according to the manner
of a real web browser and did not create any harmful web
requests breaking or exploiting websites. Due to using a
real web browser, our crawling faithfully performs accord-
ing to the natural behavior of web browsers. Furthermore,
the intention of our automated crawling is not to thwart the
monetization model of benign web ads. There is no alterna-
tive and realistic way to directly observe SE attacks except
for active crawling; however, there is a risk of unexpectedly
contributing to malicious pay-per-click (PPC) or pay-per-
install (PPI) monetization. Our crawling did not intention-
ally concentrate on specific PPC or PPI services.

7. Related work

Web-based SE attacks and their defenses have been gaining

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
179

the attention of researchers. We review related work in terms
of collecting these attacks and analyzing the attack mecha-
nisms. Duman et al. focused on the visual properties of trick
banners, which lure users into clicking on fake links [18].
They built a Firefox browser extension called TrueClick to
detect such trick banners based on image processing and
machine learning. StraySheep finds lure elements including
trick banners, and interacts with them to confirm whether
they actually lead users to SE attacks. Rafique et al. ana-
lyzed free live streaming services and their ecosystems [8].
They found that users of these services are exposed to ads,
malware, and unwanted browser extensions. Our analysis
found that not only live streaming services but also web
pages showing illegal content, such as music and games,
use lure elements to lead users to malware and unwanted
browser extensions. Nelms et al. studied the sequences of
visited web pages preceding malware downloads in drive-by
download and SE attacks [2]. They proposed a system called
WebWitness to passively trace back the visited web pages to
analyze how users reach the attacks. They also presented a
systematic study on successful SE attacks leading to ma-
licious and unwanted software [3]. They categorized and
identified the tactics used in such SE attacks to gain users’
attention. While these studies [2], [3] passively traced back
real victim’s traffic, StraySheep actively collects SE attacks
and does not rely on real victims. Vadrevu et al. developed
a specific web-browser system called ChromePic to enable
the reconstruction of SE attacks [12]. ChromePic introduces
a detailed snapshot of logging into Chromium to enable the
investigation of SE attacks. Whereas ChromePic focuses on
forensics after users reached SE attacks, proactive and large-
scale crawling of the latest SE attacks. Miramirkhani et al.
conducted the first systematic analysis of technical-support-
scam web pages [4]. Specifically, they developed a system
that can identify such web pages and collect them to show
their prevalence, the abused infrastructure, and illicit prof-
its. Srinivasan et al. analyzed technical support scams by
focusing on search-engine results and corresponding spon-
sored advertisements [5]. They generated technical-support-
related special search-engine queries to discover previously
unknown technical support scams. StraySheep also finds
identified technical support scams based on search engine
results, as well as scams that require multiple interactions
to reach. Kharraz et al. proposed a system called Survey-
lance [6] to identify survey scams using search engines and
a web-crawling approach. While this system identifies only
landing pages having survey content (e.g., advertisement in
iframe), StraySheep also identifies survey scams by clicking
lure elements, which do not display survey content.

8. Conclusion

We proposed a system called StraySheep to crawl web
pages and detect multi-step SE attacks. Our key idea is
based on (1) simulating multi-step browsing behavior of
users to efficiently crawl web pages leading to SE attacks
and (2) extracting features from reached web pages as well

as the entire sequence of web pages to accurately detect such
attacks. Our experimental results indicate that StraySheep
can lead to 20% more SE attacks than Alexa top sites and
search results of trend words, crawl five times more effi-
ciently than a simple crawling module, and detect SE at-
tacks with 95.5% accuracy. StraySheep will be useful for
security vendors, search engine providers, and social-media
companies in terms of analyzing trends in SE attacks.

References

[1] T. Koide, D. Chiba, and M. Akiyama, “To get lost is to learn the
way: Automatically collecting multi-step social engineering attacks
on the web,” 15th ACM Asia Conference on Computer and Commu-
nications Security, ASIA CCS’20, Taipei, Taiwan, Oct. 2020, ACM,
2020.

[2] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Webwit-
ness: Investigating, categorizing, and mitigating malware download
paths,” 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, Aug. 2015, pp.1025–1040, USENIX As-
sociation, 2015.

[3] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Towards
measuring and mitigating social engineering software download at-
tacks,” 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, Aug. 2016., pp.773–789, USENIX Association,
2016.

[4] N. Miramirkhani, O. Starov, and N. Nikiforakis, “Dial one for scam:
A large-scale analysis of technical support scams,” 24th Annual Net-
work and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, Feb.–March, 2017.

[5] B. Srinivasan, A. Kountouras, N. Miramirkhani, M. Alam, N. Niki-
forakis, M. Antonakakis, and M. Ahamad, “Exposing search and
advertisement abuse tactics and infrastructure of technical support
scammers,” Web Conference, WWW 2018, Lyon, France, April
2018.

[6] A. Kharraz, W.K. Robertson, and E. Kirda, “Surveylance: Automat-
ically detecting online survey scams,” 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, San Francisco, Califor-
nia, USA, May 2018, pp.70–86, 2018.

[7] C.J. Dietrich, C. Rossow, and N. Pohlmann, “Exploiting visual ap-
pearance to cluster and detect rogue software,” 28th Annual ACM
Symposium on Applied Computing, SAC’13, Coimbra, Portugal,
March 2013, pp.1776–1783, ACM, 2013.

[8] M.Z. Rafique, T. van Goethem, W. Joosen, C. Huygens, and N. Niki-
forakis, “It’s free for a reason: Exploring the ecosystem of free
live streaming services,” 23rd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2016, San Diego, California, USA,
Feb. 2016, pp.21–24, The Internet Society, 2016.

[9] G. Stringhini, C. Kruegel, and G. Vigna, “Shady paths: Leveraging
surfing crowds to detect malicious web pages,” 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, Nov. 2013, pp.133–144, 2013.

[10] H. Mekky, R. Torres, Z. Zhang, S. Saha, and A. Nucci, “Detecting
malicious HTTP redirections using trees of user browsing activity,”
2014 IEEE Conference on Computer Communications, INFOCOM
2014, Toronto, Canada, April– May 2014, pp.1159–1167, 2014.

[11] T. Taylor, X. Hu, T. Wang, J. Jang, M.P. Stoecklin, F. Monrose, and
R. Sailer, “Detecting malicious exploit kits using tree-based simi-
larity searches,” Proc. 6th ACM on Conference on Data and Appli-
cation Security and Privacy, CODASPY 2016, New Orleans, LA,
USA, March 2016, pp.255–266, 2016.

[12] P. Vadrevu, J. Liu, B. Li, B. Rahbarinia, K.H. Lee, and R. Perdisci,
“Enabling reconstruction of attacks on users via efficient browsing
snapshots,” 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, Feb.–March

http://dx.doi.org/10.1145/3320269.3384714
http://dx.doi.org/10.1145/3320269.3384714
http://dx.doi.org/10.1145/3320269.3384714
http://dx.doi.org/10.1145/3320269.3384714
http://dx.doi.org/10.1145/3320269.3384714
http://dx.doi.org/10.14722/ndss.2017.23163
http://dx.doi.org/10.14722/ndss.2017.23163
http://dx.doi.org/10.14722/ndss.2017.23163
http://dx.doi.org/10.14722/ndss.2017.23163
http://dx.doi.org/10.1145/3178876.3186098
http://dx.doi.org/10.1145/3178876.3186098
http://dx.doi.org/10.1145/3178876.3186098
http://dx.doi.org/10.1145/3178876.3186098
http://dx.doi.org/10.1145/3178876.3186098
http://dx.doi.org/10.1109/sp.2018.00044
http://dx.doi.org/10.1109/sp.2018.00044
http://dx.doi.org/10.1109/sp.2018.00044
http://dx.doi.org/10.1109/sp.2018.00044
http://dx.doi.org/10.1145/2480362.2480697
http://dx.doi.org/10.1145/2480362.2480697
http://dx.doi.org/10.1145/2480362.2480697
http://dx.doi.org/10.1145/2480362.2480697
http://dx.doi.org/10.14722/ndss.2016.23030
http://dx.doi.org/10.14722/ndss.2016.23030
http://dx.doi.org/10.14722/ndss.2016.23030
http://dx.doi.org/10.14722/ndss.2016.23030
http://dx.doi.org/10.14722/ndss.2016.23030
http://dx.doi.org/10.1145/2508859.2516682
http://dx.doi.org/10.1145/2508859.2516682
http://dx.doi.org/10.1145/2508859.2516682
http://dx.doi.org/10.1145/2508859.2516682
http://dx.doi.org/10.1109/infocom.2014.6848047
http://dx.doi.org/10.1109/infocom.2014.6848047
http://dx.doi.org/10.1109/infocom.2014.6848047
http://dx.doi.org/10.1109/infocom.2014.6848047
https://doi.org/10.1145/2857705.2857718
https://doi.org/10.1145/2857705.2857718
https://doi.org/10.1145/2857705.2857718
https://doi.org/10.1145/2857705.2857718
https://doi.org/10.1145/2857705.2857718
http://dx.doi.org/10.14722/ndss.2017.23100
http://dx.doi.org/10.14722/ndss.2017.23100
http://dx.doi.org/10.14722/ndss.2017.23100
http://dx.doi.org/10.14722/ndss.2017.23100

180
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.1 JANUARY 2021

2017.
[13] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and

V. Paxson, “Hulk: Eliciting malicious behavior in browser exten-
sions,” 23rd USENIX Security Symposium, San Diego, CA, USA,
Aug. 2014, pp.641–654, USENIX Association, 2014.

[14] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and
W. Lee, “Understanding malvertising through ad-injecting browser
extensions,” 24th International Conference on World Wide Web,
WWW 2015, Florence, Italy, May 2015, pp.1286–1295, ACM,
2015.

[15] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos,
D. McCoy, A. Nappa, V. Paxson, P. Pearce, N. Provos, and M.A.
Rajab, “Ad injection at scale: Assessing deceptive advertisement
modifications,” 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, May 2015, pp.151–167, IEEE Computer
Society, 2015.

[16] Internet Archive, “Heritrix,” https://github.com/internetarchive/heri
trix3, 2019.

[17] Selenium Developers Group, “Selenium,” https://www.seleniumhq.
org/, 2019.

[18] S. Duman, K. Onarlioglu, A.O. Ulusoy, W.K. Robertson, and
E. Kirda, “TrueClick: Automatically distinguishing trick banners
from genuine download links,” 30th Annual Computer Security Ap-
plications Conference, ACSAC 2014, New Orleans, LA, USA, Dec.
2014, pp.456–465, ACM, 2014.

[19] L. Lu, R. Perdisci, and W. Lee, “SURF: Detecting and measuring
search poisoning,” 18th ACM Conference on Computer and Com-
munications Security, CCS 2011, Chicago, Illinois, USA, Oct. 2011,
pp.467–476, ACM, 2011.

[20] L. Invernizzi and P.M. Comparetti, “Evilseed: A guided approach
to finding malicious web pages,” IEEE Symposium on Security
and Privacy, SP 2012, May 2012, San Francisco, California, USA,
pp.428–442, IEEE Computer Society, 2012.

[21] H. Yang, X. Ma, K. Du, Z. Li, H. Duan, X. Su, G. Liu, Z. Geng, and
J. Wu, “How to learn klingon without a dictionary: Detection and
measurement of black keywords used by the underground economy,”
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 2017, pp.751–769, IEEE Computer Society, 2017.

[22] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B.Y. Zhao, “De-
tecting and characterizing social spam campaigns,” 10th ACM SIG-
COMM Internet Measurement Conference, IMC 2010, Melbourne,
Australia, Nov. 2010, pp.35–47, ACM, 2010.

[23] S. Lee and J. Kim, “WarningBird: Detecting suspicious urls in Twit-
ter stream,” 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, Feb. 2012,
The Internet Society, 2012.

[24] N. Nikiforakis, F. Maggi, G. Stringhini, M.Z. Rafique, W. Joosen,
C. Kruegel, F. Piessens, G. Vigna, and S. Zanero, “Stranger dan-
ger: Exploring the ecosystem of ad-based URL shortening services,”
23rd International World Wide Web Conference, WWW’14, Seoul,
Republic of Korea, April 2014, pp.51–62, ACM, 2014.

[25] “Tesseract open source OCR engine,” https://github.com/tesseract-
ocr/tesseract, 2019.

[26] P.F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion
for accelerated features in nonlinear scale spaces,” British Machine
Vision Conference, BMVC 2013, Bristol, UK, Sept. 2013, pp.13.1–
13.11, 2013.

[27] “Doc2vec paragraph embeddings,” https://radimrehurek.com/gensi
m/models/doc2vec.html, 2019.

[28] Symantec, “DeepSight intelligence,” https://www.symantec.com/

services/cyber-security-services/deepsight-intelligence, 2019.
[29] Malwarebytes, “hpHosts,” http://www.hosts-file.net/, 2019.
[30] K. Thomas, J.A.E. Crespo, R. Rasti, J.M. Picod, C. Phillips, M. De-

coste, C. Sharp, F. Tirelo, A. Tofigh, M. Courteau, L. Ballard,
R. Shield, N. Jagpal, M.A. Rajab, P. Mavrommatis, N. Provos,
E. Bursztein, and D. McCoy, “Investigating commercial pay-per-
install and the distribution of unwanted software,” 25th USENIX

Security Symposium, USENIX Security 16, Austin, TX, USA, Aug.
2016, pp.721–739, USENIX Association, 2016.

[31] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP preva-
lence and PUP distribution through pay-per-install services,” 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, Aug. 2016, pp.739–756, USENIX Association, 2016.

[32] Microsoft, “Microsoft cognitive services Bing search engine APIs,”
https://azure.microsoft.com/en-us/services/cognitive-services/search/,
2019.

[33] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A
tool for massive malware labeling,” Research in Attacks, Intrusions,
and Defenses - 19th International Symposium, RAID 2016, Paris,
France, Sept. 2016, Proceedings, pp.230–253, 2016.

[34] P. Arntz, “Stolen security logos used to falsely endorse pups,”
https://blog.malwarebytes.com/threat-analysis/social-engineering-th
reat-analysis/2018/01/stolen-security-logos-used-to-falsely-endorse-
pups/, 2018.

[35] “Web of trust,” https://www.mywot.com/en/scorecard/etnamedia.
net, 2019.

[36] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang, “Knowing your enemy:
Understanding and detecting malicious web advertising,” ACM
Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, Oct. 2012, pp.674–686, ACM, 2012.

[37] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and
G. Vigna, “The dark alleys of madison avenue: Understanding ma-
licious advertisements,” 2014 Internet Measurement Conference,
IMC 2014, Vancouver, BC, Canada, Nov. 2014, pp.373–380, ACM,
2014.

[38] “hosts-blocklists,” https://github.com/notracking/hosts-blocklists,
2019.

[39] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The menlo
report: Ethical principles guiding information and communication
technology research,” Technical Report, U.S. Department of Home-
land Security, Aug. 2012.

Takashi Koide received the B.S. and M.S.
degrees in Engineering from Yokohama Na-
tional University in 2014 and 2016, respectively.
He is currently a researcher at NTT Secure Plat-
form Laboratories, Tokyo, Japan. His research
interests include network and Web security. He
won the Research Award from the IEICE Tech-
nical Committee on Information and Communi-
cation System Security in 2018.

Daiki Chiba is currently a researcher
at NTT Secure Platform Laboratories, Tokyo,
Japan. He received his B.E., M.E., and Ph.D.
degrees in computer science from Waseda Uni-
versity in 2011, 2013, and 2017. Since joining
Nippon Telegraph and Telephone Corporation
(NTT) in 2013, he has been engaged in research
on cyber security through data analysis. He won
the Research Award from the IEICE Technical
Committee on Information and Communication
System Security in 2016, 2018, and 2019 and

the Best Paper Award from the IEICE Communications Society in 2017.
He is a member of IEEE and IEICE.

http://dx.doi.org/10.14722/ndss.2017.23100
http://dx.doi.org/10.14722/ndss.2017.23100
http://dx.doi.org/10.1145/2736277.2741630
http://dx.doi.org/10.1145/2736277.2741630
http://dx.doi.org/10.1145/2736277.2741630
http://dx.doi.org/10.1145/2736277.2741630
http://dx.doi.org/10.1145/2736277.2741630
http://dx.doi.org/10.1109/sp.2015.17
http://dx.doi.org/10.1109/sp.2015.17
http://dx.doi.org/10.1109/sp.2015.17
http://dx.doi.org/10.1109/sp.2015.17
http://dx.doi.org/10.1109/sp.2015.17
http://dx.doi.org/10.1109/sp.2015.17
https://github.com/internetarchive/heritrix3
https://github.com/internetarchive/heritrix3
https://www.seleniumhq.org/
https://www.seleniumhq.org/
http://dx.doi.org/10.1145/2664243.2664279
http://dx.doi.org/10.1145/2664243.2664279
http://dx.doi.org/10.1145/2664243.2664279
http://dx.doi.org/10.1145/2664243.2664279
http://dx.doi.org/10.1145/2664243.2664279
http://dx.doi.org/10.1145/2046707.2046762
http://dx.doi.org/10.1145/2046707.2046762
http://dx.doi.org/10.1145/2046707.2046762
http://dx.doi.org/10.1145/2046707.2046762
http://dx.doi.org/10.1109/sp.2012.33
http://dx.doi.org/10.1109/sp.2012.33
http://dx.doi.org/10.1109/sp.2012.33
http://dx.doi.org/10.1109/sp.2012.33
http://dx.doi.org/10.1109/sp.2017.11
http://dx.doi.org/10.1109/sp.2017.11
http://dx.doi.org/10.1109/sp.2017.11
http://dx.doi.org/10.1109/sp.2017.11
http://dx.doi.org/10.1109/sp.2017.11
http://dx.doi.org/10.1145/1879141.1879147
http://dx.doi.org/10.1145/1879141.1879147
http://dx.doi.org/10.1145/1879141.1879147
http://dx.doi.org/10.1145/1879141.1879147
http://dx.doi.org/10.1145/2566486.2567983
http://dx.doi.org/10.1145/2566486.2567983
http://dx.doi.org/10.1145/2566486.2567983
http://dx.doi.org/10.1145/2566486.2567983
http://dx.doi.org/10.1145/2566486.2567983
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://dx.doi.org/10.5244/c.27.13
http://dx.doi.org/10.5244/c.27.13
http://dx.doi.org/10.5244/c.27.13
http://dx.doi.org/10.5244/c.27.13
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html
https://www.symantec.com/services/cyber-security-services/deepsight-intelligence
https://www.symantec.com/services/cyber-security-services/deepsight-intelligence
http://www.hosts-file.net/
https://azure.microsoft.com/en-us/services/cognitive-services/search/
https://azure.microsoft.com/en-us/services/cognitive-services/search/
https://azure.microsoft.com/en-us/services/cognitive-services/search/
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
https://blog.malwarebytes.com/threat-analysis/social-engineering-threat-analysis/2018/01/stolen-security-logos-used-to-falsely-endorse-pups/
https://blog.malwarebytes.com/threat-analysis/social-engineering-threat-analysis/2018/01/stolen-security-logos-used-to-falsely-endorse-pups/
https://blog.malwarebytes.com/threat-analysis/social-engineering-threat-analysis/2018/01/stolen-security-logos-used-to-falsely-endorse-pups/
https://blog.malwarebytes.com/threat-analysis/social-engineering-threat-analysis/2018/01/stolen-security-logos-used-to-falsely-endorse-pups/
https://www.mywot.com/en/scorecard/etnamedia.net
https://www.mywot.com/en/scorecard/etnamedia.net
http://dx.doi.org/10.1145/2382196.2382267
http://dx.doi.org/10.1145/2382196.2382267
http://dx.doi.org/10.1145/2382196.2382267
http://dx.doi.org/10.1145/2382196.2382267
http://dx.doi.org/10.1145/2663716.2663719
http://dx.doi.org/10.1145/2663716.2663719
http://dx.doi.org/10.1145/2663716.2663719
http://dx.doi.org/10.1145/2663716.2663719
http://dx.doi.org/10.1145/2663716.2663719
https://github.com/notracking/hosts-blocklists
https://github.com/notracking/hosts-blocklists

KOIDE et al.: TO GET LOST IS TO LEARN THE WAY: AN ANALYSIS OF MULTI-STEP SOCIAL ENGINEERING ATTACKS ON THE WEB
181

Mitsuaki Akiyama received his M.E. and
Ph.D. degrees in information science from Nara
Institute of Science and Technology, Japan in
2007 and 2013. Since joining Nippon Telegraph
and Telephone Corporation (NTT) in 2007, he
has been engaged in research and development
on cybersecurity. He is currently a Senior Dis-
tinguished Researcher with the Cyber Secu-
rity Project of NTT Secure Platform Laborato-
ries. His research interests include cybersecu-
rity measurement, offensive security, and usable

security and privacy.

Katsunari Yoshioka is an Associate Pro-
fessor at Yokohama National University since
2011. His research interests cover wide area of
system security and network security including
malware analysis and IoT security. He received
the commendation for science and technology
by the minister of MEXT, Japan in 2009, the
award for contribution to Industry-Academia-
Government Collaboration by the minister of
MIC, Japan in 2016, and the Culture of Infor-
mation Security Award in 2017.

Tsutomu Matsumoto is a professor of Fac-
ulty of Environment and Information Sciences,
Yokohama National University and directing the
Research Unit for Information and Physical Se-
curity at the Institute of Advanced Sciences. He
is also the Director of Cyber Physical Security
Research Center (CPSEC) at National Institute
of Advanced Industrial Science and Technol-
ogy (AIST). He received Doctor of Engineering
from the University of Tokyo in 1986. Start-
ing from Cryptography in the early 80’s, he has

opened up the field of security measuring for logical and physical secu-
rity mechanisms. Currently he is interested in research and education of
Embedded Security Systems such as IoT Devices, Cryptographic Hard-
ware, In-vehicle Networks, Instrumentation and Control Security, Tam-
per Resistance, Biometrics, Artifact-metrics, and Countermeasure against
Cyber-Physical Attacks. He is serving as the chair of the Japanese National
Body for ISO/TC68 (Financial Services) and the Cryptography Research
and Evaluation Committees (CRYPTREC) and as an associate member of
the Science Council of Japan (SCJ). He was a director of the International
Association for Cryptologic Research (IACR) and the chair of the IEICE
Technical Committees on Information Security, Biometrics, and Hardware
Security. He received the IEICE Achievement Award, the DoCoMo Mo-
bile Science Award, the Culture of Information Security Award, the MEXT
Prize for Science and Technology, and the Fuji Sankei Business Eye Award.

