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SUMMARY The residue number system (RNS) is a method for repre-
senting an integer x as an n-tuple of its residues with respect to a given set
of moduli. In RNS, addition, subtraction, and multiplication can be carried
out by independent operations with respect to each modulus. Therefore,
an n-fold speedup can be achieved by parallel processing. The main dis-
advantage of RNS is that we cannot efficiently compare the magnitude of
two integers or determine the sign of an integer. Two general methods of
comparison are to transform a number in RNS to a mixed-radix system or
to a radix representation using the Chinese remainder theorem (CRT). We
used the CRT to derive an equation approximating a value of x relative to
M, the product of moduli. Then, we propose two algorithms that efficiently
evaluate the equation and output a sign bit. The expected number of steps
of these algorithms is of order n. The algorithms use a lookup table that is
(n + 3) times as large as M, which is reasonably small for most applications
including cryptography.
key words: Chinese remainder, residue number system, sign detection,
comparison

1. Introduction

RNS (residue number system) is a method for represent-
ing an integer x as an n-tuple of its residues with respect
to a given set of bases {m1,m2, · · · ,mn}. The main fea-
ture of RNS is that addition, subtraction, and multiplication
can be carried out by independent addition, subtraction, and
multiplication with respect to each base element, which en-
ables fast computation via parallel processing. Due to this
property, a lot of studies have been conducted to implement
computation on integers with hundreds to thousands of bits,
a size necessary for public-key cryptography, since around
2000 [1], [2]. One reason for this timing is that an efficient
base extension algorithm was proposed in [3], which is use-
ful for implementing Montgomery multiplication in RNS.
However, how to efficiently compare magnitude of two in-
tegers or determine the sign of an integer in RNS is still an
unsolved problem. Namely, comparison in RNS requires
more computation steps than other operations such as mul-
tiplication. It is not unusual to avoid comparison in RNS.
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For example, Bigou et al. studied the extended Euclidean
algorithms, which require no comparison [4], [5].

General methods of comparison are classified into
methods that either transform a number in RNS to a mixed-
radix system (MRS) or to a radix representation using the
Chinese remainder theorem. Garner proposed a method to
transform RNS to MRS in O(n2) steps [6], which is regarded
as the most efficient way among general methods. In fact,
Knuth conjectured in his book that “there is little hope of
finding a substantially better method [than Garner’s], since
the range of a modular number depends essentially on all
bits of all the residues” ([7], p.291. Words within [] were
added by the present authors).

Vu proposed a sign-detection method that is more effi-
cient than Garner’s in some restricted cases [8]. His idea is
to evaluate x/M instead of x, using the Chinese remainder
theorem, where M = m1m2 · · ·mn. Recently, a new sign-
detection algorithm was proposed based on the Chinese re-
mainder theorem [9], which is superior to any methods pro-
posed before [9]. Both methods in [8] and [9] use lookup
tables, which become enormous unless the bit size of the
base elements is sufficiently small. Memory size for [9] is
evaluated as O(

(
log2 M

)3 /(log2 log2 M)2) in bits.
We propose a new sign-detection algorithm based on

the Chinese remainder theorem. In our algorithm, we evalu-
ate 1/mi by approximation and obtain a computational com-
plexity of O(n) with memory complexity, O

((
log2 M

)2
)
. We

apply two approximation methods: one is based on a power
series, and the other is based on a finite-length reciprocal
table. In our algorithms, the approximation error is made
smaller step-by-step until we can determine a sign bit. Once
a sign is determined, the algorithm halts. Therefore, the
number of computation steps can be limited. To make the
algorithm implementation-friendly, we design it to be word-
oriented.

A lot of research effort has considered specific sets of
moduli such as {2w+1, 2w, 2w−1} [10]–[13]. However, these
moduli sets have relatively small size and do not necessarily
fit to the optimization for fast cryptographic implementation
such as [14]–[16]. Therefore, we focus on moduli sets that
are scalable in size and easy to use for applications such as
cryptography. The problem we try to solve is to propose a
sign-detection algorithm that works for general bases with
more efficiency and less memory than conventional algo-
rithms.
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In Sect. 2, we describe the notation and background of
our research. Section 3 explains the principle of our method.
We propose a method based on a power series in Section 4,
and a method based on a reciprocal table in Sect. 5. Sec-
tion 6 evaluates the computational complexity and memory
size. Section 7 concludes the paper.

2. Notation and Background

2.1 Notation

The following notation is used in this paper.
w: the bit size of a word in a given computer.
〈x〉m = x mod m, where 〈x〉m ∈ [0,m).
Base B = {m1, . . . ,mn}, where gcd(mi,m j) = 1(i , j).
Here, we assume

mi = 2w − µi.

µi is an integer in the range, 0 ≤ µi < 2bw/2c.

M =

n∏
i=1

mi

Mi = M/mi〈
x−1

〉
mi

: a multiplicative inverse of x modulo mi, if
gcd(mi, x) = 1 holds.
{x}B =

[
〈x〉m1 , . . . , 〈x〉mn

]
: RNS representation of x.

Transpose T :

{x}TB =


〈x〉m1

...
〈x〉mn


〈x〉m ⊗ 〈y〉m , 〈xy〉m
{x}B ⊗ {y}B , {xy}B =

[
〈xy〉m1 , . . . , 〈xy〉mn

]
{x}B + {y}B , {x + y}B =

[
〈x + y〉m1 , . . . , 〈x + y〉mn

]
A constant W associated with base B:

W =

〈 n∑
i=1

〈
M−2

i

〉
mi

Mi

〉
M

{W}B =

[〈
M−1

1

〉
m1
, . . . ,

〈
M−1

n

〉
mn

]
: The RNS representation

of W.
RNS(x): RNS representation of x, not specifying a base.
MRS(x): MRS representation of x, not specifying a base.
〈x〉1 = x − bxc: A fractional part of a real number x. This
is a natural extension of the symbol 〈x〉m = x mod m = x −
mbx/mc, defined for integers x, m > 1, since the right-hand
sides coincide with each other if m = 1 is chosen.

x = bxc + 〈x〉1

holds since x is a sum of an integer part bxc and a fractional
part 〈x〉1.

For an arbitrary integer a, the following equation holds:

〈a〉m
m

=

〈 a
m

〉
1
.

Recall the relation below for proof.

a = m
⌊ a
m

⌋
+ 〈a〉m

The equation is apparent since ba/mc and 〈a〉m represent a
quotient and a residue of a/m, respectively.

The dot product (or inner product) may be used for the
algorithm description.

[
a1 a2 . . . an

] 
x1
x2
...

xn

 =

n∑
i=1

aixi

k-bit right shift of an integer x:

x � k =

⌊ x
2k

⌋
.

2.2 Sign Detection Based on MRS

We first define a sign function and a number with reverse
sign.
Definition 1:

Let {x}B be an RNS representation of an integer x ∈
[0,M − 1]. A sign function of {x}B is defined by

sign ({x}B) =

0, if x < M/2
1, if x ≥ M/2

�
Definition 2:

Let {a}B be an RNS representation of an integer a ∈
[0,M − 1]. A number with the reverse sign of {a}B is given
by

{−a}B = {M − a}B.

�
When Definition 1 is to be implemented, the problem is that
the if-clause cannot be evaluated efficiently for a given {x}B.

Let
[
y1, y2 · · · yn

]
be an MRS representation of a num-

ber represented as [x1, x2 · · · xn] in RNS. Then the following
equation holds:

x = ynmn−1 · · ·m1 + · · · + y2m1 + y1.

In MRS, comparison of two integers can be carried out
by comparing each digit yi from the most significant digit to
the least significant one, as with ordinary radix representa-
tion. Therefore, we can compute a sign function as follows.

1. Convert RNS(x) to MRS(x) using Garner’s algorithm
[4].

2. Compare MRS(x) with a precomputed value,
MRS(dM/2e).

sign ({x}B) =

0, if MRS (x) < MRS(dM/2e)
1, if MRS (x) ≥ MRS(dM/2e)
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The amount of computation necessary in each of the above
steps is evaluated as the following.
Step 1. Modular multiplication: n(n − 1)/2 times,
Step 2. Comparison of w-bit words: Minimum once, maxi-
mum n times.

The most time-consuming part of this algorithm is
modular multiplications, the number of which is estimated
as O(n2). Note that in step 1, the first word computed is the
least significant one, and the last word is the most significant
one. Consequently, we cannot proceed to step 2 before com-
puting all the words of MRS. As far as sticking to the basic
operations permitted in RNS, there is no known comparison
algorithm with complexity lower than O(n2).

2.3 Sign Function and x/M

We can modify Definition 1 to derive Definition 3, in which
equations in the if-clauses are divided by M on both sides,
without affecting the sign function.
Definition 3:

sign ({x}B) =

0, if x/M < 1/2
1, if x/M ≥ 1/2

�
According to Definition 3, we can efficiently compute

the sign function if x/M is evaluated efficiently from {x}B.
Let the binary representation of x/M be defined by

x
M

=

∞∑
i=1

b−i · 2−i,

where b−i ∈ {0, 1}. Usually, the following relation holds.

b−1 = 0⇐⇒ x/M < 1/2
b−1 = 1⇐⇒ x/M ≥ 1/2

In this case, sign ({x}B) is given by the first bit after the dec-
imal point of x/M.

An exception can occur when x = M/2. If x/M is
represented as 1 · 2−1, then the rule above succeeds. But 1/2
can also be represented by a repeating decimal as

1
2

=

∞∑
i=2

1 · 2−i.

In such a case, b−1 = 0, and the above decision rule fails.
The Chinese remainder theorem is known as a way to

compute a radix representation of x from an RNS represen-
tation. The equation below is an expression of the Chinese
remainder theorem

x =

〈 n∑
i=1

〈
xiM−1

i

〉
mi

Mi

〉
M

, (1)

where xi = 〈x〉mi . If we divide both sides by M and replace
a variable with ξi =

〈
xiM−1

i

〉
mi

, we obtain

x
M

=

〈 n∑
i=1

ξi

mi

〉
1

. (2)

The right-hand side means an operation to provide the frac-
tional part of the number in the parenthesis, or to truncate
the integer part. By using {W}B, defined in Sect. 2.1, we can
express ξi simply as[

ξ1 ξ2 . . . ξn

]
= {x}B ⊗ {W}B.

We can construct a sign-detection algorithm by apply-
ing (2) to the if-clause of Definition 3. This idea was first
proposed in [8]. Although the equation evaluated in [8] is
slightly different from (2) in that both sides are doubled
(Equation (10) of [8]), its principle is the same as Theo-
rem 1, which will appear in Sect. 3. In [8], the equation
is evaluated using a lookup table, which has an entry ξi/mi
with a precision of log2 nM bits, addressed by xi. Since the
address is xi, the table entries become larger as the bit size of
the base elements increases. Consequently, the application
is limited to those with small moduli.

Recently, a new sign-detection algorithm with com-
plexity O(n) was proposed in [9]. The algorithm uses a
lookup table with very coarse precision. Nevertheless, it
shares the same problem with the algorithm in [8], since xi
is used as the address to a table entry. It is recommended
in [9] that the base elements should be consecutive prime
numbers starting from 3 to make the elements as small as
possible.

For cryptographic applications, it is often the case that
the bit length of each base element is chosen to be close to
the word length w of a given computer to make each opera-
tion efficient. No sign-detection algorithm with a moderate
table size has been proposed, even in such cases as w ≥ 32.
Equation (2) is also used in [17], but procedure of sign de-
tection is less efficient.

3. Principle of Proposal

3.1 Approximation Function

Let G(x) denote the value in the parenthesis of (2). Then,

G(x) =

n∑
i=1

ξi

mi
.

In addition, the approximation of G is denoted by G(x, d),
where the second argument is a non-negative integer that
represents the degree of approximation. We define the ap-
proximation error by

e(x, d) = G(x) −G(x, d).

We choose an approximation function G(x, d) such that the
following three conditions are satisfied.

(i) e(x, d) ≥ e(x, d + 1) ≥ 0
(ii) limd→∞ e(x, d) = 0
(iii) e(0, d) = 0
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This requires that e(x, d) decreases monotonically as d in-
creases, that e(x, d) = 0 with d infinite, and that the error is
0 when x = 0.

Let e(d) be defined by

e(d) = max
x

e(x, d).

Then we obtain the following equation.

0 ≤ e(x, d) ≤ e(d)

Conditions (i) and (ii) ensure that we can make the er-
ror as close to 0 as we like. Now we get Lemma 1 and
Theorem 1.
Lemma 1:

If an approximation function and its error satisfy con-
ditions (i) and (ii), there exists an integer δ such that

0 ≤ e(d) ≤ ε

holds for an arbitrary small real number ε > 0 and all inte-
gers d satisfying d ≥ δ. �
Theorem 1:

If the approximation error e(x, d) satisfies Conditions
(i)–(iii), there exists an integer δ satisfying

e(δ) ≤
1

2M
.

Then, for any x ∈ [0,M − 1] excluding x = M/2, the first bit
after the decimal point of

〈G(x, δ)〉1

is identical to that of 〈G(x)〉1, which equals the sign bit de-
fined in Definitions 1 and 3. �
Refer to Appendix A for the proof. We exclude the case x =

M/2 since there is a possibility that we cannot determine
the sign by b−1 alone due to the occurrence of a repeating
decimal. We will discuss how to deal with the case x = M/2
in Sect. 4.

3.2 Approximation Error and Sign Detection

We explain the mechanism to determine the sign of x
from 〈G(x, d)〉1. Figure 1 is a diagram showing the value
of 〈G(x, d)〉1 computed for a given x. Points P(x) =

(x, 〈G(x, d)〉1) appear in the area between the lines y =

(1/M)x and y = (1/M)x − e. In addition, they also appear
in the triangular area above the line y = (1/M)x + (1 − e).
Here, the symbol e is a simplified expression of the error
bound e(d). To determine a sign, we first compute 〈G(x, d)〉1
from {x}B, then evaluate the value according to the following
rules:

〈G(x, d)〉1 ∈ [0, 1/2 − e)⇒ sign(x) = 0,
〈G(x, d)〉1 ∈ [1/2, 1 − e)⇒ sign(x) = 1,
〈G(x, d)〉1 ∈ [1/2 − e, 1/2) ∪ [1 − e, 1)

⇒ indeterminate.

Fig. 1 Diagram of x versus approximate x/M.

If 〈G(x, d)〉1 ∈ [1/2 − e, 1/2) occurs from the indeter-
minate case, we can narrow the range of x as ((1/2)−e)M ≤
x ≤ ((1/2) + e)M. But, if P(x) is in the area C, the correct
sign of x is 0. If, instead, P(x) is in the area A, the correct
sign of x is 1. Thus, we cannot tell the correct sign. Simi-
larly, if 〈G(x, d)〉1 ∈ [1 − e, 1) occurs, we can only conclude
that x ∈ [0, eM] or x ∈ [(1 − e)M,M), and cannot deter-
mine the sign. We can rephrase the condition of Theorem
1, e(δ) ≤ 1/2M, as the condition that no point appears in
the area A or in area C in Fig. 1. The analysis here also tells
us that relatively high precision, or a larger d, is necessary
for sign detection near x = M/2, x = 0, and x = M. Less
precision, or smaller d, is required for x away from them.

We will propose two candidates for the approximation
function G(x, d); one is based on a power series and the other
is based on a reciprocal table.

4. Method Based on Power Series

To derive a concrete algorithm, the following three points
should be considered.

• Choice of an approximation function that satisfies the
condition in Theorem 1.

• Proposal of efficient algorithm to compute the approx-
imation function.

• Moderate memory size.

4.1 Choice of Approximation Function

We pose a condition that is frequently used in the crypto-
graphic implementation on the base elements, specifically,

mi = 2w − µi,

where µi is an integer in the range 0 ≤ µi < 2bw/2c and w
is the bit size of a word for a given computer. With such
a modulus, modular operations can be easily implemented.
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Further optimization regarding µi may be possible for effi-
cient implementation (e.g. [15]). The proposed algorithm
can be combined with such optimization, if necessary.

The reciprocal of mi can be expanded as a power series

1
mi

=
1
2w
·

1
1 − µi/2w

=
1
2w

∞∑
k=0

(
µi

2w

)k
.

Note that the equation holds for any case, including µi = 0,
if we define 00 = 1.

Substituting an infinite power series for the equation of
G(x) and truncating the tail after the d-th power, we obtain
the approximation function for G(x) as

G(x, d) =

n∑
i=1

ξi

2w

d∑
k=0

(
µi

2w

)k
. (3)

The approximation error e(x, d) is given by

e(x, d) =

n∑
i=1

ξi

mi

(
µi

2w

)d+1
.

If x varies, ξi moves in the range 0 ≤ ξi ≤ mi − 1. Therefore,
e(x, d) ranges in

0 ≤ e(x, d) ≤ e(d) =

n∑
i=1

(
1 −

1
mi

) (
µi

2w

)d+1
. (4)

As d increases, the upper bound decreases exponentially.
This approximation fulfills the conditions (i)–(iii) in Sect. 3.

To simplify the expression of G(x, d), we define g as

g(x, k) =

n∑
i=1

ξi · µ
k
i . (5)

Then, G(x, d) is rewritten as

G(x, d) =

d∑
k=0

1
2w(k+1) g(x, k). (6)

Next, we find a parameter d that is large enough for
sign detection. Since M ≈ 2nw, the following equation
holds:

e(n − 1) =

n∑
i=1

(
1 −

1
mi

) (
µi

2w

)n
>

1
2nw >

1
2M

.

This means that d = n − 1 is not sufficiently large. If d = n,
then

e(n) =
1

2(n+1)w

n∑
i=1

(
1 −

1
mi

)
µn+1

i .

This implies there is a possibility that e(n) will satisfy the
condition in Theorem 1 if µi is small to some extent. In other
words, d ≥ n is a necessary condition for the assumption of
Theorem 1 to be fulfilled. Let us assume that we can find µi
and w that satisfy the assumption of Theorem 1 for d = n.

Even if this is not true, we can make the error sufficiently
small if we choose a bigger d. In this case, however, the
number of computation steps increases as well. In addition,
the term µk

i in (5) becomes larger and there is the possibility
that an operation larger than w bits is necessary.

Let us estimate the number of steps necessary to com-
pute (3) for d = n. The number of terms that appear in a
power series is n for each base. n multiplications are neces-
sary to multiply n terms by ξi. Since the suffix i has n differ-
ent values, we have O

(
n2

)
multiplications in total. This is

not better than that of MRS. To improve the computational
complexity, we must devise an efficient algorithm to evalu-
ate the approximate equation.

4.2 SDPS Algorithm

We propose a sign-detection algorithm based on Theorem
1 and name it SDPS (sign detection using a power series),
the pseudocode of which is shown in Fig. 2. The variable
gx k corresponds to a function g(x, k) defined by (5). To
compute G(x, d) efficiently, SDPS is designed according to
the following policies.

• Compute µk
i in advance as a lookup table for 1/mi.

• Start computing from the most significant word, which
includes a sign bit.

• Stop computing as soon as a sign bit is determined.

These make it possible for the average number of computa-
tion steps to be O(n). To realize this, we must establish a
way to decide whether the sign bit has been determined.

In Fig. 2, the algorithm stops either at step 13, in the
middle of the for-loop, or at step 17, after the n-th loop is
finished. At step 11, the if-clause is executed if carry equals
1 or sum is not all 1s. In the case when carry equals 1,
carry travels to the position of the sign bit, b−1, and the sign
bit is fixed ever after. In the case when sum is not all 1s,
sum will not produce a new carry since a carry from the less
significant block will stop within sum. Hence, the sign bit is
fixed in this case as well. The basis of this decision rule is
the following simple property of carry propagation.

Let B, C be two binary numbers whose i-th bit is repre-
sented by bi, ci ∈ {0, 1}, respectively. The suffix is an integer
and a larger suffix represents a more significant bit. Suppose
bi is the bit of interest and i > j. If a carry c j is added to the
j-th bit of B, then bi changes if and only if c j = 1 and all
bits from bi−1 to b j are 1.

The bit alignment of values computed in SDPS is pre-
sented in Fig. 3, where the left end is the decimal point and
lower bits are located in the right-hand direction. In Fig. 3,
low(0) and high(1) are added first, and sum(1) and carry(1)
are obtained. This procedure is continued to less significant
blocks until the sign bit is fixed. In SDPS, the bit size of
high(k) becomes bigger as the parameter k increases due to
the bit size of µk

i . If high(k) becomes too big, SDPS will not
give the correct sign. To circumvent such cases, we impose
the following two conditions at step 7.

1. high(1) < 2w−1 holds in the first loop
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Fig. 2 RNS sign-detection algorithm SDPS.

2. high(k) < 2w holds in the later loops

Condition 1 ensures that the first bit of high(1) after the dec-
imal point is 0, which means high(1) does not directly mod-
ify the sign bit. Condition 2 ensures that the carry at step 10
is at most 1. It is possible to prove that these conditions are
satisfied if

e(n) ≤
1

2M
holds (Appendix B).

Finally, we assert by Theorem 2 that the SDPS algo-
rithm outputs the same result as computed by 〈G(x, n)〉1.
Theorem 2:

If

e(n) =

n∑
i=1

(
1 −

1
mi

) (
µi

2w

)n+1
≤

1
2M

holds, the return value of SDPS, except for the case x =

M/2, is identical to the first bit after the decimal point of

〈G(x, n)〉1.

�

Fig. 3 Bit alignment of steps 1–10 of SDPS for n = 3.

In addition, we can derive two corollaries that have
simpler assumptions.
Corollary 1:

Theorem 2 holds even if we replace the assumption by

n∑
i=1

µn+1
i < 2(w−1).

�
Corollary 2:

Theorem 2 holds even if we replace the assumption by

max (µi)n+1 · n < 2(w−1).

�
Proof is that from the assumptions of Corollaries 1 and 2,
we can derive the following equation:

e(n) <
1

2wn+1 <
1

2M
.

The assumption of Corollary 1 can be violated for large n
unless µi is adequately small. In Sect. 5, we will propose an
algorithm with an easier constraint on µi so that the sign can
be detected for a much wider range of bases.

4.3 Handling of x = M/2

SDPS excludes the case that x = M/2 for input. We consider
how to deal with such a case.

1. Avoid x = M/2 by using odd M.
2. Use even M, and return 1 if the input is x = M/2. We

give three ways to determine the sign.
(a) Suppose m1 is even. Then, x = M/2 can be rep-

resented as

{M/2}B = [m1/2, 0, . . . , 0] .

If this input is detected, return 1 immediately.
(b) Choose m1 = 2w, that is, µ1 = 0, and run SDPS

as usual. Then, SDPS returns 1.
(c) Choose m1 = 2w − µ1, where µ1 is a non-negative

even number. In this case, SDPS computes 1/2 as a re-
peating decimal. We detect it by finding that the length
of consecutive 1s is more than n words. This can be
achieved by inserting the following code immediately
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after step 14 of SDPS.
s1: if k = n then return(1) end if

5. Method Based on Reciprocal Table

5.1 Choice of Approximation Function

We propose an algorithm that has fewer restrictions on the
parameter µi than SDPS. We assume that the base has a form
explained in Sect. 2.1.

A reciprocal table is produced by dividing the recipro-
cal of a modulus represented in binary into a sequence of
words hi(k).

1
mi

=

∞∑
k=1

hi(k) · 2−kw

0 ≤ hi(k) ≤ 2w − 1

Substituting the table into (2) leads to

x
M

=

〈 n∑
i=1

ξi

∞∑
k=1

hi(k) · 2−kw

〉
1

.

To distinguish a new approximation function from G(x, n),
we use H(x, d), which is defined as

H(x, d) =

d∑
k=1

h(x, k) · 2−kw

h(x, k) =

n∑
i=1

ξi · hi(k)

eH(x, d) =

∞∑
k=d+1

h(x, k) · 2−kw.

The upper bound of the error is estimated as

eH(x, d) ≤ eH(d) < n · 2−(d−1)w.

This means that we can make the error as close to 0 as we
like by taking sufficiently large d. Thus, we can find an
integer δ that satisfies assumption of Theorem 1. If we take
δ = n + 2, it follows that

eH(n + 2) < n · 2−(n+1)w.

In addition, if n and w satisfy the equation

n < 2w−1, (7)

we get

eH(n + 2) < 2w−12−(n+1)w = 2−nw−1 <
1

2M
.

This means that a sign bit is given by the first bit after the
decimal point of 〈H(x, n + 2)〉1.

To efficiently evaluate H, we compute hi(k) in advance.
The first two entries of hi(k) can be written as

hi(1) = 1
hi(2) = µi or µi + 1

from analysis using a power series (Appendix C). We use
these values to describe the algorithm in the next subsection.
The value of hi(2) is described as µ̄i, which equals µi or µi +

1.

5.2 SDRT Algorithm

It takes O(n2) operations to compute a function 〈H(x, n+2)〉1
with full accuracy. To reduce the order, we propose an algo-
rithm similar to SDPS that controls precision adaptively and
halts as soon as the sign bit is fixed. We name this SDRT
(sign detection using reciprocal tables). Pseudocode and the
bit alignment of SDRT are shown in Figs. 4 and 5, respec-
tively. As discussed in the previous subsection, it is neces-
sary to take a d equal to or larger than (n+2) so that the error
is sufficiently small. In SDRT, d is set to (n + 3) to simplify
the description of the algorithm.

In SDPS, the boundary of words coincides with that of
processing; that is, the variable sum(k) just fits between two
word-boundaries in Fig. 3. In addition, it is a crucial point
that the sign-detection at step 11 in Fig. 2 works correctly
under the condition that the carry is at most 1. On the other
hand, if the boundaries of words and processing were made
to coincide in SDRT, then carry would become at most 2.
In order to make carry at most 1, we shift the boundary of
processing by 1 bit to the decimal point. This makes carry
at most 1 and the sign detection works correctly in Fig. 4.

To confirm that carry is at most 1, we first consider (7)
and derive the following equation:

(h3 � 2w) < n < 2w−1.

In addition, it is apparent that

〈h1〉2w ≤ 2w − 1
〈h2 � w〉2w ≤ 2w − 1.

Then, we can estimate the maximum value of tmp at step 19
in Fig. 4 as less than 2w + 2w−1 + 2w−2 − 1. This proves that
the carry is at most 1. As a result, we can use the same code
for steps 21–24 in Fig. 4 as used in steps 11–14 in Fig. 2.

Let S be the approximate value of 〈H(x,∞)〉1 derived
from SDRT. S is computed by the summation of carries and
sums that are aligned as shown in Fig. 5. Since S is trun-
cated at the {(n + 1)w − 1}-th bit after the decimal point, its
approximation error eRT is

eRT = 〈H(x,∞)〉1 − S < 2−(n+1)w+1 <
1

2M
.

Since eRT satisfies the assumption of Theorem 1, we obtain
the following Theorem.
Theorem 3:

If n < 2w−1, then for any integer x ∈ [0,M − 1] except
x = M/2, the return value of SDRT is identical to the first
bit after the decimal point of
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Fig. 4 RNS sign-detection algorithm SDRT.

〈H(x,∞)〉1.

�
If x = M/2 occurs in SDRT, the same action as ex-

plained in Sect. 4.3 can be taken. As a special case, the ac-
tion corresponding to 2-(c) is to insert the following code
immediately after step 24 in Fig. 4.

s1: if k = n + 3 then return(1) end if
Finally, we can solve the overflow-detection problem

associated with addition efficiently by use of the sign func-
tions proposed in Sects. 4 and 5 (See Appendix D).

Fig. 5 Bit alignment of steps 7-20 of SDPS for n = 3.

6. Evaluation

6.1 Computational Complexity

6.1.1 Probability Derived from d-th Approximation

First, we derive the probability that a sign is determined
from G(x, d). In this case, a residual error is bounded by
e(d) from (4), while in SDPS, the error is bounded by a
word boundary. Therefore, the probability derived here is
not equal to that of SDPS, but the derivation process here
will be applied to derive a probability of SDPS in the next
Sect. 6.1.2. We assume that the distribution of input x is
uniform.

From Fig. 1, the probability that sign of x is determined
is estimated as

ϕd = 1 − 2e(d)

under the condition that the error is e(d).
Let pd denote the probability that a sign is determined

when the d-th term is computed but not before this term.
Then, pd is represented by

pd = ϕd − ϕd−1,

where d = 0, 1, 2, · · · and ϕ−1 = 0. The upper bound of (4)
leads to

p0 = 1 − 2
n∑

i=1

(
1 −

1
mi

) (
µi

2w

)
pd = 2

n∑
i=1

(
1 −

1
mi

) (
µi

2w

)d (
1 −

µi

2w

)
(d ≥ 1).

pd decreases exponentially as d increases. The expected
number of operations can be computed using this probabil-
ity.

6.1.2 Probability Derived from Error at Word Boundary

Next, we derive probabilities representing SDPS and SDRT.
To represent both probabilities with a single formula, let us
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Table 1 Number of operations in SDPS (left) and SDRT (right).

replace the loop variable with j. Let p j denote the proba-
bility that a sign is detected at the j-th loop, where j = 0
corresponds to the process before the loop. For SDPS, j is
the same as the loop variable k used in Fig. 2, whereas for
SDRT, j and k have the relationship j = k − 2, from Fig. 4.
In SDRT, the maximum value of j is n + 1, which is one
larger than that of SDPS. In our analysis, we assume that
pn+1 = 0. As a result, the same formula can be used for
SDPS and SDRT. The assumption above is justified by not-
ing that pn+1 < pn and pn is negligibly small if w is large
enough.

Now, we derive the probability according to the process
presented in the previous Sect. 6.1.1. Let e j be the upper
bound of the error in the j-th loop. Then

e j =
a

N j ,

where N = 2w, a = 1 for SDPS, and a = 2 for SDRT. Thus,

ϕ j = 1 − 2e j = 1 −
2a
N j .

With ϕ0 = 0, for 1 ≤ j < n, we obtain

p j = ϕ j − ϕ j−1.

If we assume that a sign is detected for all input up to j = n,
the probability is described as follows:

p1 = 1 −
2a
N

p j =
2a

N j−1

(
1 −

1
N

)
(for 2 ≤ j ≤ n − 1)

pn =
2a

Nn−1

6.1.3 Expected Number of Steps of Computation

Table 1 summarizes the number of multiplications (Mul)
and additions (Add) executed at each step in the j-th loop
of SDPS (left) and SDRT (right). Each table has an entry,

Expectation 1, which presents the expected number of oper-
ations computed with the probability derived in 6.1.2. As an
example, the average number of multiplications in SDPS is
computed as

n∑
j=1

p j · (1 + j)n

= n + n
n−1∑
j=1

p j · j

= n + n

1 − 2a + 2a

1 −
(

1
N

)n

1 − 1
N




≈ 2n.

This result implies that the algorithm halts mostly at the first
loop if N is sufficiently large. In other words, the probability
that the algorithm is continued after the first loop is negligi-
bly small. The worst-case complexity is no more than O(n2),
which occurs when the sign is not determined until the last
loop.

The standard deviation for the number of multiplica-
tions is derived as

σ ≈

√
6a
N
· n.

This represents a very steep distribution around the average.
The result in Table 1 leads to the following Theorem.

Theorem 4:
If the input to SDPS and SDRT is chosen uniformly and

at random, and if N = 2w is sufficiently larger than 1, then
the expected number of operations is O(n) multiplications
and O(n) additions �

Furthermore, with n multipliers operating in parallel,
the expected number of multiplications becomes O(1). Sim-
ilarly, with an n-input adder, the order of additions turns into
O(1). In addition, multiplication at step 0 becomes unnec-
essary if x can be represented by ξi instead of {x}B.

A numerical experiment was done to confirm the valid-
ity of the theoretical expression of the probability. Figure 6
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Fig. 6 Frequency of loop 2.

is a histogram that shows the frequency of the loop number
at which the algorithm SDPS halts when the input x varies
from 0 to M − 1. The dark gray graph is SDPS of interest
here and the light gray graph will be discussed in 6.1.4. The
vertical axis is shown on a log scale.

We select relatively small parameters, n = 3, w = 11,
and (µ1, µ2, µ3) = (1, 3, 5), so that an exhaustive experiment
on x is possible. The result agrees well with the expectation
computed from the probability. In fact, the error relative to
the theoretical result is less than 0.4%. The frequency of a
loop count of 1 is much larger than the sum of other fre-
quencies. The ratio is about (1 − 2a/N) : (2a/N) ≈ 1000: 1
both experimentally and theoretically, for our parameters. It
is only near x = 0,M/2,M that a loop count more than 2 is
seen. A similar result is obtained for SDRT.

6.1.4 Preliminary Detection for Improvement

To reduce the computation steps further, we propose to add
preliminary detection steps that evaluate the first several bits
of the first approximate term immediately after it is com-
puted. Here is the pseudocode of the preliminary detection.

s1: low← 〈F〉2w
s2: sign← low � (w − 1)
s3: tmp← low

∧
Mask

s4: if tmp , Mask then return(sign) end if
To improve SDPS, steps 2 and 3 in Fig. 2 should be replaced
by the above code. In this case, symbol F at step s1 should
be replaced by gx k. As for SDRT, the above code should
be added immediately before step 2. This time, F should be
replaced by h2. The constant Mask is defined as follows:

v =

log2

 n∑
i=1

µi


 ,

Mask = 2w−1 − 2v.

Mask is designed so that the MSB and v least significant
bits are zero and the other bits are one. In the preliminary
detection steps, tmp has a bit string that is cut out by Mask
from low (at step s3). If the bit string is not all 1s, the sign bit
is fixed and the algorithm halts. Otherwise, if the bit string
is all 1s, the algorithm proceeds to compute the next term.

Let p′j denote the probability that the algorithm with
preliminary detection halts in the j-th loop. Then,

p′0 = 1 −
1
V
,

where

V = 2w−v−1.

The rest are

p′1 =
1
V
−

2a
N
,

p′j = p j (for 2 ≤ j ≤ n).

p j is the probability defined in 6.1.2. The expectation com-
puted using p′j is shown in Expectation 2 of Table 1. The
experimental result for SDPS with preliminary detection is
shown in the light gray graph in Fig. 6.

6.1.5 Optimality

We next discuss the optimality of our algorithm in terms of
computational complexity. According to Theorem S ([7],
p.291), we must use all elements of {x}B to compute a cor-
rect sign. Suppose we use an arbitrary binary operation that
has two inputs and one output, a typical example of which
is multiplication or addition. Since {x}B has n elements, at
least (n−1) operations are necessary to obtain an output that
depends on all the elements. Therefore, the number of op-
erations for sign detection cannot be less than (n − 1). In
Table 1, Expectation 2 for multiplication is slightly greater
than n. This shows that our algorithms are very nearly opti-
mal.

6.2 Size of Lookup Table

We evaluate the memory size for a lookup table including a
constant {W}B. Let S G and S H denote the memory sizes for
SDPS and SDRT, respectively. Then,

S G = n(n + 1)w ≈ (n + 1) log2 M,
S H = n(n + 3)w ≈ (n + 3) log2 M

=

(
log2 M

)2

w
+ 3 log2 M (bit)

≈ O
((

log2 M
)2
)
.

We assume here that each lookup table is a sequence of
words. S H is larger than S G, shown in Fig. 7, with pa-
rameters w = 32, 64, 96, and 128. Even in the most
memory-consuming case, w = 32, our sign detection can
be implemented with 4.38 KB and 98.1 KB memories for
log2 M = 1000 and 5000 bits, respectively. On the other
hand, the respective memory size required by the method
in [9] are more than 200 KB and 2 MB (Fig. 6(b) of [9]).
Hence, our algorithm reduces the memory size by a factor
of at least 1/20 for log2 M = 5000 bits. Graphs of memory
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Fig. 7 Memory size of lookup table for SDRT.

size for [9] are out of the range of Fig. 7. In [9], memory
size is evaluated as

O
((

log2 M
)3 /(log2 log2 M)2

)
.

Since the denominator increases very slowly, the degree of
this equation in log2 M can be approximated by 3, while
memory size of our algorithms is degree 2.

Let S V denote the memory size of Vu’s method [8].
Then, it follows that

S V ≈ n2w log2 nM

≈ 2w

(
log2 M

)2

w
+

(
log2 n
w

)
log2 M


≈ O

( n√
M ·

(
log2 M

)2
)
.

Compared with S H , S V is about 2w times the size. Vu’s
algorithm stores all entries corresponding to all values of
xi, while our algorithm stores only one representative value
and produces the variation by multiplying the value ξi that
depends on the value of xi. This results in a significant mem-
ory reduction.

7. Conclusion

We have proposed efficient sign-detection algorithms, SDPS
and SDRT, that compute via the Chinese remainder theo-
rem using approximate reciprocals. The average computa-
tional complexity of the algorithms is O(n), where n is the
number of base elements. The size of lookup table is rea-
sonably small and at most (n + 3) log2 M bits. To the best
of our knowledge, the proposed algorithms realize the best
efficiency and the least memory. At least, they are supe-
rior to all algorithms that were evaluated in [9]. We conjec-
ture that there is little hope for finding a substantially better
method with an order < O(n), for the same reason as men-
tioned by Knuth. The proposed algorithms make it possible
to efficiently compare two integers in RNS. Now we can
implement, in RNS, procedures that are important but have
been circumvented due to inefficiency of comparison. Such
procedures include the binary extended Euclidean algorithm
and the final subtraction of Montgomery multiplication. The
validity of the proposed algorithms is confirmed by com-
puter experiment. Further study is necessary to evaluate the

proposed algorithms on FPGA or ASIC architectures.
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condition (iii). Theorem 1 holds in this case.
If x , 0, we will show that bG(x)c = bG(x, δ)c holds

for ∀x ∈ [1,M − 1]. From G(x, d) = G(x) − e(x, d) and
0 ≤ e(x, d) ≤ e(d), we can derive

G(x) − e(d) ≤ G(x, d) ≤ G(x).

If we substitute the relation

G(x) = 〈G(x)〉1 + bG(x)c

=
x
M

+ bG(x)c,

to this equation, we get the following equation.

x
M
− e(d) ≤ G(x, d) − bG(x)c ≤

x
M

(A· 1)

From now on, we assume d = δ, which satisfies the assump-
tion of Theorem 1. Under this condition, the lower bound of
(A· 1) is assessed as follows:

x
M
− e(δ) ≥

x
M
−

1
2M

=
2x − 1

2M
≥

1
2M

> 0. (A· 2)

We apply condition x ≥ 1, which comes from our tempo-
ral assumption, x , 0. The upper bound of (A· 1) can be
evaluated as

x
M
≤

M − 1
M

< 1. (A· 3)

From (A· 1)–(A· 3), it follows that

0 < G(x, δ) − bG(x)c < 1.

This means that

bG(x)c = bG(x, δ)c.

This relation justifies the equation

G(x, δ) − bG(x)c = G(x, δ) − bG(x, δ)c
= 〈G(x, δ)〉1.

Substituting this relation and d = δ to (A· 1), we obtain

x
M
− e(δ) ≤ 〈G(x, δ)〉1 ≤

x
M
. (A· 4)

Now, we evaluate the range of 〈G(a, δ)〉1 using (A· 4) when
a is in the range of a positive number as

a ∈ {x|1 ≤ x < M/2, x is an integer}.

The lower bound on (A· 4) is derived by (A· 2), and the upper
bound is

(upper bound) =
x
M

<
(M/2)

M
=

1
2
.

Thus, we obtain

0 < 〈G(a, δ)〉1 <
1
2
.

Therefore, b−1 = 0 holds for 〈G(a, δ)〉1.
Similarly, if

b ∈ {x|M/2 < x ≤ M − 1, x is an integer},

then

min(b) =

M/2 + 1, if M is even,
M/2 + 1/2, if M is odd.

The upper bound of (A· 4) is assessed by (A· 3) and the
lower bound of (A· 4) is

(lower bound) =
x
M
− e(δ) ≥

min(b)
M

−
1

2M
≥

1
2
.

Thus,

1
2
≤ 〈G(b, δ)〉1 < 1

holds. Therefore, b−1 = 1 holds for 〈G(b, δ)〉1. Theorem 1
is proven when x , 0 as well.

(Q.E.D.)
From the above discussion, when M is even, we can

replace the assumption of Theorem 1, e(δ) < 1/2M, by
e(δ) < 1/M.

Appendix B: Upper Bound of high(k)

Lemma 2 ensures that high(k) < 2w holds for 1 ≤ k ≤ n.
Lemma 2:
If

e(n) ≤
1

2M
,

then for 1 ≤ k ≤ n,

high(k) ,


 n∑

i=1

ξiµ
k
i

 � w

 < 2w.

�
Proof:
The conclusion of Lemma 2 is equivalent to

n∑
i=1

ξiµ
n
i < 22w (A· 5)

holding when k has a maximum value of n. Equation (A· 5)
is to be proven.

From mi ≤ 2w, we obtain

n∑
i=1

ξi

2w

(
µi

2w

)n+1
≤

n∑
i=1

ξi

mi

(
µi

2w

)n+1
.

Since the right-hand side equals e(x, n), we obtain

e(x, n) ≤ e(n) ≤
1

2M

from the assumption of Lemma 2. Thus,
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n∑
i=1

ξi

2w

(
µi

2w

)n+1
≤

1
2M

holds. This equation can be modified as

n∑
i=1

ξiµ
n+1
i ≤

2(n+2)w

2M

=
22w

2
∏n

i=1

(
1 − µi

2w

)
≈ 22w−1

< 22w. (A· 6)

If µi is a non-negative integer and n is positive integer,

µn
i ≤ µ

n+1
i

holds. This proves (A· 5).
(Q.E.D.)

Lemma 3 ensures that high(1) < 2w−1.
Lemma 3:
If

e(n) ≤
1

2M
,

then, for k = 1, it holds that

high(1) ,


 n∑

i=1

ξiµi

 � w

 < 2w−1.

�
Proof:

It suffices to show that
n∑

i=1

ξiµi < 22w−1. (A· 7)

We will assess the left-hand side by case. Suppose n ≥ 2
and µi , 1; then 2µi ≤ µ

2
i holds for any i, even if µi = 0 for

some i. With these in mind, we have the following cases.
Case 1: µi , 1.

2n
n∑

i=1

ξiµi ≤

n∑
i=1

ξiµ
n+1
i

From (A· 6) of the proof of Lemma 2, the upper bound is
modified as

2n
n∑

i=1

ξiµi < 22w

n∑
i=1

ξiµi < 22w−n

Note that n ≥ 2, so this equation proves (A· 7).
Case 2: when µ1 = 1.

2n
n∑

i=2

ξiµi + ξ1 ≤

n∑
i=1

ξiµ
n+1
i

From (A· 6) of the proof of Lemma 2, the following equation
is derived.

n∑
i=2

ξiµi <
1
2n

(
22w − ξ1

)
≤ 22w−n

This proves (A· 7) and thus Lemma 3.
(Q.E.D.)

Appendix C: First and Second Entries of Reciprocal
Table

The elements of a reciprocal table, hi(k), can be computed
by the following recurrence formula, sequentially from k =

1.

hi(k) =


 1

mi
−

k−1∑
j=1

hi( j)2− jw

 2wk


Substituting a power series for 1/mi leads to

hi(k) =


 1

2w

∞∑
l=0

(
µi

2w

)l
−

k−1∑
j=1

hi( j)2− jw

 2wk

 .
If k = 1 and we substitute εi = µi/2w, then

hi(1) =

⌊
1

1 − εi

⌋
=

⌊
1 +

εi

1 − εi

⌋
= 1.

The last equation is due to εi < 1/2.
Similarly, if k = 2, we can derive

hi(2) =

⌊
µi +

µiεi

1 − εi

⌋
= µi +

 1
2w
·

µ2
i

1 − εi

 .
To find the condition in which the value in the last floor sym-
bol is less than 1, we define f as f (µi) = µ2

i + µi − 2w. The
positive root of f (µi) = 0 is given by

s =

√
2w+2 + 1 − 1

2
.

We can summarize the result as

hi(2) =

µi, (0 ≤ µi < s)
µi + 1,

(
s ≤ µi < 2bw/2c

)
.

Since s is rather close to 2bw/2c, if we choose µi at random,
hi(2) = µi holds with a very high probability.

Appendix D: Overflow Detection of Modular Addition

An overflow (OF) detection of modular addition is known as
a relevant problem for sign detection. To realize an efficient
OF detection, we represent an integer x by {x}B appended
with sx, a sign bit of Definition 1. As shown in Fig. A· 1, the
OF flag can be computed efficiently with a single call to the
sign function.
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Fig. A· 1 Overflow detection of addition.
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