
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021
1101

PAPER Special Section on Discrete Mathematics and Its Applications

Max-Min 3-Dispersion Problems

Takashi HORIYAMA†, Shin-ichi NAKANO††a), Toshiki SAITOH†††, Members,
Koki SUETSUGU††††, Nonmember, Akira SUZUKI†††††, Ryuhei UEHARA††††††, Takeaki UNO††††,

and Kunihiro WASA∗, Members

SUMMARY Given a set P of n points on which facilities can be placed
and an integer k, we want to place k facilities on some points so that the
minimum distance between facilities is maximized. The problem is called
the k-dispersion problem. In this paper, we consider the 3-dispersion prob-
lem when P is a set of points on a plane (2-dimensional space). Note that
the 2-dispersion problem corresponds to the diameter problem. We give
an O(n) time algorithm to solve the 3-dispersion problem in the L∞ metric,
and an O(n) time algorithm to solve the 3-dispersion problem in the L1 met-
ric. Also, we give an O(n2 log n) time algorithm to solve the 3-dispersion
problem in the L2 metric.
key words: algorithms, dispersion problem, facility location

1. Introduction

The facility location problem and many of its variants have
been studied. See good textbooks [10], [11]. Typically,
given a set of points on which facilities can be placed and
an integer k, we want to place k facilities on some points so
that a designated function on distance is minimized. By con-
trast in the dispersion problem, we want to place facilities so
that a designated function on distance is maximized.

The intuition of the problem is as follows. Assume that
we are planning to open several chain stores in a city. We
wish to locate the stores mutually far away from each other
to avoid self-competition. We want to find k points so that
the minimum distance among them is maximized. For more
applications, including result diversification, see [8], [19],
[20].

Now we formally define the max-min k-dispersion
problem. Given a set P of n possible points, a distance
function d for each pair of points (we assume that d is a

Manuscript received August 24, 2020.
Manuscript revised January 3, 2021.
Manuscript publicized March 19, 2021.
†The author is with Hokkaido University, Sapporo-shi, 060-

0814 Japan.
††The author is with Gunma University, Kiryu-shi, 376-8515

Japan.
†††The author is with Kyushu Institute of Technology, Iizuka-shi,

820-8502 Japan.
††††The authors are with National Institute of Informatics, Tokyo,

101-8430 Japan.
†††††The author is with Tohoku University, Sendai-shi, 980-8579

Japan.
††††††The author is with JAIST, Nomi-shi, 923-1292 Japan.

∗The author is with Toyohashi University of Technology,
Toyohashi-shi, 441-8580 Japan.

a) E-mail: nakano@cs.gunma-u.ac.jp
DOI: 10.1587/transfun.2020DMP0003

symmetric nonnegative function satisfying d(p, p) = 0 for
all p ∈ P), and an integer k with k � n, we want to find
a subset S ⊂ P with |S | = k such that the cost cost(S) =

min{u,v}⊂S {d(u, v)} is maximized. Such a set S is called a k-
dispersion of P. Note that a 2-dispersion of P on a plane
(2-dimensional space) with L2 metric corresponds to the di-
ameter of P, thus a k-dispersion is a generalization of the di-
ameter, which is one of basic concept in geometry. (Here the
diameter of P is the maximum distance between two points
in P, and one can compute it in O(n log n) time [16].) This is
the max-min version of the k-dispersion problem [19], [21].
For the max-sum version, see [5]–[9], [13], [17], [19], and
for a variety of related problems, see [5], [9]. The max-min
k-dispersion problem is NP-hard even when the triangle in-
equality is satisfied [12], [21]. An exponential-time exact
algorithm for the max-min k-dispersion problem is known
[2]. The running time is O(nωk/3 log n), where ω < 2.373 is
the matrix multiplication exponent.

If P is a set of n points on a line (1-dimensional space)
and the order of points in P on the line is given, the k-
dispersion problem can be solved in O(kn) time [21]. The
running time was improved to O(n log log n) [3] by the
sorted matrix search method [14]. See a good survey for
the sorted matrix search method in [1, Sect. 3.3]. Later it
was improved to O(n) [2] by a reduction to the path parti-
tioning problem [14]. Even if the order of points in P on the
line is not given, the k-dispersion problem can be solved in
O(n) time [4] if k is a constant.

If P is a set of n points on a plane (2-dimensional space)
the k-dispersion problem is NP-hard [21].

Ravi et al. [19] proved that the max-min k-dispersion
problem cannot be approximated within any constant fac-
tor in polynomial time, and cannot be approximated within
a factor of two in polynomial time when the distance satis-
fies the triangle inequality, unless P = NP. They also gave
a polynomial-time algorithm with approximation ratio two
when the triangle inequality is satisfied.

In this paper, we consider the k-dispersion problem
only for the case k = 3, namely, the max-min 3-dispersion
problem.

We first study the case where P is a set of points on a
plane (2-dimensional space) and d is the L∞ metric. We give
an algorithm to compute the 3-dispersion of P in O(n) time.

Next we study the case where d is the L1 metric. We
show that a similar algorithm can compute the 3-dispersion
of P in O(n) time.

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

1102
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Finally we study the case where d is the L2 metric.
We give an algorithm to compute the 3-dispersion of P
in O(n2 log n) time. By slightly improving the algorithm,
we can also compute the 3-dispersion of P in D-dimension
space in O(Dn2 +Tn log n) time where T is the time to com-
pute the diameter of n points in D-dimensional space.

In this paper we use the following notations and terms.
P is a set of points in the space. For p ∈ P, we write their
x−, y−, z− coordinates as x(p), y(p), and z(p). We say p` ∈
P is located left of pr if x(p`) ≤ x(pr), and p′ is a leftmost
point in P if x(p′) ≤ x(p) for every p ∈ P. Similarly, we
define right, rightmost, highest and lowest. A point p′ ∈ P
is a farthest point from p′′ ∈ P if d(p′, p′′) ≥ d(p, p′′) for
every p ∈ P.

The remainder of this paper is organized as follows.
Section 2 gives an O(n) time algorithm to solve the 3-
dispersion problem if d is the L∞ metric. Section 3 gives
an O(n) time algorithm to solve the 3-dispersion problem if
d is the L1 metric. Section 4 gives an O(n2 log n) time algo-
rithm to solve the 3-dispersion problem if d is the L2 metric.
Finally Sect. 5 is a conclusion.

The preliminary version of the paper is appeared in
[15].

2. 3-Dispersion in L∞ Metric

In this section, we give an O(n) time algorithm to solve the
3-dispersion problem if P is a set of n points on a plane (2-
dimensional space) and d is the L∞ metric.

Let P = {p1, p2, · · · , pn} and assume that x(p1) ≥
x(p2) ≥ · · · ≥ x(pn). Let S = {pa, pb, pc} be a 3-
dispersion of P. We say that a pair (pu, pv) in P is type-
H if d(pu, pv) = |x(pu) − x(pv)|, and type-V otherwise. Let
E = {(pa, pb), (pb, pc), (pc, pa)}. We have the following four
cases for S .
Case 1: All three pairs in E are type-H.
Case 2: Two pairs in E are type-H and one pair in E is
type-V .
Case 3: Two pairs in E are type-V and one pair in E is type-
H.
Case 4: All three pairs in E are type-V .

Our algorithm computes three points having the max-
imum cost for each case, and then chooses the maximum
one among those four candidates as a 3-dispersion. Now we
explain how to compute a 3-dispersion S restricted for each
case.
Case 1: All three pairs in E are type-H.

The solution consists of (1) the leftmost point pn in P,
(2) the rightmost point p1 in P, and (3) the point pm in P
which has x-coordinate closest to (x(p1) + x(pn))/2.

One can find pn and p1 in O(n) time, and then find pm
in O(n) time.

Thus we can compute a 3-dispersion S = {p1, pm, pn}

of P in O(n) time if S is in Case 1.
Case 2: Two pairs in E are type-H and one pair in E is
type-V .

Let S = {pa, pb, pc} be a 3-dispersion with x(pa) ≤
x(pb) ≤ x(pc), and assume that S satisfied the condition of
Case 2.

Now either (pa, pb) or (pb, pc) is type-V . Otherwise, if
(pa, pc) is type-V , then either (pa, pb) or (pb, pc) is also type-
V , a contradiction. Assume (pb, pc) is type-V . The other
case is symmetrical. Let Pi = {p1, p2, · · · , pi} be the subset
of P consisting of the rightmost i points in P. We have the
following two lemmas.

Lemma 1. There is a 3-dispersion S = {pa, pb, pc} such
that pa is the leftmost point pn in P.

Proof. Assume for a contradiction that pa , pn. Let S ′ be
{pn, pb, pc}, which is derived from S by replacing pa with
the leftmost points pn in P. Now (pa, pb) and (pa, pc) are
type-H, so cost(S ′) ≥ cost(S) holds. If cost(S ′) = cost(S),
then the claim is satisfied. If cost(S ′) > cost(S), then S is
not a 3-dispersion, a contradiction. (Note that S ′ may not be
in Case 2.) �

Lemma 2. There is a 3-dispersion S = {pa, pb, pc} satisfy-
ing the following conditions. Let pi = pb. If y(pb) ≤ y(pc),
then pb is a lowest point in Pi, and pc is a highest point in
Pi. If y(pb) > y(pc), then pb is a highest point in Pi, and pc
is a lowest point in Pi.

Proof. Assume for a contradiction that y(pb) ≤ y(pc) but pb
is not the lowest point p` in Pi. Then let S ′ be {pa, p`, pc},
which is derived from S by replacing pb with p`. Since
(pb, pc) is type-V , now cost(S ′) ≥ cost(S) holds. If
cost(S ′) = cost(S), then the claim is satisfied for some
pb′ with b′ < b. If cost(S ′) > cost(S), then S is not a
3-dispersion, a contradiction. (Note that S ′ may not be in
Case 2.)

For the other case, that is, y(pb) > y(pc) but pb is not
the highest point in Pi, the proof is analogous and is omitted.

�

Let hi be the highest point in Pi and `i the lowest point
in Pi.

Suppose that {pa, pb, pc} is a 3-dispersion of P such that
x(pa) ≤ x(pb) ≤ x(pc), (pb, pc) is type-V , and {pa, pb, pc} is
in Case 2. Then we can assume pa = pn (by Lemma 1), and
{pb, pc} = {hi, `i} for pb = pi (by Lemma 2). See Fig. 1.

We first compute min{d(pa, pi), d(hi, `i)} for each i,
and then we choose the i satisfying pi ∈ {hi, `i}. Now

Fig. 1 An illustration for Case 2.

HORIYAMA et al.: MAX-MIN 3-DISPERSION PROBLEMS
1103

{pa = pn, hi, `i} corresponds to a 3-dispersion {pa, pb, pc} of
P, since d(pa, pi) = min{d(pa, pb), d(pa, pc)} and d(hi, `i) =

d(pb, pc).
More efficiently, we can compute a 3-dispersion

{pa, pb, pc} by binary search as follows.
First we sort P by their x-coordinates in O(n log n)

time.
By scanning P from right to left, we can compute the

highest point hi and the lowest point `i in each Pi with
1 ≤ i ≤ n in O(n) time in total. We also compute d(pn, pi)
for each i with 0 < i < n in O(n) time in total. Now we com-
pute maxi min{d(pa, pi), d(hi, `i)}. Clearly, d(pa = pn, pi)
is monotonically decreasing with respect to i, and d(hi, `i)
is monotonically increasing with respect to i. Then, by bi-
nary search, we can compute the optimal i with S = {pa =

pn, hi, `i} having the maximum cost min{d(pn, pi), d(hi, `i)}
in log n stages. Each stage of the binary search requires O(1)
time.

Thus we can compute a 3-dispersion S in O(n log n)
time in total if S is in Case 2.
Case 3: Two pairs in E are type-V and one pair in E is type-
H.

Similar to Case 2, swap x-axis and y-axis.
Case 4: All three pairs in E are type-V .

Similar to Case 1, swap x-axis and y-axis.

Based on the above explanation we can design an al-
gorithm to solve the 3-dispersion problem, and we have the
following lemma.

Lemma 3. If P is a set of n points on a plane and d is
the L∞ metric, then one can solve the max-min 3-dispersion
problem in O(n log n) time.

We can improve the running time to O(n) by remov-
ing the sort in Cases 2 and 3. The binary search proceeds
as follows. In the j-th stage, we have a set I of points
having consecutive x-coordinates containing optimal pi and
|I| = n/2 j−1. We also maintain the highest point hR and the
lowest point `R in the set R (we do not maintain R itself)
of points locating right of I. (For the first stage, these two
points are not defined because there is no point locating right
of I.) We find the median p j′ in I in O(n/2 j−1) time by the
linear-time median-finding algorithm. Then find the highest
point h j and the lowest point ` j in the right half points IR of
I consisting of n/2 j points in O(n/2 j−1) time. By the two
points h j and ` j in IR and hR, `R in R, we can compute the
highest point and the lowest point in P j′ = IR∪R in constant
time. Depending on whether d(pa, p j′) < d(h j′ , ` j′) or not
we proceed to the next stage with new parameters I, hR and
`R. (If d(pa, p j′) < d(h j′ , ` j′), then hR and `R remain as it
was, otherwise set hR = max{hR, h j} and `R = min{`R, ` j}.)

We now have the following theorem.

Theorem 4. If P is a set of n points on a plane and d is
the L∞ metric, then one can solve the max-min 3-dispersion
problem in O(n) time.

We cannot simply generalize the algorithm to 3-

dimensional space since there is an example in which every
3-dispersion consists of points with no extreme coordinate
value. Let P = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1,
0), (0, 0,−1), (0.9,−0.9, 0), (0, 0.9,−0.9), (−0.9, 0, 0.9)} then
the 3-dispersion of P is {(0.9,−0.9, 0), (0, 0.9,−0.9),
(−0.9, 0, 0.9)}, and none of which has an extreme coordinate
value.

We now give an O(n log n) time algorithm to solve the
3-dispersion problem in 3-dimensional space.

We say a pair (pu, pv) in P is type-X if d(pu, pv) =

|x(pu) − x(pv)|, type-Y if d(pu, pv) = |y(pu) − y(pv)| and
|y(pu) − y(pv)| > |x(pu) − x(pv)|, type-Z otherwise.

Let P = {p1, p2, · · · , pn} be the set of points in 3-
dimensional space, and let S = {pa, pb, pc} be the 3-
dispersion of P.

Let E = {(pa, pb), (pb, pc), (pc, pa)}. We have 33 cases
for S since each of (pa, pb), (pb, pc), (pc, pa) is either type-X,
type-Y , or type-Z.
Case 1: (pa, pb) is type-X, (pa, pc) is type-Y , and (pb, pc) is
type-Z.

We have eight subcases for S depending on the order
of pa, pb on x-coordinate, pa, pc on y-coordinate and pb, pc
on z-coordinate.
Case 1(a): x(pa) ≤ x(pb), y(pa) ≤ y(pc), and z(pb) ≤ z(pc).
(Other cases are analogous and omitted.)

Fix pa. We want to compute three points {pa, pb, pc}

with the maximum value d∗ satisfying min{x(pb) −
x(pa), y(pc) − y(pa)} = d∗, and z(pc) − z(pb) ≥ d∗. Each
candidate value for d∗ is the distance between pa and a point
in P, so the number of such values is at most n. By binary
search, we are going to find the maximum such value d∗.
We now need some definitions.

We sort the points with their x-coordinates in O(n log n)
time. Similarly, sort the points with their y-coordinates. As-
sume that P = {p1, p2, · · · , pn} = {p

′

1, p
′

2, · · · , p
′

n}, x(p1) ≥
x(p2) ≥ · · · ≥ x(pn), and y(p

′

1) ≥ y(p
′

2) ≥ · · · ≥ y(p
′

n).
Let Bi = {p|x(p) ≥ x(pi)} and C j = {p|y(p) ≥ y(p

′

j)}.
We compute a table TB as a preprocessing step so that
TB(i) = min{z(p)|p ∈ Bi}. Similarly, we compute a table TC
as a preprocessing step so that TC(j) = max{z(p)|p ∈ C j}.
We need O(n) time for these tables.

We maintain the set Pb of candidates for pb. Initially,
we set Pb = {p|x(p) > x(pa)}. Similarly, we maintain the
set Pc of candidates for pc. Initially, we set Pc = {p|y(p) >
y(pa)}.

The binary search proceeds the following way.
Let pb′ be the point in Pb having the median of x-

coordinate, and p
′

c′ be the point in Pc having the median
of y-coordinate. Let d

′

= min{x(pb′)− x(pa), y(p
′

c′)− y(pa)}.
Assume d

′

= x(pb′) − x(pa). (The other case is similar.)
If TC(c′) − TB(b′) ≥ d

′

, then there exists (pa, pb, pc) sat-
isfying (1) min{x(pb) − x(pa), y(pc) − y(pa)} ≥ d

′

, and (2)
z(pc) − z(pb) ≥ d

′

. Now b′ ≥ b holds for any 3-dispersion
{pa, pb, pc}. In this case, we can halve the size of the can-
didate sets Pb. If TC(c′) − TB(b′) < d

′

, then there is no
{pa, pb, pc} with cost d′ or more, so b′ < b holds for any 3-

1104
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

dispersion {pa, pb, pc}. In this case, we can again halve the
size of the candidate set Pb.

If either |Pb| or |Pc| is 1, we can proceed the binary
search only for the remaining set having 2 or more points
and easily compute a 3-dispersion {pa, pb, pc} in O(log n)
time.

Thus by binary search, we can find the maximum d′

in at most log 2n stages. In each stage, we can compute
TC(c′) − TB(b′) in O(1) time since we built two tables TB
and TC , and we can compute the medians in O(1) time since
we sorted the points with x-coordinates and y-coordinates,
respectively.

We need to compute above for each possible pa. Thus
the running time for Case 1 is O(n log n) in total.

For other cases, if all three types appear, it is analogous
to above, otherwise if at most two types appear, we can solve
it as the problem on a plane with the algorithm in Theorem
1. Since the number of cases is a constant, the total running
time is O(n log n).

3. 3-Dispersion in L1

In this section, we give an O(n) time algorithm to solve the
3-dispersion problem when P is a set of n points on a plane
(2-dimensional space) and d is the L1 metric.

We consider four coordinate systems each of which
is derived from the original coordinate system by rotat-
ing 45 (See Fig. 2), 135, 225 or 315 degrees clockwise
around the origin respectively. Note that a farthest point
in P from a point has extreme x-coordinate in one of those
four coordinate systems. We can also observe that there is
a 3-dispersion of P containing a point having extreme x-
coordinate in one of those four coordinate systems. Note
that each coordinate system has two extreme points for each
coordinate. We only explain 45 degree case with the point
having the minimum x-coordinate. Other cases are similar.

Let x′ and y′ be the coordinates of the rotated co-
ordinate system. Let P = {p1, p2, · · · , pn} and assume
x′(p1) ≥ x′(p2) ≥ · · · ≥ x′(pn). Let S = {pa, pb, pc} be the
3-dispersion of P with x′(pa) ≤ x′(pb) ≤ x′(pc) and pa = pn
is the point having the minimum x′-coordinate.

We say two points (pu, pv) with x′(pu) ≤ x′(pv) in P are
type-U (upward) if y(pu) ≤ y(pv), and type-D (downward)
otherwise.

We compute the optimal i, which is the i with the max-
imum min{d(pa, pi), diam(Pi)}, where pi is the i-th farthest
point from pa in the L1 metric and diam(Pi) is the diameter
of Pi where Pi = {p1, p2, · · · pi} is the subset of P consisting
of the i farthest points from pn = pa in P. Let pb and pc be
the points corresponding to the diameter of Pi. See Fig. 2.
We can assume that if pb and pc are type-U, then pb is the
point with the minimum y′(pb) in Pi, and pc is the point with
the maximum y′(pc) in Pi. Note that any possible point for
pb is on the line parallel to x′-axis containing points farthest
from pc, and any possible point for pc is on the line parallel
to x′-axis containing points farthest from pb. If pb and pc
are type-D, then pb is the point pi with the minimum x′(pb)

Fig. 2 Illustrations for the diameter of Pi in the L1 metric with (a) type-U
and (b) type-D.

in Pi, and pc is the point p1 with the maximum x′(pc) in Pi.
Similar to the L∞ metric case, we can compute a max-

min 3-dispersion of P in O(n) time, by binary search with
the linear-time median-finding algorithm.

Now we have the following theorem.

Theorem 5. If P is a set of n points on a plane and d is
the L1 metric, then one can solve the max-min 3-dispersion
problem in O(n) time.

4. 3-Dispersion in L2 Metric

In this section, we design an O(n2 log n) time algorithm to
solve the 3-dispersion problem when P is a set of n points
on a plane (2-dimensional space) and d is the L2 metric.

Let S = {pa, pb, pc} be a 3-dispersion of P,
and assume that d(pb, pc) is the shortest one among
{d(pa, pb), d(pb, pc), d(pc, pa)}, d(pa, pb) ≤ d(pa, pc), and
pb is the i-th farthest point from pa in P. Let Pi =

{p1, p2, · · · , pi} be the subset of P consisting of the i far-
thest points from pa (i.e., pi = pb and c ∈ {1, 2, · · · , i − 1}).
We have the following lemma. Let diam(P) be the diameter
of P.

Lemma 6. d(pb, pc) = diam(Pi).

Proof. Assume d(pb, pc) , diam(Pi). Now there are
pb′ , pc′ ∈ Pi with diam(Pi) = d(pb′ , pc′). Let S ′ =

{pa, pb′ , pc′ }. Now d(pa, pb) ≤ d(pa, pb′), d(pa, pb) ≤
d(pa, pc′), and d(pb, pc) < d(pb′ , pc′) hold. Thus cost(S) <
cost(S ′), a contradiction. �

Thus if, for each pa, we compute the optimal i which
maximizes min{d(pa, pi), diam(Pi)}, and choose the maxi-
mum one, it corresponds to a 3-dispersion of P.

For a fixed pa, we can compute the optimal i∗ with the
maximum min{d(pa, pi∗), diam(Pi∗)} by binary search as fol-
lows.

Clearly, d(pa, pi) is monotonically decreasing with re-
spect to i, and diam(Pi) is monotonically increasing with
respect to i.

First, we sort the points in P by the distance from pa.
Then, we are going to find the optimal i∗.

In the j-th stage, we have (1) a set I of n/2 j−1 points
having consecutive distances from pa containing pi∗ , and (2)
the convex hull CF of points having distance from pa more
than the distances in I. We first compute the median point

HORIYAMA et al.: MAX-MIN 3-DISPERSION PROBLEMS
1105

Fig. 3 A 3-dispersion may contain no corner points of the convex hull of
P.

pi in I with the linear-time median finding algorithm, and
check whether d(pa, pi) ≤ diam(Pi) or not. For the check,
we need to compute diam(Pi). We compute the convex hull
C j of Pi by constructing the convex hull of n/2 j points in I
having distance from pa more than or equal to d(pa, pi) in
O((n/2 j) log n) time (using the O(n log n) time algorithm in
[16]), and then merging it with the convex hull CF in O(n)
time. Using C j, we can compute diam(Pi) in O(n) time.
Depending on the result of d(pa, pi) ≤ diam(Pi), we proceed
to the next stage with new parameters I and CF .

Since the number of stages is at most log n, the total
running time for a fixed pa is O(n log n).

We have the following theorem.

Theorem 7. If P is a set of n points on a plane and d is
the L2 metric, then one can solve the max-min 3-dispersion
problem in O(n2 log n) time.

If any P has a 3-dispersion with at least one point
on the corner points of the convex hull of P, then we
can check pa only for the corner points of the convex
hull of P. However there is a counterexample. In Fig. 3,
the dotted circles have centers at p6 and p7 with ra-
dius d(p5, p6) = d(p6, p7) = d(p7, p5), and d(p6, p7) >
d(p2, p7) = d(p3, p6) > d(p2, p3) holds. The corner points
of the convex hull are {p1, p2, p3, p4}, and the points in the
3-dispersion are {p5, p6, p7}. All points in this 3-dispersion
are located in the strict incide of the convex hull.

By generalizing the algorithm to D-dimensional space,
we have the following theorem.

Theorem 8. If P is a set of n points in D-dimensional space
and d is the L2 metric, then one can solve the max-min 3-
dispersion problem in O(Dn2+Tn log n) time, where T is the
time to compute the diameter of n points in D-dimensional
space.

Note that for a fixed pa, we need to compute medians

in O(Dn) + O(Dn/2) + O(Dn/22) + · · · = O(Dn) time.
One can compute the diameter of n points in 3-

dimensional space in O(n log n) time [18]. Thus we can
compute a 3-dispersion of n points in 3-dimensional space
in O(n2 log2 n) time, which is faster than the O(nωk/3 log n)
time algorithm [2] for k = 3. (Here ω is the smallest value
for which there is a known O(nω) time matrix multiplica-
tion algorithm.) The diameter of n points in dimension
D can be computed in time O(n2−a(k)(log n)1−a(k)), where
a(k) = 2−(k+1) [22]. Therefore we can compute the 3-
dispersion of n points in d dimensional space in o(n3) time
for any D.

5. Conclusion

In this paper, we designed some algorithms to solve the 3-
dispersion problem for a set of points on a plane. We have
designed O(n) time algorithms to solve the 3-dispersion
problem when d is the L∞ metric or the L1 metric. Also,
we designed an O(n2 log n) time algorithm to solve the 3-
dispersion problem when d is the L2 metric.

There is a linear time reduction from the diameter prob-
lem to the 3-dispersion problem as follows. Given P, we
append a dummy point p′ so that it is far enough from
P. Now a 3-dispersion of P ∪ {p′} always contains p′ and
the other two points correspond to the diameter of P. It is
known that any algorithm to solve the diameter problem re-
quires Ω(n log n) time [16]. Thus any algorithm to solve
the 3-dispersion problem requires Ω(n log n) time. There-
fore there is a chance to either design a faster algorithm to
solve the 3-dispersion problem with the L2 metric, or show
a greater lower bound.

For a set P of points in a metric space, we can
compute the 3-dispersion of P as follows. By replac-
ing (+, ·) to (max,min) in the matrix multiplication al-
gorithm, we can compute maxc{min{d(pa, pc), d(pb, pc)}}
for each pa, pb ∈ P in O(nω) time. Therefore we can
compute min{d(pa, pb),maxc{min{d(pa, pc), d(pb, pc)}}} for
each pa, pb ∈ P in O(nω) time and choose the maximum one
among them as a 3-dispersion. Thus we can compute a 3-
dispersion of n points in a metric space in O(nω) time, where
ω < 2.373.

Acknowledgments

Shin-ichi Nakano was supported by JST CREST Grant
Number JPMJCR1402. Ryuhei Uehara was supported by
JSPS KAKENHI Grant Number 18H04091 and 20K20311.
Takeaki Uno was supported by JST CREST Grant Num-
ber JPMJCR1401. Kunihiro Wasa was supported by JSPS
KAKENHI Grant Number 19K20350 and JST CREST
Grant Number JPMJCR1401.

References

[1] P. Agarwal and M. Sharir, “Efficient algorithms for geometric opti-
mization,” ACM Comput. Surv., vol.30, no.4, pp.412–458, 1998.

http://dx.doi.org/10.1145/299917.299918
http://dx.doi.org/10.1145/299917.299918

1106
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

[2] T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y. Okamoto, Y. Otachi,
T. Saitoh, R. Uehara, T. Uno, and K. Wasa, “Exact algorithms for the
max-min dispersion problem,” Proc. FAW 2018, LNCS, vol.10823,
pp.263–272, 2018.

[3] T. Akagi and S. Nakano, “Dispersion on the line,” IPSJ SIG Techni-
cal Reports, 2016-AL-158-3, 2016.

[4] T. Araki and S. Nakano, “The max-min dispersion on a line,” Proc.
COCOA 2018, LNCS, vol.11346, pp.672–678, 2018.

[5] C. Baur and S.P. Fekete, “Approximation of geometric dispersion
problems,” Proc. APPROX 1998, pp.63–75, 1998.

[6] B. Birnbaum and K.J. Goldman, “An improved analysis for a greedy
remote-clique algorithm using factor-revealing LPs,” Algorithmica,
vol.50, pp.42–59, 2009.

[7] A. Cevallos, F. Eisenbrand, and R. Zenklusen, “Max-sum diversity
via convex programming,” Proc. SoCG 2016, pp.26:1–26:14, 2016.

[8] A. Cevallos, F. Eisenbrand, and R. Zenklusen, “Local search for
max-sum diversification,” Proc. SODA 2017, pp.130–142, 2017.

[9] B. Chandra and M.M. Halldorsson, “Approximation algorithms for
dispersion problems,” J. Algorithms, vol.38, no.2, pp.438–465,
2001.

[10] Z. Drezner, Facility Location: A Survey of Applications and Meth-
ods, Springer, 1995.

[11] Z. Drezner and H.W. Hamacher, Facility Location: Applications and
Theory, Springer, 2004.

[12] E. Erkut, “The discrete p-dispersion problem,” Eur. J. Oper. Res.,
vol.46, no.1, pp.48–60, 1990.

[13] S.P. Fekete and H. Meijer, “Maximum dispersion and geometric
maximum weight cliques,” Algorithmica, vol.38, pp.501–511, 2004.

[14] G. Frederickson, “Optimal algorithms for tree partitioning,” Proc.
SODA 1991, pp.168–177, 1991.

[15] T. Horiyama, S. Nakano, T. Saitoh, K. Suetsugu, A. Suzuki,
R. Uehara, T. Uno, and K. Wasa, “Max-min 3-dispersion problems,”
Proc. COCOON 2019, LNCS, vol.11653, pp.291–300, 2019.

[16] F.P. Preparata and M.I. Shamos, Computational Geometry: An In-
troduction. Springer-Verlag, 1985.

[17] S. Rubinstein R. Hassin, and A. Tamir, “Approximation algorithms
for maximum dispersion,” Oper. Res. Lett., vol.21, no.3, pp.133–
137, 1997.

[18] E.A. Ramos, “Deterministic algorithms for 3-D diameter and some
2-D lower envelopes,” Proc. Symposium on Computational Geome-
try 2000, pp.290–299, 2000.

[19] S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi, “Heuristic and special
case algorithms for dispersion problems,” Oper. Res., vol.42, no.2,
pp.299–310, 1994.

[20] M. Sydow, “Approximation guarantees for max sum and max min
facility dispersion with parameterised triangle inequality and appli-
cations in result diversification,” Mathematica Applicanda, vol.42,
no.2, pp.241–257, 2014.

[21] D.W. Wang and Y.-S. Kuo, “A study on two geometric location prob-
lems,” Inform. Process. Lett., vol.28, no.6, pp.281–286, 1988.

[22] A.C. Yao, “On constructing minimum spanning trees in k-
dimensional spaces and related problems,” SIAM J. Comput.,
vol.11, no.4, pp.721–736, 1982.

Takashi Horiyama received the B.E. and
M.E. degrees in information science and Ph.D.
in informatics from Kyoto University, Kyoto,
Japan in 1995, 1997 and 2004, respectively. He
was a research associate at Nara Institute of Sci-
ence and Technology from 1999, a research as-
sociate atKyotoUniversity from 2002, and an
associate professor at Saitama University from
2007. Since 2019, he is a professor at Hokkaido
University. His current interests include compu-
tational geometry and algorithm design.

Shin-ichi Nakano received his B.E. and
M.E. degrees from Tohoku University, Sendai,
Japan, in 1985 and 1987, respectively. In 1987
he joined Seiko Epson Corp. and in 1990 he
joined Tohoku University. In 1992, he received
Dr. Eng. degree from Tohoku University. Since
1999 he has been a faculty member of Depart-
ment of Computer Science, Faculty of Engineer-
ing, Gunma University. His research interests
are graph algorithms and graph theory. He is a
member of IPSJ and ACM.

Toshiki Saitoh received B.S.E. degree
from Shimane University in 2005, and M.S. and
Ph.D. degrees (Information Science) from Japan
Advanced Institute of Science and Technology
in 2007 and 2010, respectively. He was a re-
searcher at ERATO MINATO Discrete Struc-
ture Manipulation System Project (JST) during
2010–2012, and an assistant professor at Kobe
University during 2012–2017. He also works at
The University of British Columbia as a visit-
ing assistant professor in 2014–2015. He is an

associate professor at Kyushu Institute of Technology from 2017.

Koki Suetsugu was born in 1991. He re-
ceived his bachelor’s, master ’s, and doctoral
degrees from Kyoto University in 2014, 2016,
and 2019 respectively. Since 2019, he has been
a postdoctoral fellow in the Takeaki Uno labo-
ratory, National Institute of Informatics, Japan.
His research interests are combinatorial game
theory, game informatics, and computational
complexity.

Akira Suzuki received his B.E., M.S. and
Ph.D. degrees from Tohoku University, Japan,
in 2010, 2011 and 2013, respectively. He is cur-
rently associate professor at Graduate School of
Information Sciences, Tohoku University. His
research interests include combinatorial recon-
figuration, computational complexity, graph al-
gorithms and neural networks.

http://dx.doi.org/10.1007/978-3-319-78455-7_20
http://dx.doi.org/10.1007/978-3-319-78455-7_20
http://dx.doi.org/10.1007/978-3-319-78455-7_20
http://dx.doi.org/10.1007/978-3-319-78455-7_20
http://dx.doi.org/10.1007/978-3-030-04651-4_45
http://dx.doi.org/10.1007/978-3-030-04651-4_45
http://dx.doi.org/10.1007/bfb0053964
http://dx.doi.org/10.1007/bfb0053964
http://dx.doi.org/10.1007/s00453-007-9142-2
http://dx.doi.org/10.1007/s00453-007-9142-2
http://dx.doi.org/10.1007/s00453-007-9142-2
http://dx.doi.org/10.1137/1.9781611974782.9
http://dx.doi.org/10.1137/1.9781611974782.9
http://dx.doi.org/10.1006/jagm.2000.1145
http://dx.doi.org/10.1006/jagm.2000.1145
http://dx.doi.org/10.1006/jagm.2000.1145
http://dx.doi.org/10.1016/0377-2217(90)90297-o
http://dx.doi.org/10.1016/0377-2217(90)90297-o
http://dx.doi.org/10.1007/s00453-003-1074-x
http://dx.doi.org/10.1007/s00453-003-1074-x
https://dl.acm.org/doi/10.5555/127787.127822
https://dl.acm.org/doi/10.5555/127787.127822
http://dx.doi.org/10.1007/978-3-030-26176-4_24
http://dx.doi.org/10.1007/978-3-030-26176-4_24
http://dx.doi.org/10.1007/978-3-030-26176-4_24
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1016/s0167-6377(97)00034-5
http://dx.doi.org/10.1016/s0167-6377(97)00034-5
http://dx.doi.org/10.1016/s0167-6377(97)00034-5
http://dx.doi.org/10.1145/336154.336215
http://dx.doi.org/10.1145/336154.336215
http://dx.doi.org/10.1145/336154.336215
http://dx.doi.org/10.1287/opre.42.2.299
http://dx.doi.org/10.1287/opre.42.2.299
http://dx.doi.org/10.1287/opre.42.2.299
http://dx.doi.org/10.14708/ma.v42i2.547
http://dx.doi.org/10.14708/ma.v42i2.547
http://dx.doi.org/10.14708/ma.v42i2.547
http://dx.doi.org/10.14708/ma.v42i2.547
http://dx.doi.org/10.1016/0020-0190(88)90174-3
http://dx.doi.org/10.1016/0020-0190(88)90174-3
http://dx.doi.org/10.1137/0211059
http://dx.doi.org/10.1137/0211059
http://dx.doi.org/10.1137/0211059

HORIYAMA et al.: MAX-MIN 3-DISPERSION PROBLEMS
1107

Ryuhei Uehara is a professor in School
of Information Science, Japan Advanced Insti-
tute of Science and Technology (JAIST). He re-
ceived B.E., M.E., and Ph.D. degrees from the
University of Electro-Communications, Japan,
in 1989, 1991, and 1998, respectively. He was a
researcher in CANON Inc. during 1991–1993.
In 1993, he joined Tokyo Woman’s Christian
University as an assistant professor. He was
a lecturer during 1998–2001, and an associate
professor during 2001–2004 at Komazawa Uni-

versity. He moved to JAIST in 2004. His research interests include compu-
tational complexity, algorithms and data structures, and graph algorithms.
Especially, he is engrossed in computational origami, games and puzzles
from the viewpoints of theoretical computer science. He is a member of
IPSJ, IEICE, and EATCS, and he is the chair of Japan Chapter of EATCS.

Takeaki Uno received the Ph.D. degree
(Doctor of Science) from Department of Sys-
tems Science, Tokyo Institute of Technology
Japan, 1998. He was an assistant professor
in Department of Industrial and Management
Science in Tokyo Institute of Technology from
1998 to 2001, and have been an associate pro-
fessor of National Institute of Informatics Japan,
from 2001. His research topic is discrete algo-
rithms, especially enumeration algorithms, al-
gorithms on graph classes, and data mining al-

gorithms. On the theoretical part, he studies low degree polynomial time
algorithms, and hardness proofs. In the application area, he works on the
paradigm of constructing practically efficient algorithms for large scale data
that are data oriented and theoretically supported. In an international fre-
quent pattern mining competition in 2004 he won the best implementation
award. He got Young Scientists’ Prize of The Commendation for Science
and Technology by the Minister of Education, Culture, Sports, Science and
Technology in Japan, 2010.

Kunihiro Wasa received B.S. in Engineer-
ing in 2011, M.S. in Computer Science in 2013,
Ph.D. in Computer Science in 2016 from Hok-
kaido University, Sapporo Japan. During 2016–
2020, he was a researcher at National Institute
of Informatics, Tokyo, Japan. He is currently
an assistant professor at Toyohashi University of
Technology. His research interests include enu-
meration algorithms, reconfiguration problems,
data mining, and the design and analysis of al-
gorithms in these fields.

