PAPER Special Section on Discrete Mathematics and Its Applications

A Compact Digital Signature Scheme Based on the Module-LWR Problem***

Hiroki OKADA ${ }^{\dagger \mathrm{a})}$, Member, Atsushi TAKAYASU ${ }^{\dagger \dagger *, * *}$, Nonmember, Kazuhide FUKUSHIMA ${ }^{\dagger}$, Shinsaku KIYOMOTO ${ }^{\dagger}$, and Tsuyoshi TAKAGI ${ }^{\dagger \dagger}$, Members

Abstract

SUMMARY We propose a new lattice-based digital signature scheme MLWRSign by modifying Dilithium, which is one of the second-round candidates of NIST's call for post-quantum cryptographic standards. To the best of our knowledge, our scheme MLWRSign is the first signature scheme whose security is based on the (module) learning with rounding (LWR) problem. Due to the simplicity of the LWR, the secret key size is reduced by approximately 30% in our scheme compared to Dilithium, while achieving the same level of security. Moreover, we implemented MLWRSign and observed that the running time of our scheme is comparable to that of Dilithium. key words: lattice cryptography, digital signatures, learning with rounding

1. Introduction

Lattice-based cryptography is believed to be a promising candidate for the NIST's call for post-quantum cryptographic (PQC) standards [2]. In the second round of the NIST PQC [3], for key encapsulation mechanisms (KEM), the lattice-based schemes proposed are the schemes based on the learning with errors (LWE) problem [4], e.g. FrodeKEM [5], NewHope [6], CRYSTALS-Kyber [7], the learning with rounding (LWR)-based schemes Round5 [8] and SABER [9], and NTRU-based schemes [10], [11]. For digital signatures, LWE-based schemes qTESLA [12], CRYSTALS-Dilithium [13]-[15], and the NTRU-based scheme FALCON [16] are the only lattice-based schemes. In July 2020, the third-round finalists of the NIST PQC were announced [17]. The finalists for KEM were CRYSTALS-Kyber, SABER, NTRU [11], and Classic McEliece [18]. The finalists for digital signatures are CRYSTALS-Dilithium, FALCON, and Rainbow [19]. NIST mentions in [17] that NIST should standardize Classic McEliece and Rainbow for special-purpose use, since the schemes offers very small ciphertexts or signature at the

[^0]expense of very large public keys. The rest of the finalists, CRYSTALS-Kyber, SABER, NTRU, CRYSTALSDilithium, and FALCON are all lattice-based schemes. It is also mentioned that NIST intends to select (at most) one lattice-based schemes for the standard for each of generalpurpose KEM and digital signature. Here, note that no LWR-based scheme is proposed for signature in the NIST PQC, and moreover, no LWR-based signature scheme has been proposed to date.

Banerjee et al. [20] introduced the LWR problem, which is a variant of LWE where the random errors are replaced by a deterministic rounding function. Bogdanov et al. [21] showed that there exists a reduction from search Ring-LWE (RLWE) to search Ring-LWR (RLWR). Following the work, Chen et al. [22] introduced a computational RLWR (CRLWR) problem, which is a counterpart of the computational Diffie-Hellman problem, and showed a reduction from decisional RLWE to CRLWR. This paper also showed that the KEM scheme based on Module-LWR (MLWR), to which RLWR can be viewed as a special case, Saber and the RLWR-based scheme Round5 are secure under the CRLWR assumption.

The RLWR-based KEM scheme, namely, the thirdround finalist Saber, is among the most promising candidates for the NIST PQC standards due to the efficiency resulting from the simplicity of the RLWR problem. The RLWE-based KEM schemes require sampling noise from discrete Gaussian distributions, resulting in higher bandwidth. In contrast, RLWR-based KEM schemes naturally reduce bandwidth, avoiding additional randomness for the noise, since the (R)LWR problem generates noise through rounding of some least significant bits. RLWR schemes are usually designed with power-oftwo moduli, and due to this, the rounding operation can be simply performed with a bit-shift operation. Furthermore, Beirendonck et al. [23] presented an efficient side-channel resistant masked implementation of Saber by leveraging the characteristic of the (R)LWR: power-of-two moduli, and limited noise sampling. While Oder et al. [24] presented a masked implementation of a complete chosen ciphertext attack (CCA) secure RLWE decapsulation similar to NewHope KEM [6] with a factor 5.7 x overhead over an unmasked implementation, Saber's CCA-secure decapsulation algorithm [23] has an overhead factor of only 2.5x over the unmasked implementation.

The Module-LWE (MLWE)-based signature scheme

CRYSTALS-Dilithium [13]-[15] (hereinafter, referred to as Dilithium) is also among the most promising candidates due to its efficiency, especially on its public key size. Dilithium decreases the size of the public key by separating the high/low order bits of the element of the LWE sample. The high part is included in the public key and the low part is included in the secret key. This technique is conceptually similar to the construction of the LWR-based KEM schemes. In the LWR, the low order bits are rounded off to be the deterministic noise (corresponds to a part of the secret key), and the high order bits are the LWR sample, which corresponds to the public key.

Our contributions. In this paper, we propose an MLWRbased digital signature scheme MLWRSign by modifying Dilithium. To the best of our knowledge, our scheme is the first digital signature scheme based on the (ring variants of) LWR problem. We modify Dilithium to be a MLWRbased scheme, aiming to obtain the best of both worlds of the LWR-based KEM schemes and Dilithium. As a result, the size of the secret key in our scheme is reduced by approximately 30%, compared to Dilithium. We present detailed analytical results on the probability of the rejection sampling during the signing procedure of our scheme, and show that the expected number of rejections is at the same level as Dilithium. This analysis is applicable to Dilithium, and it would be helpful for optimizing parameters of the scheme.

We efficiently implement MLWRSign and the results show that the running time of our scheme is comparable to Dilithium. Following the LWR-based KEM schemes such as Round5 and Saber, we also use all moduli of the powers of 2 in our scheme. Due to this setting, the bit decomposing technique in our scheme becomes simpler and more efficient. As discussed in [9], when the moduli are powers of 2 , (negligibly small) exceptional biased sets exist for the secret key: If all coefficients of the polynomials in a secret vector are divisible by a high power of 2 , then the same property will hold for the linear combination of them. However, since all the coefficients of a secret vector are small enough $\left(\leq 2^{3}\right)$ in our parameters, our scheme can disregard the case. Although the number theoretic transform (NTT) cannot be used to speed up polynomial multiplication in our setting of the moduli, this disadvantage can be mitigated with Toom-Cook and Karatsuba polynomial multiplication. We implement our scheme using the Toom-Cook and Karatsuba, and the results show that the running time of our scheme is comparable to that of the reference implementation of Dilithium that uses NTT for polynomial multiplication.

This paper is the full version of the paper [1]. We have three main additional technical contributions over the preliminary version. First, we provide a full proof for the tight security reduction for MLWRSign in the Quantum random-oracle model (QROM) from the MLWR problem and another non-interactive assumption, based on the framework give in [15]. Second, we present the
additional parameter sets that 192- and 256-bits security, while neither the preliminary version [1] nor the Dilithium [13]-[15] provides the corresponding parameter sets. Third, we give an optimized implementation of MLWRSign for CPUs that supports the AVX2 instruction set, and the results show that CPU cycles of AVX2 optimized versions of MLWRSign achieves $1.41 \mathrm{x}-1.80 \mathrm{x}$ speed-ups.
Organizations. We refer to the definition of QROM, canonical identification scheme, signature scheme, and the Fiat-Shamir transformation in Sect. 2. In Sect. 3, we propose our identification scheme ID, and we construct the our signature scheme MLWRSign in Sect. 4 by using Fiat-Shamir transformation on ID. In Sect. 5 we provide a full proof for the tight security reduction for MLWRSign in the QROM from the MLWR problem and another non-interactive assumption. We implement MLWRSign and provide a comparison with other signature schemes proposed to NIST PQC in Sect. 6.

2. Preliminary

2.1 Notations

We write the rings $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+\right.$ 1), where q and n are integers, and the value of n is always 256 throughout this paper. We denote elements in R or R_{q} (which includes elements in \mathbb{Z} and \mathbb{Z}_{q}) in regular font letters, and bold lower-case letters represent column vectors whose elements are in R or R_{q}. All vectors will be column vectors by default. Bold upper-case letters are matrices. For a vector \mathbf{v}, we denote its transpose by \mathbf{v}^{\top}.

For an even (resp. odd) positive integer α, we define $r^{\prime}=r \bmod ^{ \pm} \alpha$ to be the unique element r^{\prime} in the range $-\frac{\alpha}{2}<r^{\prime} \leq \frac{\alpha}{2}$ (resp. $-\frac{\alpha-1}{2} \leq r^{\prime} \leq \frac{\alpha-1}{2}$) such that $r^{\prime} \equiv$ $r \bmod \alpha$. For an element $u \in \mathbb{Z}_{q}$, let $\|u\|_{\infty}:=\left|u \bmod ^{ \pm} q\right|$. We define the ℓ_{∞} and ℓ_{2} norms for a polynomial $w=$ $\sum_{i=0}^{n-1} w_{i} X^{i} \in R$ as $\|w\|_{\infty}:=\max _{i}\left\|w_{i}\right\|_{\infty}=\max _{i}\left|w_{i} \bmod ^{ \pm} q\right|$ and $\|w\|:=\sqrt{\left\|w_{0}\right\|_{\infty}^{2}+\cdots+\left\|w_{n-1}\right\|_{\infty}^{2}}$, respectively. Similarly, for a vector $\mathbf{v}=\left(v_{0}, \ldots, v_{k-1}\right) \in R^{k}$, we define $\|\mathbf{v}\|_{\infty}:=$ $\max _{i}\left\|v_{i}\right\|_{\infty}$ and $\|\mathbf{v}\|:=\sqrt{\left\|v_{0}\right\|^{2}+\cdots+\left\|v_{k-1}\right\|^{2}}$. We define $S_{\eta}^{i}:=\left\{w \in R \mid\|w\|_{\infty} \leq \eta\right\}$. Let B_{h} be the set of elements of R whose h coefficients are either -1 or 1 and the rest are 0 . By $\operatorname{Hw}(\mathbf{w})$ we denote the $\#$ of non-zero coefficients in $\mathbf{w} \in R^{k}$ for $k>0$.

We denote rounding to the nearest integer by $\lceil\cdot\rfloor$, and we extend it to polynomials and matrices coefficient-wise. The Boolean operator \llbracket statement】 outputs 1 if the statement is true, and 0 otherwise. We denote by $a \stackrel{\$}{\leftarrow} A$ the process of drawing an element a from a set A uniformly at random.

Let A be an algorithm. Unless otherwise stated, we assume all algorithms to be probabilistic. We denote by $y \leftarrow$ $\mathrm{A}(x)$ probabilistic computation of the algorithm A on input x, where the output is stored as $y . \mathrm{A}(x) \Rightarrow y$ denotes the event that A on input x returns y. With fixed randomness, we can run any probabilistic A deterministically. We write
$y:=\mathrm{A}(x ; r)$ to indicate that A is run on input x with a fixed randomness r.

We follow [25] to use code-based games. We implicitly assume that values of boolean flags, numerical types, sets, and strings are initialized to be false, $0, \varnothing$, and the empty string ϵ, respectively. We make the convention that a procedure terminates once it returned an output. We write the event that an algorithm A return 1 for a game GAME by $\mathrm{GAME}^{\mathrm{A}} \Rightarrow 1$.

2.2 Quantum Computation

Quantum states. The state of a qubit $|\phi\rangle$ is described by a two-dimensional complex vector $|\phi\rangle=\alpha|0\rangle+\beta|1\rangle$ where $\{|0\rangle,|1\rangle\}$ form an orthonormal basis of \mathbb{C}^{2} and $\alpha, \beta \in \mathbb{C}$ with $|\alpha|^{2}+|\beta|^{2}=1$ are the complex amplitudes of $|\phi\rangle$. The qubit $|\phi\rangle$ is called in superposition if $0<|\alpha|<1$. A classical bit $b \in\{0,1\}$ is naturally encoded as state $|b\rangle$ of a qubit.

The state of n qubits can be expressed by the linear combination $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \in \mathbb{C}^{2^{n}}$ where $\left\{\alpha_{x}\right\}_{x \in\{0,1\}^{n}}$ is a set of 2^{n} complex amplitudes such that $\sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1$. The standard orthonormal or computational basis is given by $\{|x\rangle\}_{x \in\{0,1\}^{n}}$. When the quantum state $|\psi\rangle$ is measured on a computational basis, the outcome is the classical string $x \in$ $\{0,1\}^{n}$ with probability $\left|\alpha_{x}\right|^{2}$ and the quantum state collapses to the observed $|x\rangle$.

The evolution of a quantum system in state $|\psi\rangle$ can be described by a linear transformation $U: \mathbb{C}^{2^{n}} \rightarrow \mathbb{C}^{2^{n}}$. The transformations correspond to unitary matrices $U \in \mathbb{C}^{2^{n} \times 2^{n}}$ and U has the property that $U U^{\dagger}=1$, where U^{\dagger} is the complex-conjugate transpose of U.
Quantum oracles and quantum adversaries. We follow the standard approach of [26], [27] to execute the classical oracle function $\mathrm{O}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ with a reversible unitary transformation. Let $x \in\{0,1\}^{n}$ and $y \in\{0,1\}^{m}$, and we model the quantum access to O by $U_{\mathrm{O}}:|x\rangle|y\rangle \mapsto$ $|x\rangle|y \oplus \mathrm{O}(x)\rangle$. Note that U_{O} is its own inverse, and also we obtain $U_{\mathrm{O}}^{\dagger}=U_{\mathrm{O}}$, and hence, $U_{\mathrm{O}} U_{\mathrm{O}}^{\dagger}=U_{\mathrm{O}}^{2}=1$. Quantum oracle adversaries $A^{|O\rangle}$ can access O in superposition by applying U_{O}. The quantum time that takes for applying U_{O} is linear in the time that takes to evaluate O classically. We write $\mathrm{A}^{|\mathrm{O}\rangle}$ to indicate that an oracle is quantum-accessible, contrary to oracles that can only be accessed classically denoted by A^{O}.

Quantum random-oracle model. We consider security games in the quantum random-oracle model (QROM) [27] as their counterparts in the classical random-oracle model [28], with the difference that we consider quantum adversaries that are given quantum access to the random oracles, and classical access to all other oracles such as the signing oracle. Zhandry [29] proved that no quantum algorithm $\mathrm{A}^{|\mathrm{H}\rangle}$, issuing at most Q quantum queries to $|\mathrm{H}\rangle$, can distinguish between a random function $H:\{0,1\}^{m} \rightarrow$ $\{0,1\}^{n}$ and a $2 Q$-wise independent function $f_{2 Q}$. Concretely, we regard $f_{2 Q}:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ as a random polynomial of degree $2 Q$ over the finite field $\mathbb{F}_{2^{n}}$. The running time to
evaluate $f_{2 Q}$ is linear in Q. Let an adversary B simulates quantum adversary $\mathrm{A}^{|\mathrm{H}\rangle}$ which makes at most Q queries to $|\mathrm{H}\rangle$, then the running time of B is $\operatorname{Time}(\mathrm{B})=\operatorname{Time}(\mathrm{A})+q$. Time (H), where Time (H) is the running time to simulate $|\mathrm{H}\rangle$. From this observation, B can use a $2 Q$-wise independent function to simulate $|\mathrm{H}\rangle$ and we obtain that the running time of B is $\operatorname{Time}(\mathrm{B})=\operatorname{Time}(\mathrm{A})+Q \cdot \operatorname{Time}\left(f_{2 Q}\right)$, and the time $\operatorname{Time}\left(f_{2 Q}\right)$ to evaluate $f_{2 Q}$ is linear in Q. The second term of this running time that is quadratic in Q can be reduced to linear in Q in the QROM where B can simply use another random oracle to simulate $|\mathrm{H}\rangle$. Assuming that the random oracle can be evaluated by one time unit, we write $\operatorname{Time}(\mathrm{B})=\operatorname{Time}(\mathrm{A})+Q \simeq \operatorname{Time}(\mathrm{~A})$.

2.3 Problems

We define the MLWR problem, the Module-SIS (MSIS) problem, and the SelfTargetMSIS problem, on which the hardness and the security of our scheme MLWRSign is based.
Definition 1 (MLWR mp,k,l,D distribution). Let q, p, k, l be positive integers such that $q>p \geq 2$. For a probability distribution $D: R_{q} \rightarrow\{0,1\}$, choose a random matrix $\mathbf{A} \stackrel{\$}{\leftarrow} R_{q}^{k \times l}$, and a vector $\mathbf{s} \leftarrow D^{l}$, and output $\left(\mathbf{A},\left\lceil\frac{p}{q} \mathbf{A s}\right\rfloor\right)$.
Definition 2 (decision $\mathrm{MLWR}_{p, k, l, D}$ problem). Given a pair (A,t) decide, with non-negligible advantage, whether it came from the $\mathrm{MLWR}_{p, k, l, D}$ distribution or it was generated uniformly at random from $R_{q}^{k \times l} \times R_{p}^{k}$. The advantage of an algorithm A in solving the decision $\mathrm{MLWR}_{p, k, l, D}$ problem is

$$
\begin{aligned}
& \operatorname{Adv}_{p, k, l, D}^{\mathrm{MLWR}}(\mathrm{~A}):= \\
& \mid \operatorname{Pr}\left[b=1 \mid \mathbf{A} \leftarrow R_{q}^{k \times l} ; \mathbf{t} \leftarrow R^{k} ; b \leftarrow \mathrm{~A}(\mathbf{A}, \mathbf{t})\right] \\
& \left.-\operatorname{Pr}\left[b=1 \mid \mathbf{A} \leftarrow R^{k \times l} ; \mathbf{s} \leftarrow D^{l} ; b \leftarrow \mathrm{~A}\left(\mathbf{A},\left\lceil\frac{p}{q} \mathbf{A s}\right\rfloor\right)\right] \right\rvert\,
\end{aligned}
$$

We say MLWR is hard when the above advantage is negligible for all (quantum) probabilistic polynomial-time algorithms A .
Definition 3 ($\mathrm{MSIS}_{k, l, \zeta}$ problem). Given $\mathbf{A} \stackrel{\$}{\leftarrow} R_{q}^{k \times l}$, find a vector $\mathbf{y}=\left[\mathbf{z}^{\top} \mid \mathbf{u}^{\top}\right]^{\top} \in R_{q}^{l+k}$ such that $\|\mathbf{y}\|_{\infty} \leq \zeta$ and $\left[\mathbf{A} \mid \mathbf{I}_{k}\right] \cdot \mathbf{y}=\mathbf{0}$. The advantage of an algorithm \mathbf{A} in solving the $\mathrm{MSIS}_{k, l, \zeta}$ problem is

$$
\operatorname{Adv}_{k, l, \zeta}^{\mathrm{MSIS}}(\mathrm{~A}):=\operatorname{Pr}\left[\begin{array}{l|l}
\|\mathbf{y}\|_{\infty} \leq \zeta \wedge & \mathbf{A} \stackrel{\$}{\leftarrow} R_{q}^{k \times l} ; \\
{\left[\mathbf{A} \mid \mathbf{I}_{k}\right] \cdot \mathbf{y}=\mathbf{0}} & \mathbf{y} \leftarrow \mathrm{A}(\mathbf{A})
\end{array}\right]
$$

Definition 4 (SelfTargetMSIS ${ }_{\mathrm{H}, k, l+1, \zeta}$ problem). Let H $\{0,1\}^{*} \rightarrow B_{60}$ be a cryptographic hash function. Given a random matrix $[\mathbf{A} \mid \mathbf{t}] \stackrel{\$}{\leftarrow} R^{k \times(l+1)}$, find a message μ and a vector $\mathbf{y}=\left[\mathbf{z}^{\top}|c| \mathbf{u}^{\top}\right]^{\top} \in R^{l+1+k}$ such that $\|\mathbf{y}\|_{\infty} \leq \zeta$ and $\mathrm{H}\left(\mu \|\left[\mathbf{A}|\mathbf{t}| \mathbf{I}_{k}\right] \cdot \mathbf{y}\right)=c$. The advantage of an algorithm A in solving the SelfTargetMSIS ${ }_{\mathrm{H}, k, l+1, \zeta}$ is
$\operatorname{Adv}_{\mathrm{H}, k, l+1, \zeta}^{\text {SelfargetMSIS }}(\mathrm{A})$

$$
:=\operatorname{Pr}\left[\begin{array}{l|l}
\|\mathbf{y}\|_{\infty} \leq \zeta \wedge & {[\mathbf{A} \mid \mathbf{t}] \stackrel{\$}{\leftarrow} R^{k \times(l+1)} ;} \\
c= & \mathbf{y} \leftarrow \mathrm{A}^{|\mathrm{H}(\cdot)\rangle}(\mathbf{A})
\end{array}\right] .
$$

Note that the SelfTargetMSIS problem is classically at least as hard as MSIS [15]. There is a (non-tight) reduction in the classical random-oracle model from the MSIS to the SelfTargetMSIS problem. Let A and B be the adversaries to the $\mathrm{MSIS}_{k, l, \zeta}$ and SelfTargetMSIS ${ }_{\mathrm{H}, k, l+1, \zeta}$, respectively. If A only has classical access to H , then there is a reduction based on the forking lemma [30], [31] to prove that $\operatorname{Adv}^{\text {SelfTargetMSIS }}(\mathrm{B}) \approx \sqrt{\operatorname{Adv}^{\mathrm{MSIS}}(\mathrm{A}) / Q_{\mathrm{H}}}$, where Q_{H} is the number of classical queries to H . This reduction is standard and is implicit in the security proofs of digital signatures based on the hardness of the SIS problem (cf. [13], [32]). We refer the readers to [15] for the details.

2.4 Pseudorandom Functions

A pseudorandom function PRF is a mapping PRF : $\mathcal{K} \times$ $\{0,1\}^{n} \rightarrow\{0,1\}^{k}$, where \mathcal{K} is a finite space for the key and n and k are integers. To a quantum adversary A and PRF we associate the advantage function $\operatorname{Adv}_{\text {PRF }}^{P R}(A):=$ $\left|\operatorname{Pr}\left[\mathrm{A}^{\operatorname{PRF}(K, \cdot)} \Rightarrow 1 \mid K \leftarrow \mathcal{K}\right]-\operatorname{Pr}\left[\mathrm{A}^{\mathrm{RF}(\cdot)} \Rightarrow 1\right]\right|$, where RF : $\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ is a perfect random function. Note that while adversary A is a quantum adversary, it only has classical access to the oracles $\operatorname{PRF}(K, \cdot)$ and $\operatorname{RF}(\cdot)$.

Extendable output function. We denote by Sam an extendable output function, that is a function on bit strings the output of which can be extended to arbitrary length. We write $y \sim S:=\operatorname{Sam}(x)$ when Sam takes x as the input value and output y that is distributed according to the distribution S (or uniformly distributed over a set S). This procedure is deterministic: for a given x Sam will always output the same y. For simplicity we assume that distribution of the output of Sam is perfect, whereas Sam can be regarded as the random oracles and the output of which is statistically close to the perfect distribution. If K is a secret key, then $\operatorname{Sam}(K \| x)$ is a pseudorandom function from $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

2.5 Identification Schemes

A canonical identification scheme ID is a three-move protocol as shown in Fig. 1. Firstly, the prover send a message W, which is called commitment, to the verifier. The verifier uniformly sample a challenge c from set ChSet and send it to the prover. The prover send a response Z, and then the verifier makes a deterministic decision.
Definition 5 (Canonical Identification Scheme). A canonical identification scheme ID is defined as a tuple of algorithms ID := (IGen, P, ChSet, V).

- The key generation algorithm IGen takes system parameters par as input and returns a pair of public and secret keys ($p k, s k$). We assume that pk defines the

Fig. 1 A canonical identification scheme and its transcript (W, c, Z).

```
Trans \((s k)\)
    \((W, S t) \leftarrow \mathrm{P}_{1}(s k)\)
    \(c \leftarrow \mathrm{ChSet}\)
    \(Z \leftarrow \mathrm{P}_{2}(s k, W, c, S t)\)
    if \(Z=\perp\) then return \((\perp, \perp, \perp)\)
    return \((W, c, Z)\)
```

Fig. $2 \operatorname{Trans}(s k)$.
set of challenges ChSet, the set of commitments WSet, and the set of responses ZSet.

- The prover algorithm P is a pair of two algorithms $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) . \mathrm{P}_{1}$ takes as input the secret key sk and returns a commitment $W \in$ WSet and a state $S t ; \mathrm{P}_{2}$ takes as input the secret key sk, a commitment W, a challenge c, and a state S t and returns a response $Z \in Z$ Set $\cup\{\perp\}$, where $\perp \notin$ ZSet is a special symbol indicating failure.
- The verifier algorithm V takes the public key pk and the conversation transcript (W, c, Z) as input and outputs a deterministic decision, 1 (acceptance) or 0 (rejection).

We also define a transcript oracle Trans in Fig. 2 that returns a real interaction transcript, which is a three-tuple $(W, c, Z) \in$ WSet \times ChSet \times ZSet $\cup\{\perp, \perp, \perp\}$. between the prover and the verifier as depicted in Fig. 1, with the important convention that the transcript is defined as (\perp, \perp, \perp) if $Z=\perp$. The transcript is called valid (with respect to public-key $p k$) if $\mathrm{V}(p k, W, c, Z)=1$. We define no-abort honest-verifier zero-knowledge (naHVZK), which is a weak variant of honest-verifier zero-knowledge that requires the transcript to be publicly simulatable, conditioned on $Z \neq \perp$.
Definition 6 (naHVZK). A canonical identification scheme ID is said to be ϵ_{zk}-perfect naHVZK if there exists an algorithm Sim that, given only the public key pk, outputs (W, c, Z) such that the following conditions hold:

- The distribution of $(W, c, Z) \leftarrow \operatorname{Sim}(p k)$ has statistical distance at most ϵ_{zk} from $\left(W^{\prime}, c^{\prime}, Z^{\prime}\right) \leftarrow \operatorname{Trans}(s k)$, where Trans is defined in Fig. 2.
- The distribution of c from $(W, c, Z) \leftarrow \operatorname{Sim}(p k)$ conditioned on $c \neq \perp$ is uniform random in ChSet.

Definition 7 (Min-Entropy). If the most likely value of a random variable W that is selected from a discrete distribution D occurs with probability $2^{-\alpha}$, then we say

GAMES UF-CMA/UF-CMA ${ }_{1}$ /UF-NMA:	SIGN(M)	$\mathrm{SIGN}_{1}(M)$
$1(p k, s k) \leftarrow$ KeyGen(par)	${ }_{1} \mathcal{M}=\mathcal{M} \cup\{M\}$	${ }_{1}$ if $M \in \mathcal{M}$ then return \perp
$2\left(M^{*}, \varsigma^{*}\right) \leftarrow \mathrm{A}^{\text {SIGN }}(p k) \quad / / \mathrm{UF}-\mathrm{CMA}$	$2 \varsigma \leftarrow \operatorname{Sign}(s k, M)$	${ }_{2} \mathcal{M}=\mathcal{M} \cup\{M\}$
${ }_{3}\left(M^{*}, \varsigma^{*}\right) \leftarrow \mathrm{A}^{\mathrm{SIGN}_{1}}(p k) \quad / / \mathrm{UF}^{\text {- }} \mathrm{CMA}_{1}$	3 return S	${ }^{3} \varsigma \leftarrow \operatorname{Sign}(s k, M)$
${ }_{4}\left(M^{*}, \varsigma^{*}\right) \leftarrow \mathrm{A}(p k) \quad / / \mathrm{UF}$-NMA		${ }_{4}$ return S
${ }_{5}$ return $\llbracket M^{*} \notin \mathcal{M} \rrbracket \wedge \operatorname{Verify}\left(p k, M^{*}, \varsigma^{*}\right)$		

Fig. 3 Games UF-CMA and UF-NMA.
that $H_{\infty}(W \mid W \leftarrow D)=\alpha$. We say that a canonical identification scheme ID has α bits of min-entropy, if $\underset{(p k, s k) \leftarrow \mid \operatorname{Gen}(\mathrm{par})}{\operatorname{Pr}}\left[H_{\infty}\left(W \mid(W, S t) \leftarrow \mathrm{P}_{1}(s k)\right) \geq \alpha\right] \geq 1-2^{-\alpha}$.
In other words, over the choice of $(p k, s k)$, the minentropy of W will be at least α, except with probability $2^{-\alpha}$. An identification scheme has unique responses if for all W and c there exists at most one Z such that $\mathrm{V}(p k, W, c, Z)=1$. We relax this notion to a computational unique response (CUR): An identification scheme has CUR if it is computationally hard to find (W, c, Z, Z^{\prime}) with $\mathrm{V}(p k, W, c, Z)=\mathrm{V}\left(p k, W, c, Z^{\prime}\right)=1$ and $Z^{\prime} \neq Z$.
Definition 8 (Computational Unique Response). To an adversary A we associate the advantage function

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{ID}}^{\mathrm{CUR}}(A) \\
& :=\operatorname{Pr}\left[\begin{array}{l|l}
V(p k, W, c, Z)=1 & (p k, s k) \leftarrow \operatorname{IGen}(\mathrm{par}) ; \\
V\left(p k, W, c, Z^{\prime}\right)=1 & \left(W, c, Z, Z^{\prime}\right) \leftarrow \mathrm{A}(p k)
\end{array}\right] .
\end{aligned}
$$

2.6 Digital Signatures

We define the syntax and security of a digital signature scheme. Let par be public system parameters.
Definition 9 (Digital Signature). A digital signature scheme SIG is defined as a triple of algorithms SIG = (KeyGen, Sign, Verify). The key generation algorithm KeyGen(par) returns the public and secret keys (pk, sk). We assume that pk defines MSet that is the space for the message M. The signing algorithm Sign(sk,M) returns a signature ς. The deterministic verification algorithm $\operatorname{Verify}(p k, M, \varsigma)$ returns 1 (accept) or 0 (reject).

The signature scheme SIG has a correctness error γ if we have $\operatorname{Pr}[\operatorname{Verify}(p k, M, \operatorname{Sign}(s k, M))=0] \leq \gamma$ for all key pairs $(p k, s k) \in$ KeyGen(par), and all messages $M \in$ MSet.

We define unforgeability against chosen-message attack (UF-CMA), unforgeability against one-per-message chosen-message attack (UF-CMA $)_{1}$, and unforgeability against no-message attack (UF-NMA) advantage functions of a (quantum) adversary A against SIG as $\operatorname{Adv}_{\text {SIG }}^{\mathrm{UF}-\mathrm{CMA}}(\mathrm{A}):=$ $\operatorname{Pr}\left[\mathrm{UF}-\mathrm{CMA}^{\mathrm{A}} \Rightarrow 1\right], \operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{CMA}_{1}}(\mathrm{~A}):=\operatorname{Pr}\left[\mathrm{UF}-\mathrm{CMA}_{1}^{\mathrm{A}} \Rightarrow 1\right]$, and $\operatorname{Adv}_{\text {SIG }}^{\mathrm{UF}-\mathrm{NMA}^{\prime}}(\mathrm{A}):=\operatorname{Pr}\left[\mathrm{UF}-\mathrm{NMA}^{\mathrm{A}} \Rightarrow 1\right]$, where the games UF-CMA, UF-CMA A_{1} and UF-NMA are shown in Fig. 3. We also consider strong unforgeability against chosen-message attack (SUF-CMA) and strong unforgeability against one-per-message chosen-message attack (SUF-CMA $)_{1}$, where the adversary may return a forgery on a message previously

```
Sign(sk,M)
    while Z = \perp and }\kappa\leq\mp@subsup{\kappa}{m}{}\mathrm{ do
        \kappa:= к+1
        (W,St)\leftarrow\mp@subsup{\textrm{P}}{1}{}(sk)
            c= H(W|M)
            Z}\leftarrow\mp@subsup{\textrm{P}}{2}{}(sk,W,c,St
    end
    if Z= 音的 return }\varsigma=
    return S = (W,Z)
Verify ( }pk,M,\varsigma
    Parse }\varsigma=(W,Z)\in\mathrm{ WSet }\times\mathrm{ ZSet
    c= H(W|M)
    return }\textrm{V}(pk,W,c,Z)\in{0,1
```

Fig. 4 Sign and Verify of the signature scheme SIG := (KeyGen = IGen, Sign, Verify) obtained by the Fiat-Shamir transformation with aborts FS[ID, H, $\left.\kappa_{m}\right]$.
queried to the signing oracle, but with a different signature. In the corresponding experiments SUF-CMA and SUF-CMA ${ }_{1}$, the set \mathcal{M} contains tuples (M, ς) and for the winning condition it is checked that $\left(M^{*}, \varsigma^{*}\right) \notin \mathcal{M}$.

2.7 Fiat-Shamir Signatures

Let ID := (IGen, P, ChSet, V) be a canonical identification scheme, κ_{m} be a positive integer, and let $\mathrm{H}:\{0,1\}^{*} \rightarrow$ ChSet be a hash function. The following signature scheme SIG := (KeyGen = IGen, Sign, Verify) described in Fig. 4 is obtained by the Fiat-Shamir transformation with aborts FS[ID, H, κ_{m}] [33].

Kiltz et al. [15] showed the generic framework for constructing tight reductions in the QROM from underlying hard problems to Fiat-Shamir signatures.
Theorem 1 ([15], Theorem 3.2). Assume the identification scheme ID is $\epsilon_{\text {zk }}$-perfect naHVZK and has α bits of min entropy. For any UF-CMA (SUF-CMA $_{1}$) quantum adversary A that issues at most Q_{H} queries to the quantum random oracle $|\mathrm{H}\rangle$ and Q_{S} (classical) queries to the signing oracle SIGN_{1}, there exists a quantum adversary B against UF-NMA security making Q_{H} queries to its own quantum random oracle (and a quantum adversary C against CUR) such that

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{CMA}_{1}}(\mathrm{~A}) \leq & \operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{NMA}}(\mathrm{~B})+\kappa_{m} Q_{S} \cdot \epsilon_{\mathrm{zk}}+2^{-\alpha+1} \\
\operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{SUF}-\mathrm{CMA}_{1}}(\mathrm{~A}) \leq & \operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{NMA}}(\mathrm{~B})+\kappa_{m} Q_{S} \cdot \epsilon_{\mathrm{zk}}+2^{-\alpha+1} \\
& +\operatorname{Adv}_{\mathrm{ID}}^{\mathrm{CUR}}(\mathrm{C})
\end{aligned}
$$

and $\operatorname{Time}(\mathrm{B})=\operatorname{Time}(\mathrm{C})=\operatorname{Time}(\mathrm{A})+\kappa_{m}\left(Q_{H}+Q_{S}\right) \simeq$

```
\(\operatorname{Dign}(s k, M)\)
    \(\kappa:=0\)
    while \(Z=\perp\) and \(\kappa \leq \kappa_{m}\) do
        \(\kappa:=\kappa+1\)
        \((W, S t):=\mathrm{P}_{1}\left(s k ; \operatorname{PRF}_{K}(0\|m\| \kappa)\right)\)
        \(c=\mathrm{H}(W \| M)\)
        \(Z:=\mathrm{P}_{2}\left(s k, W, c, S t ; \operatorname{PRF}_{K}(1\|m\| \kappa)\right)\)
    end
    if \(Z=\perp\) then return \(\varsigma=\perp\)
    return \(\varsigma=(W, Z)\)
```

Fig. 5 DSign of the deterministic variant of the Fiat-Shamir signature DFS[ID, H, PRF, κ_{m}].

Time (A).
Consider a deterministic variant DSIG := DFS[ID, H, PRF, $\left.\kappa_{m}\right]=$ (KeyGen, DSign, Verify) of FS where lines 4 and 6 Sign is replaced with deterministic PRF, where the key K is part of the secret key. We show the DFS in Fig. 5. The UF-CMA (SUF-CMA) security of DFS is implied by the UF-CMA (SUF-CMA $_{1}$) security of FS. This construction is known in the classical setting [34], and the same proof works in the quantum setting [15]. Concretely, the advantages are upper bounded by the same terms as in Theorem 1 with an additional term $\operatorname{Adv}_{\text {PRF }}^{\mathrm{PR}}(\mathrm{D})$ accounting for the quantum security of the PRF: We have

$$
\begin{align*}
\operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{CMA}}(\mathrm{~A}) \leq & \operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{UF}-\mathrm{NMA}}(\mathrm{~B})+\kappa_{m} Q_{S} \cdot \epsilon_{\mathrm{zk}}+2^{-\alpha+1} \\
& +\operatorname{Adv}_{\mathrm{PRF}}^{\mathrm{PR}}(\mathrm{D}), \tag{1}\\
\operatorname{Adv}_{\mathrm{SIG}}^{\mathrm{SUF}-\mathrm{CMA}}(\mathrm{~A}) \leq & \operatorname{Adv}_{\mathrm{SIG}-\mathrm{NMA}}^{\mathrm{UP}}(\mathrm{~B})+\kappa_{m} Q_{S} \cdot \epsilon_{\mathrm{zk}}+2^{-\alpha+1} \\
& +\operatorname{Adv}_{\mathrm{ID}}^{\mathrm{CUR}}(\mathrm{C})+\operatorname{Adv}_{\mathrm{PRF}}^{\mathrm{PR}}(\mathrm{D}) . \tag{2}
\end{align*}
$$

3. Our Identification Scheme

We show our identification scheme ID in Sect. 3.2, and we show our simple supporting algorithms for the bit decomposing technique in Sect. 3.1. Our scheme ID will be converted to our deterministic signature scheme MLWRSign in Sect. 4 with the deterministic Fiat-Shamir transform DFS.

3.1 Supporting Algorithms

We show in Fig. 7 the supporting algorithms for our identification scheme and MLWRSign, which are analogues of those of Dilithium. These algorithms are used for extracting higher-order and lower-order bits of elements in \mathbb{Z}_{q}, to decrease the size of the public key. In Dilithium, q is a prime and α is an even number so the algorithm Decompose has to consider the case when $r-r_{0}=q-1$. Since we use moduli q, p in the power of twos, our Decompose can be efficiently performed in a simpler bit-wise manner to break up an element.

The following lemmas state the properties of these supporting algorithms on which the correctness and security of our scheme is based. Since these lemmas are analogues of the Lemmas 1, 2, and 3 in [14], we omit their proofs.
Lemma 1 (Lemma 1 in [14]). Suppose that p and α are
positive integers such that $p>2 \alpha, p \equiv 0(\bmod \alpha)$ and α even. Let \mathbf{r} and \mathbf{z} be vectors of elements in R_{q} where $\|\mathbf{z}\|_{\infty} \leq$ $\alpha / 2$, and let $\mathbf{h}, \mathbf{h}^{\prime}$ be vectors of bits. Then the HighBits ${ }_{p}$, MakeHint ${ }_{p}$, and UseHint $_{p}$ algorithms satisfy the following properties:

1. $\operatorname{UseHint}_{p}\left(\operatorname{MakeHint}_{p}(\mathbf{z}, \mathbf{r}, \alpha), \mathbf{r}, \alpha\right)=\operatorname{HighBits}_{p}(\mathbf{r}+$ $\mathbf{z}, \alpha)$.
2. Let $\mathbf{v}_{1}=\operatorname{UseHint}_{p}(\mathbf{h}, \mathbf{r}, \alpha)$. Then $\left\|\mathbf{r}-\mathbf{v}_{1} \cdot \alpha\right\|_{\infty} \leq \alpha+$ 1. Furthermore, if the number of $1 s$ in \mathbf{h} is ψ, then all except at most ψ coefficients of $\mathbf{r}-\mathbf{v}_{1} \cdot \alpha$ will have a magnitude of at most $\alpha / 2$ after centered reduction modulo q.
3. For any $\mathbf{h}, \mathbf{h}^{\prime}$, if $\operatorname{UseHint}_{p}(\mathbf{h}, \mathbf{r}, \alpha)=\operatorname{UseHint}_{p}\left(\mathbf{h}^{\prime}, \mathbf{r}\right.$, α), then $\mathbf{h}=\mathbf{h}^{\prime}$.

Lemma 2 (Lemma 2 in [14]). If $\|\mathbf{s}\|_{\infty} \leq \beta$ and $\left\|\operatorname{LowBits}_{p}(\mathbf{r}, \alpha)\right\|_{\infty}<\alpha / 2-\beta$, then $\operatorname{HighBits}_{p}(\mathbf{r}, \alpha)=$ HighBits $_{p}(\mathbf{r}+\mathbf{s}, \alpha)$ holds.

The function CRH is a collision resistant hash function that maps to $\{0,1\}^{384}$. The function Sam used in lines 2 and 11 is an extendable output function. In line 2 the function Sam maps a uniform seed $\rho \in\{0,1\}^{256}$ to a matrix $\mathbf{A} \in R^{k \times l}$. In line 11, Sam deterministically generates the randomness of the signature scheme, mapping a concatenation of K, μ and κ to $\mathbf{y} \in S_{\gamma_{1}-1}^{l}$.

3.2 Identification Scheme

We show our identification protocol ID $=\left(\mathrm{IGen}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~V}\right)$ in Fig. 6, with the concrete parameters par $=(q, n, k, l, d$, $\gamma_{1}, \gamma_{2}, \bar{\gamma}_{1}, \bar{\gamma}_{2}, \eta, \beta_{1}, \beta_{1}$) given in Table 1.

Key generation. The key generation of ID proceeds by selecting a random 256 -bit seed ρ and expanding into a matrix $\mathbf{A} \in R_{q}^{k \times l}$ by an extendable output function Sam modeled as a random oracle. The secret vector $\mathbf{s}_{1} \in S_{\eta}^{l}$ has uniformly random coefficients in $[-\eta, \eta]$. The value $\mathbf{t}:=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{s}_{1}\right\rfloor \in R_{p}^{k}$ is then computed. The public key that is required for verification is $\left(\rho, \mathbf{t}_{1}\right)$ with \mathbf{t}_{1} output by the $\left(\mathbf{t}_{1}, \mathbf{t}_{0}\right):=$ Decompose $_{p}\left(\mathbf{t}, 2^{d}\right)$ while the secret key is $\left(\rho, \mathbf{s}_{1}, \mathbf{t}_{0}\right)$. While the verifier does not need the value \mathbf{t}_{0} (and thus it is not needed to be included in the public key of MLWRSign), we need to include this value to simulate transcripts (see Sect. 5.2). Thus the security of our scheme is constructed in the condition that the adversary gets both \mathbf{t}_{1} and \mathbf{t}_{0}. In reality the adversary only gets \mathbf{t}_{1}, thus this is conservative condition. The set ChSet is defined as in (10), and ZSet $=S_{\gamma_{1}-\beta_{1}-1}^{l} \times\{0,1\}^{k}$. The set of commitments WSet is defined as W Set $=\left\{\mathbf{w}_{1} \mid \exists \mathbf{y} \in S_{\gamma_{1}-1}\right.$ s.t. $\mathbf{w}_{1}:=$ $\left.\operatorname{HighBits}_{p}\left(\left\lceil\frac{p}{q} \mathbf{A y}\right\rfloor, 2 \bar{\gamma}_{2}\right)\right\}$.
Protocol execution. Our ID scheme is based on the canonical identification scheme in Fig. 1. The prover starts the identification protocol by $\left(W=\mathbf{w}_{1}, S t=\left(\mathbf{w}, \boldsymbol{\xi}_{1}, \mathbf{y}\right)\right) \leftarrow$ $\mathrm{P}_{1}(s k)$ and sends $W=\mathbf{w}_{1}$ to the verifier, and then the verifier generates a random challenge $c \leftarrow$ ChSet and sends it to

$$
\begin{aligned}
& \frac{\text { IGen(par) }}{{ }_{1} \rho \stackrel{\$}{\leftarrow}\{0,1\}^{256}} \\
& \frac{\mathrm{P}_{1}(s k)}{10 \mathbf{A} \leftarrow R_{q}^{k \times l}}:=\operatorname{Sam}(\rho), \\
& \mathbf{A} \leftarrow R_{q}^{k \times l}:=\operatorname{Sam}(\rho) \\
& \mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l} \\
& \mathbf{s}_{1} \leftarrow S_{\eta}^{l} \\
& \mathbf{t}:=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{s}_{1}\right\rfloor \in R_{p}^{k} \\
& \left(\mathbf{t}_{1}, \mathbf{t}_{0}\right):=\text { Decompose }_{p}\left(\mathbf{t}, 2^{d}\right) \\
& \mathbf{w}:=\left\lceil\frac{p}{q} \mathbf{A y}\right\rfloor \in R_{p}^{k} \text {, } \\
& \left.\boldsymbol{\xi}_{1}:=\left\lceil\frac{p}{q} \mathbf{A}\right\rfloor\right\rfloor-\frac{p}{q} \mathbf{A y} \\
& p k=\left(\rho, \mathbf{t}_{1}, \mathbf{t}_{0}\right) \\
& s k=\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{t}_{0}\right) \\
& 8 \text { return (} p k, s k \text {) } \\
& \mathbf{w}_{1}:=\operatorname{HighBits}_{p}\left(\mathbf{w}, 2 \bar{\gamma}_{2}\right) \\
& \underline{\mathrm{V}\left(p k, W=\mathbf{w}_{1}, c, Z=(\mathbf{z}, \mathbf{h})\right)} \\
& \text { return } \llbracket\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1} \rrbracket \wedge \\
& \llbracket \mathbf{w}_{1}=\operatorname{UseHint}_{p}\left(\mathbf{h},\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}, 2 \bar{\gamma}_{2}\right) \rrbracket \\
& \text { return }\left(W=\mathbf{w}_{1}, S t=\left(\mathbf{w}, \boldsymbol{\xi}_{1}, \mathbf{y}\right)\right) \\
& \frac{\mathrm{P}_{2}\left(s k,\left(W=\mathbf{w}_{1}, c, S t=\left(\mathbf{w}, \boldsymbol{\xi}_{1}, \mathbf{y}\right)\right)\right.}{16 \mathbf{t}=\mathbf{t}_{1} \cdot 2^{d}+\mathbf{t}_{0}, \mathbf{s}_{2}:=\left(\mathbf{t}-\frac{p}{q} \mathbf{A s} \mathbf{s}_{1}\right)} \\
& \mathbf{z}:=\mathbf{y}+c \mathbf{s}_{1} \\
& \xi_{2}:=\left\lceil c \mathbf{s}_{2}\right\rfloor-c \mathbf{s}_{2}, v:=\left\lceil\xi_{1}-\xi_{2}\right\rfloor \\
& \mathbf{r}_{0}:=\operatorname{LowBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right) \\
& \text { if }\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta_{1} \text { or }\left\|\mathbf{r}_{0}\right\|_{\infty} \geq \bar{\gamma}_{2}-\beta_{2} \text { then } \\
& \text { return } Z=\perp \\
& \text { end } \\
& \mathbf{h}:=\text { MakeHint }_{p}\left(-c \mathbf{t}_{0}, \mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}+c \mathbf{t}_{0}, 2 \bar{\gamma}_{2}\right) \\
& \text { return } Z=(\mathbf{z}, \mathbf{h})
\end{aligned}
$$

Fig. 6 Our identification scheme ID- a concrete instantiation based on the hardness of the MLWR problem of the canonical identification scheme in Fig. 1.

```
Decompose }\mp@subsup{p}{}{(r,\alpha)
1 }r:=r\mp@subsup{\operatorname{mod}}{}{+}p,\mp@subsup{r}{0}{}:=r\mp@subsup{\operatorname{mod}}{}{\pm}\alpha,\mp@subsup{r}{1}{}:=(r-\mp@subsup{r}{0}{})/\alpha
2 return (r
HighBits}p(r,\alpha
3(\mp@subsup{r}{1}{},\mp@subsup{r}{0}{}):=\mp@subsup{\mathrm{ Decompose }}{p}{}(r,\alpha), return }\mp@subsup{r}{1}{
LowBits
```



```
MakeHint 
5}\mp@subsup{r}{1}{}:=\mp@subsup{\operatorname{HighBits}}{p}{}(r,\alpha),\mp@subsup{v}{1}{}:=\mp@subsup{\operatorname{HighBits}}{p}{}(r+z,\alpha
    6 return }h:=\llbracket\mp@subsup{r}{1}{}\not=\mp@subsup{v}{1}{}
    UseHint }\mp@subsup{p}{}{(}(h,r,\alpha
    7 m:=p/\alpha,( r},\mp@subsup{r}{0}{}):=\mp@subsup{\mathrm{ Decompose }}{p}{}(r,\alpha
    if }h=1\mathrm{ and ro>0 then return ( }\mp@subsup{r}{1}{}+1)\mp@subsup{\operatorname{mod}}{}{+}
    if h=1 and ros 0 then return (r
    return }\mp@subsup{r}{1}{
```

Fig. 7 Supporting algorithms for MLWRSign.
the prover. The prover computes $\mathbf{z}:=\mathbf{y}+c \mathbf{s}_{1}$ in line 17 and $\mathbf{r}_{0}:=\operatorname{LowBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right)$ in line 19. He replies with \perp if $\mathbf{z} \notin S_{\gamma_{1}-\beta_{1}-1}^{l}$ or $\mathbf{r}_{0} \notin S_{\bar{\gamma}_{2}-\beta_{2}-1}^{l}$. This part of the protocol is necessary for security, it makes sure that \mathbf{z} does not leak any information about the secret vectors $\mathbf{s}_{1}, \mathbf{s}_{2}$.

If the checks pass and a \perp is not sent, then it can be shown (see Sect. 4.1) that $\operatorname{HighBits}_{p}\left(\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}, 2 \bar{\gamma}_{2}\right)=$ \mathbf{w}_{1}. At this point, if the verifier had known the entire \mathbf{t} and (\mathbf{z}, c), he could have recovered \mathbf{w}_{1} and checked that $\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1}$ and that the high-order bits of $\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}$ are indeed \mathbf{w}_{1}. However, to compress the size of the public key, the verifier only knows \mathbf{t}_{1}. To allow the verifier to compute HighBits ${ }_{p}\left(\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}, 2 \bar{\gamma}_{2}\right)$ without \mathbf{t}_{0}, the signer needs to provide a hint vector \mathbf{h}. The verifier checks whether $\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1}$ and that \mathbf{w}_{1} can be reconstructed from $\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}$ and the hint \mathbf{h}.

4. Our Signature Scheme: MLWRSign

We present our scheme MLWRSign in Fig. 8, which is obtained by deterministic Fiat-Shamir transformation on the ID in Sect. 3. The correctness of MLWRSign is shown in Sect. 4.1. We analyze the probability of the rejection sampling of our signing procedure in Sect. 4.2. We explain the concrete settings of parameters in Sect. 4.3, and the values are shown in Table 1.

4.1 Correctness

We prove the correctness of our signature scheme in this subsection. If $\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}$, then by Lemma 1 we know that $\operatorname{UseHint}_{p}\left(\mathbf{h}, \mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor+c \mathbf{t}_{0}, 2 \bar{\gamma}_{2}\right)=\operatorname{HighBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor, 2 \bar{\gamma}_{2}\right)$. From the definitions of \mathbf{w}, \mathbf{t}, and \mathbf{z}, we obtain

$$
\begin{equation*}
\left\lceil\frac{p}{q} \mathbf{A} \mathbf{z}\right\rfloor-c \mathbf{t}=\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v} \tag{3}
\end{equation*}
$$

where $\mathbf{s}_{2}=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{s}_{1}\right\rfloor-\frac{p}{q} \mathbf{A} \mathbf{s}_{1}, \boldsymbol{\xi}_{1}:=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{y}\right\rfloor-\frac{p}{q} \mathbf{A} \mathbf{y}, \boldsymbol{\xi}_{2}:=\left\lceil c \mathbf{s}_{2}\right\rfloor-$ $c \mathbf{s}_{2}$ and $\boldsymbol{v}:=\left\lceil\boldsymbol{\xi}_{1}-\boldsymbol{\xi}_{2}\right\rfloor$. Since $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$ are polynomials whose coefficients are rounding errors that are heuristically i.i.d and uniformly distribute on $\left(-\frac{1}{2}, \frac{1}{2}\right]$, we have $\|\boldsymbol{v}\|_{\infty} \leq$ 1. Using $\mathbf{t}=\mathbf{t}_{1} \cdot 2^{d}+\mathbf{t}_{0}$, we can rewrite (3) as $\left\lceil\frac{p}{q} \mathbf{A}\right\rfloor-$ $c \mathbf{t}_{1} \cdot 2^{d}=\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}+c \mathbf{t}_{0}$. Thus, the verifier computes $\mathbf{w}_{1}^{\prime}=\operatorname{UseHint}_{p}\left(\mathbf{h}, \mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}+c \mathbf{t}_{0}, 2 \bar{\gamma}_{2}\right)=\operatorname{HighBits}_{p}(\mathbf{w}-$ $\left\lceil c \mathbf{s}_{2}\right\rfloor-v, 2 \bar{\gamma}_{2}$). Since the signer also checks that $\mathbf{r}_{1}=\mathbf{w}_{1}$ in line 19, we obtain $\operatorname{HighBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right):=\mathbf{r}_{1}=\mathbf{w}_{1}$. Therefore, \mathbf{w}_{1}^{\prime} that the verifier computes is the same as \mathbf{w}_{1} that the signer computes, and the verification procedure is always accepted.

4.2 Rejection Sampling

We analyze the probability of the rejection of our signing
procedure in this subsection. Our analysis in this subsection for $\left.P_{3}:=\operatorname{Pr}\left[\| \Gamma c \mathbf{s}_{2}\right] \|_{\infty}<\beta_{2}^{\prime}\right]$ in (6), $P_{4}:=\operatorname{Pr}\left[\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}\right]$ in (7), and $P_{5}:=\operatorname{Pr}[\operatorname{Hw}(\mathbf{h})<\omega]$ in (8) would also be helpful in analyzing the rejection sampling probability of the Dilithium in more detail. In [13], it was mentioned that it is difficult to formally compute the probability of the rejection of the Dilithium that corresponds to $1-P_{4} \cdot P_{5}$, and they heuristically selected parameters such that the probability become less than 1%. It was also mentioned in [13] that they chose the parameter such that the probability that

```
KeyGen(par)
    \(\rho \stackrel{\$}{\leftarrow}\{0,1\}^{256}, K \stackrel{\$}{\leftarrow}\{0,1\}^{256}\)
    \(\mathbf{A} \in R_{q}^{k \times l}:=\operatorname{Sam}(\rho), \mathbf{s}_{1} \leftarrow S_{\eta}^{l}, \mathbf{t}:=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{s}_{1}\right\rfloor \in R_{p}^{k}\)
    \(\left(\mathbf{t}_{1}, \mathbf{t}_{0}\right):=\) Decompose \(_{p}\left(\mathbf{t}, 2^{d}\right), \operatorname{tr}:=\mathrm{CRH}\left(\rho \| \mathbf{t}_{1}\right)\)
    return \(\left(p k=\left(\rho, \mathbf{t}_{1}\right), s k=\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{t}_{0}\right)\right)\)
Sign \((p k, s k, M)\)
    \(\mathbf{A} \in R_{q}^{k \times l}:=\operatorname{Sam}(\rho), \mathbf{t}=\mathbf{t}_{1} \cdot 2^{d}+\mathbf{t}_{0}, \mathbf{s}_{2}:=\left(\mathbf{t}-\frac{p}{q} \mathbf{A} \mathbf{s}_{1}\right)\)
    \(\mu:=\mathrm{CRH}(\operatorname{tr} \| M), \kappa:=0\)
    repeat
        repeat
            repeat
                \(\kappa:=\kappa+1\)
                \(\mathbf{y} \in S_{\gamma_{1}-1}^{l}:=\operatorname{Sam}(K\|\mu\| \kappa)\)
                \(\mathbf{w}:=\left\lceil\frac{p}{q} \mathbf{A y}\right\rfloor \in R_{p}^{k}, \boldsymbol{\xi}_{1}:=\left\lceil\frac{p}{q} \mathbf{A y}\right\rfloor-\frac{p}{q} \mathbf{A} \mathbf{y}\)
                \(\mathbf{w}_{1}:=\operatorname{HighBits}_{p}\left(\mathbf{w}, 2 \bar{\gamma}_{2}\right)\)
                \(c \in B_{60}:=\mathrm{H}\left(\mu \| \mathbf{w}_{1}\right)\)
                    \(\mathbf{z}:=\mathbf{y}+c \mathbf{s}_{1}\)
            until \(\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1}\)
            \(\boldsymbol{\xi}_{2}:=\left\lceil c \mathbf{s}_{2}\right\rfloor-c \mathbf{s}_{2}, v:=\left\lceil\xi_{1}-\xi_{2}\right\rfloor\)
            \(\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right):=\) Decompose \(_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right)\)
        until \(\left\|\mathbf{r}_{0}\right\|_{\infty}<\bar{\gamma}_{2}-\beta_{2}\) and \(\mathbf{r}_{1}=\mathbf{w}_{1}\)
        \(\mathbf{h}:=\) MakeHint \(_{p}\left(-c \mathbf{t}_{0}, \mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}+c \mathbf{t}_{0}, 2 \bar{\gamma}_{2}\right)\)
    until \(\operatorname{Hw}(\mathbf{h}) \leq \omega\) and \(\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}\)
    return \(\operatorname{sig}=(\mathbf{z}, \mathbf{h}, c)\)
Verify \((p k, \operatorname{sig}, M)\)
    \(\mathbf{A} \in R_{q}^{k \times l}:=\operatorname{Sam}(\rho), \mu:=\operatorname{CRH}(\operatorname{CRH}(p k) \| M)\)
    \(\mathbf{w}_{1}^{\prime}:=\operatorname{UseHint}_{p}\left(\mathbf{h},\left\lceil\frac{p}{q} \mathbf{A} \mathbf{z}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}, 2 \bar{\gamma}_{2}\right)\),
    \(c^{\prime}:=\operatorname{hash}\left(\mu \| \mathbf{w}_{1}^{\prime}\right)\)
    return \(\left(\llbracket\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta \rrbracket \wedge \llbracket c=c^{\prime} \rrbracket \wedge \llbracket \mathrm{Hw}(\mathbf{h}) \leq \omega \rrbracket\right)\)
```

Fig. 8 Our signature scheme MLWRSign.
corresponds to P_{3} was higher than $1-2^{128}$ for the Dilithium, but its analysis was not shown.

We first calculate the probability of the rejection in line 16, i.e., we calculate $P_{1}:=\operatorname{Pr}\left[\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1}\right] . P_{1}$ can be computed by considering each coefficient separately. For each coefficient σ of $c \mathbf{s}_{1}$, the corresponding coefficient of \mathbf{z} will be in $\left(-\gamma_{1}+\beta_{1}+1, \gamma_{1}-\beta_{1}-1\right]$ whenever the corresponding coefficient of \mathbf{y}_{i} is in $\left(-\gamma_{1}+\beta_{1}+1-\sigma, \gamma_{1}-\right.$ $\left.\beta_{1}-1-\sigma\right)$. The size of this range is $2\left(\gamma_{1}-\beta_{1}\right)-1$, and the coefficients of \mathbf{y} have $2 \gamma_{1}-1$ possibilities since $\mathbf{y} \in S_{\gamma_{1}-1}^{l}$. Thus, we obtain $P_{1}=\left(\frac{2\left(\gamma_{1}-\beta_{1}\right)-1}{2 \gamma_{1}-1}\right)^{n l}=\left(1-\frac{\beta_{1}}{\gamma_{1}-1 / 2}\right)^{n l}$. Thus, when γ_{1} is large enough, we can approximate

$$
\begin{equation*}
P_{1}:=\operatorname{Pr}\left[\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta_{1}\right] \simeq e^{-n l \beta_{1} / \gamma_{1}} . \tag{4}
\end{equation*}
$$

Second, we calculate the probability of the rejection in line 19 , i.e., $P_{2}:=\operatorname{Pr}\left[\left\|\mathbf{r}_{0}\right\|_{\infty}<\bar{\gamma}_{2}-\beta_{2}\right]$. In a similar way to calculating (4), we obtain $P_{2}=\left(\frac{2\left(\bar{\gamma}_{2}-\beta_{2}\right)-1}{2 \bar{\gamma}_{2}}\right)^{n k}=$ $\left(1-\frac{\beta_{2}+1 / 2}{\bar{\gamma}_{2}}\right)^{n k}$. Therefore, when we assume that each coefficient of \mathbf{r}_{0} is uniformly distributed modulo $2 \gamma_{2}$, and $\bar{\gamma}_{2}$ is large enough and $\beta_{2} \gg 1 / 2$, we can approximate

$$
\begin{equation*}
P_{2}:=\operatorname{Pr}\left[\left\|\mathbf{r}_{0}\right\|_{\infty}<\bar{\gamma}_{2}-\beta_{2}\right] \simeq e^{-n k \beta_{2} / \bar{\gamma}_{2}} \tag{5}
\end{equation*}
$$

The check of $\mathbf{r}_{1}:=\operatorname{HighBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right)=$ $\operatorname{HighBits}_{p}\left(\mathbf{w}, 2 \bar{\gamma}_{2}\right):=\mathbf{w}_{1}$ always succeeds if the condition $\left\|\left\lceil c \mathbf{s}_{2}\right\rfloor+\boldsymbol{\nu}\right\|_{\infty} \leq \beta_{2}$ and $\left\|\mathbf{r}_{0}\right\|_{\infty}<\bar{\gamma}_{2}-\beta_{2}$ holds, from Lemma 2. Since $\|v\|_{\infty} \leq 1$ holds by definition, we have $\left\|\left\lceil c \mathbf{s}_{2}\right\rfloor+v\right\|_{\infty} \leq$ $\left\|\left\lceil c \mathbf{s}_{2}\right\rfloor\right\|_{\infty}+1$.

In the following, we calculate $\left.P_{3}:=\operatorname{Pr}\left[\| \Gamma c \mathbf{s}_{2}\right] \|_{\infty}<\beta_{2}^{\prime}\right]$, where $\beta_{2}^{\prime}:=\beta_{2}-1$, i.e., the probability that the check of $\mathbf{r}_{1}=\mathbf{w}_{1}$ always succeeds. Let X_{i} be the i-th coefficient of an element of the vector \mathbf{s}_{2}, and let Y be a coefficient of an element of the vector $c \mathbf{s}_{2}$. Then, since $\mathbf{s}_{2} \in S_{\frac{1}{2}}^{k}$, if we assume that $X_{1} \ldots X_{n}$ are i.i.d. and $X_{i} \sim \mathcal{U}\left(-\frac{1}{2}, \frac{1}{2}\right)$, we can approximate that $Y \sim \mathcal{N}\left(0,60 \sigma_{X}^{2}\right)$ by the central limit theorem when n is large enough, where $\sigma_{X}^{2}=\operatorname{Var}\left(X_{i}\right)=$ $1 / 12$. Thus, we can approximate $\operatorname{Pr}\left[|Y|<\beta_{2}^{\prime}\right] \simeq 1-$

Table 1 Parameters for MLWRSign.
$\left.\begin{array}{ccccccc}\hline & \text { I } \\ \text { weak }\end{array} \quad \begin{array}{ccccc}\text { II } \\ \text { medium }\end{array}\right)$
$2 F_{\mathcal{N}(0,5)}\left(-\beta_{2}^{\prime}\right)$, and then

$$
\begin{equation*}
P_{3}:=\operatorname{Pr}\left[\left\|\left[c \mathbf{s}_{2}\right]\right\|_{\infty}<\beta_{2}^{\prime}\right] \simeq\left(1-2 F_{\mathcal{N}(0,5)}\left(-\beta_{2}^{\prime}\right)\right)^{n k} \tag{6}
\end{equation*}
$$

where $F_{\mathcal{N}(0,5)}$ be the c.d.f of $\mathcal{N}(0,5)$. We set the parameter β_{2} such that $\|\left[c \mathbf{s}_{2} J \|_{\infty}<\beta_{2}^{\prime}\right.$ holds with a probability higher than $1-2^{-30}$. Thus, the rejection probability in line 19 is dominated by P_{2}.

Finally, we calculate the probability of rejection in line 21, i.e., $P_{4}:=\operatorname{Pr}\left[\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}\right]$ and $P_{5}:=\operatorname{Pr}[\operatorname{Hw}(\mathbf{h})<$ $\omega]$. We first calculate P_{4}. By construction, $\mathbf{t}=\mathbf{t}_{1} \cdot 2^{d}+\mathbf{t}_{0}$ and $\left\|\mathbf{t}_{0}\right\|_{\infty} \leq 2^{d-1}$. Let X_{i} be the i-th coefficient of an element of the vector \mathbf{t}_{0}, and let Y be the coefficient of an element of the vector $c \mathbf{t}_{0}$. Note that $c \in B_{60}$ so Y is the sum of 60 random elements of $\left\{X_{i}\right\}_{i=1}^{n}$. If we (heuristically) assume that $X_{1} \ldots X_{n}$ are i.i.d. and $X_{i} \sim \mathcal{U}\left(-2^{d-1}, 2^{d-1}\right)$, we can approximate that $Y \sim \mathcal{N}\left(0, \sigma_{Y}^{2}\right)$ by the central limit theorem when n is large enough, where $\sigma_{Y}^{2}:=60 \sigma_{X}^{2}$ and $\sigma_{X}^{2}=\operatorname{Var}\left(X_{i}\right)=\left(2 \cdot 2^{d-1}\right)^{2} / 12=2^{2 d} / 12$. Thus, we can approximate $\operatorname{Pr}\left[|Y|<\bar{\gamma}_{2}\right] \simeq 1-2 F_{\mathcal{N}\left(0, \sigma_{Y}^{2}\right)}\left(-\bar{\gamma}_{2}\right)$, where $F_{\mathcal{N}\left(0, \sigma_{Y}^{2}\right)}$ is the c.d.f. of $\mathcal{N}\left(0, \sigma_{Y}^{2}\right)$. Since Y is the coefficient of an element of the vector in R_{p}^{k}, we obtain

$$
\begin{equation*}
P_{4}:=\operatorname{Pr}\left[\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}\right] \simeq\left(1-2 F_{\mathcal{N}\left(0, \sigma_{Y}^{2}\right)}\left(-\bar{\gamma}_{2}\right)\right)^{n k} \tag{7}
\end{equation*}
$$

We set the parameter $\bar{\gamma}_{2}$ so that $\left\|c \mathbf{t}_{0}\right\|_{\infty}<\bar{\gamma}_{2}$ holds with overwhelming probability. Also note that we set parameter d to satisfy $60 \cdot 2^{d-1}<2 \bar{\gamma}_{2}$ (as shown in Sect. 4.3) and the fact that $\left\|c \mathbf{t}_{0}\right\|_{\infty} \leq\|c\|_{1} \cdot\left\|\mathbf{t}_{0}\right\|_{\infty}$. From these we obtain $\sigma_{Y}:=$ $\frac{1}{6 \sqrt{5}} \cdot 60 \cdot 2^{d-1}<\frac{1}{3 \sqrt{5}} \cdot \bar{\gamma}_{2}$, and approximately $\bar{\gamma}_{2}>6.7 \sigma_{Y}$. Thus, we can also estimate that $F_{\mathcal{N}\left(0, \sigma_{Y}^{2}\right)}\left(-\bar{\gamma}_{2}\right)$ is negligibly small, without numerical computation of $F_{\mathcal{N}\left(0, \sigma_{Y}^{2}\right)}\left(-\bar{\gamma}_{2}\right)$.

Next, we calculate $P_{5}:=\operatorname{Pr}[\operatorname{Hw}(\mathbf{h})<\omega]$. Let X, Y and h be the coefficient of an element of the vector $\mathbf{r}_{0}, c \mathbf{t}_{0}$ and \mathbf{h}, respectively, and define $Z:=X+Y$. Recall that

$$
\begin{aligned}
\mathbf{h}= & \llbracket \operatorname{HighBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}+c \mathbf{t}_{0}, 2 \bar{\gamma}_{2}\right) \\
& \neq \operatorname{HighBits}_{p}\left(\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-\boldsymbol{v}, 2 \bar{\gamma}_{2}\right) \rrbracket,
\end{aligned}
$$

and $h=1$ when the corresponding Z satisfies $|Z|>\bar{\gamma}_{2}, h=0$ otherwise. We now calculate $\operatorname{Pr}[h=1]$. In line 21, the conditions $\left\|\mathbf{r}_{0}\right\|_{\infty}<\bar{\gamma}_{2}-\beta_{2}$ and $\left\|c \mathbf{t}_{0}\right\|_{\infty} \leq \bar{\gamma}_{2}$ are already satisfied. Thus, we assume that $X \sim \mathcal{U}\left(-\left(\bar{\gamma}_{2}-\beta_{2}\right),\left(\bar{\gamma}_{2}-\beta_{2}\right)\right)$ as already derived, then we obtain

$$
\begin{aligned}
& f_{Z}(z):=\int_{z-\left(\bar{\gamma}_{2}-\beta_{2}\right)}^{z+\left(\bar{\gamma}_{2}-\beta_{2}\right)} f_{X}(z-y) f_{Y}(y) d y \\
& \frac{1}{2\left(\bar{\gamma}_{2}-\beta_{2}\right)} \int_{z-\left(\bar{\gamma}_{2}-\beta_{2}\right)}^{z+\left(\bar{\gamma}_{2}-\beta_{2}\right)} f_{Y}(y) d y \\
& =\frac{1}{2\left(\bar{\gamma}_{2}-\beta_{2}\right)}\left(F_{Y}\left(z+\left(\bar{\gamma}_{2}-\beta_{2}\right)\right)-F_{Y}\left(z-\left(\bar{\gamma}_{2}-\beta_{2}\right)\right)\right) \text {, } \\
& \text { and } F_{Z}(z)=\int_{-\infty}^{z} f_{Z}(x) d x=\frac{1}{2\left(\bar{\gamma}_{2}-\beta_{2}\right)} \int_{z-\left(\bar{\gamma}_{2}-\beta_{2}\right)}^{z+\left(\bar{\gamma}_{2}-\beta_{2}\right)} F_{Y}(x) d x \text {, }
\end{aligned}
$$ where f_{X}, f_{Y} and f_{Z} are the p.d.f. of the distribution of X, Y and Z, respectively. Then, we obtain

$$
\operatorname{Pr}[h=1]=\operatorname{Pr}\left[|Z|>\bar{\gamma}_{2}\right]=2 F_{Z}\left(-\bar{\gamma}_{2}\right)
$$

$$
=\frac{1}{\bar{\gamma}_{2}-\beta_{2}} \int_{-2\left(\bar{\gamma}_{2}-\beta_{2}\right)}^{0} F_{Y}(x) d x
$$

and thus we obtain $\operatorname{Hw}(\mathbf{h}) \sim \mathcal{B}(n k, \operatorname{Pr}[h=1])$ since $\mathbf{h} \in R_{p}^{k}$. Because we can estimate that $Y \sim \mathcal{N}\left(0, \sigma_{Y}^{2}=5 \cdot 2^{2 d}\right)$ as we derived before, we obtain $P:=\operatorname{Pr}[h=1] \simeq$ $\frac{1}{\bar{\gamma}_{2}-\beta_{2}} \int_{-2\left(\bar{\gamma}_{2}-\beta_{2}\right)}^{0} F_{\mathcal{N}\left(0,5 \cdot 2^{2 d}\right)}(x) d x$. Therefore, let $F_{\mathcal{B}(n k, P)}$ be the c.d.f. of the binomial distribution $\mathcal{B}(n k, P)$, then we can approximate

$$
\begin{equation*}
P_{5}:=\operatorname{Pr}[\mathrm{Hw}(\mathbf{h})<\omega] \simeq F_{\mathcal{B}(n k, P)}(\omega) \tag{8}
\end{equation*}
$$

We set the parameter ω such that $\operatorname{Hw}(\mathbf{h})<\omega$ with a probability higher than $1-2^{10}$.

To summarize, disregarding the conditions with overwhelming probability, i.e., assuming $P_{3}, P_{4}, P_{5} \simeq 1$, we can estimate the probability of exiting the loop in lines 6 to 21 using (4) and (5) as follows:

$$
\begin{equation*}
P_{1} \cdot P_{2} \simeq e^{-n\left(\beta_{1} l / \gamma_{1}+\beta_{2} k / \bar{\gamma}_{2}\right)} \tag{9}
\end{equation*}
$$

Thus, the expected number of iterations of the loop is $e^{n\left(\beta_{1} l / \gamma_{1}+\beta_{2} k / \bar{\gamma}_{2}\right)}$.

4.3 Parameter Settings

We show our parameters in Table 1. In the following, we explain how we select these values.
Moduli q and p. We set $q=2^{23}$ for all parameter sets of the security category. This value is the nearest power of two of 8380417 that is the value of the modulo q used in Dilithium. We set q and p as the power of twos to perform rounding by simple bit-shift operation, similar to the LWR-based PKE schemes Saber [9] and Round5 [8].

Module dimensions (k, l) and noise parameter η. The parameter η corresponds to the standard deviation σ of the LWE problem. Dilithium bases its security on LWE with uniform distribution whose standard deviation is $\sigma=$ $2 \eta / \sqrt{12}$, which is the standard deviation of the uniform distribution $\mathcal{U}(-\eta, \eta)$. For our scheme, the parameter η is defined by $\eta:=\left\lceil\frac{q}{2 p}\right\rceil=\frac{q}{2 p}$. We estimate the bit-security based on the values of $\sigma=2 \eta / \sqrt{12}, k, l$, and n, using the lwe-estimator [35]. See Sect. 5.5 for details of the estimation of the bit-security. Note that η is also restricted to be the power of two since we set q, p as the power of twos. As a limitation, this setting loses a little flexibility to control the rejection rate and bit-security.

Space for challenge c. A cryptographic hash function that hashes onto B_{60} is used in Dilithium and our signature scheme. $B_{h} \subset R$ is a ring whose h coefficients are either -1 or 1 and the rest are 0 . Thus, we obtain $\left|B_{h}\right|=2^{h} \cdot\binom{n}{h}$, and then $\left|B_{60}\right|=2^{60} \cdot\binom{256}{60} \simeq 2^{257.01}>2^{256}$. Thus, let the space of challenge c in our scheme be ChSet, then we have

$$
\begin{equation*}
\text { ChSet }:=B_{60} \text {, and } \mid \text { ChSet } \mid>2^{256} \tag{10}
\end{equation*}
$$

Setting of β_{1}, β_{2}. The parameters β_{1} and β_{2} are the counterpart of β used in Dilithium. In the scheme, the corresponding \mathbf{s}_{1} and \mathbf{s}_{2} are the variables that uniformly distribute on S_{η}, and β is selected such that $\left\|c \mathbf{s}_{i}\right\|_{\infty}<\beta$ for $i=1,2$ with overwhelming probability. Since $c \in B_{60}$, $\mathbf{s}_{i} \in S_{\eta}$, we obtain the bound $\left\|c \mathbf{s}_{i}\right\|_{\infty} \leq\|c\|_{1} \cdot\left\|\mathbf{s}_{i}\right\|_{\infty}=60 \eta$, thus it can be seen that $\beta \leq 60 \eta$. In MLWRSign, while we use the same $\mathbf{s}_{1} \in S_{\eta}$ as Dilithium, \mathbf{s}_{2} is a polynomial whose coefficients uniformly distribute on $\left(-\frac{1}{2}, \frac{1}{2}\right]$. Thus, we define the two parameters β_{1} and β_{2} such that $\left\|c \mathbf{s}_{1}\right\|_{\infty}<$ $\beta_{1}, \|\left\lceil c \mathbf{s}_{2} \|_{\infty}<\beta_{2}-1\left(<\beta_{1}\right)\right.$ with overwhelming probability. This probability was analyzed in (6).

Setting of $\gamma_{1}, \gamma_{2}, \bar{\gamma}_{1}, \bar{\gamma}_{2}$. We set $\gamma_{1}:=q / 16, \gamma_{2}:=\gamma_{1} / 2$, $\bar{\gamma}_{1}:=\frac{p}{q} \gamma_{1}$, and $\bar{\gamma}_{2}:=\bar{\gamma}_{1} / 2$. These parameters are related to the rejection rate of the signing and the security, which we describe in Sect. 5.4.

Setting of d. The parameter d defines the length of \mathbf{t}_{0}, which is part of the $p k$ and $s k$ (see also Fig. 10). We select d such that

$$
\begin{equation*}
60 \cdot\left(2^{d-1}+1\right)<2 \bar{\gamma}_{2}-1 \tag{11}
\end{equation*}
$$

for the security of our scheme, as discussed in Sect. 5.4. Here, $60 \cdot 2^{d-1}$ is the upper bound of $\left\|c \mathbf{t}_{0}\right\|_{\infty}$.

5. Security

The goal of this section is to provide full proof for the tight security reduction for MLWRSign in the QROM from the MLWR, SelfTargetMSIS, and MSIS, which is the following theorem:
Theorem 2 (QROM security of MLWRSign). For any quantum adversary A against SUF-CMA security that issues at most Q_{H} queries to the quantum random oracle $|\mathrm{H}\rangle$, there exist quantum adversaries B, C, D, and E such that

$$
\begin{align*}
& \operatorname{Adv}_{\text {MLWRSign }}^{\text {SUF-CMA }}(\mathrm{A}) \leq \operatorname{Adv}_{p, k, l, D}^{\mathrm{MLWR}}(\mathrm{~B})+\operatorname{Adv}_{\mathrm{H}, k, l+1, \zeta}^{\text {SelfTargetMSIS }}(\mathrm{C}) \\
& \left.+\operatorname{Adv}_{\text {Sam }}^{\mathrm{PR}}(\mathrm{D})+\operatorname{Adv}_{k, l, \zeta^{\prime}}^{\mathrm{MSIS}} \mathrm{E}\right)+2^{-\alpha+1} \tag{12}
\end{align*}
$$

where D is a uniform distribution over S_{η}, α is bits of minentropy of the identification scheme ID shown in Fig. 6, and ζ and ζ^{\prime} are defined as follows:

$$
\begin{align*}
\zeta & =\max \left\{\gamma_{1}-\beta_{1}, \frac{q}{p}\left(2 \bar{\gamma}_{2}+1+60 \cdot 2^{d-1}\right)\right\} \leq 4 \gamma_{2} \tag{13}\\
\zeta^{\prime} & =\max \left\{2\left(\gamma_{1}-\beta_{1}\right), 4 \gamma_{2}+2\right\} \leq 4 \gamma_{2}+6 \eta \tag{14}
\end{align*}
$$

We obtain the bound of (12) based on Theorem 1, and equations (1) and (2). The proof of this is modular. We constructed in Sect. 3.2 the identification scheme ID from which we obtain MLWRSign via the (deterministic) FiatShamir transform, i.e., ID satisfies MLWRSign = DFS[ID, H, PRF, κ_{m}]. We show the following properties of ID in the rest of this section:

- ID has α bits of min-entropy, where $\alpha \geq 90,180,255$, 255,255 and 255, for parameter sets in Table 1 (I), (II),
(III), (IV), (V), and (VI), respectively. (Sect. 5.1)
- ID is perfectly naHVZK, i.e. $\epsilon_{z k}$-perfect naHVZK for $\epsilon_{\text {zk }}=0$ (Sect. 5.2)
- $\operatorname{Adv}_{\mathrm{ID}}^{\mathrm{CUR}}(\mathrm{A}) \leq \operatorname{Adv}_{k, l, \zeta^{\prime}}^{\mathrm{MSIS}}(\mathrm{E})($ Sect. 5.3)
- UF-NMA security of MLWRSign (Sect. 5.4)

Combining all of these properties, we can apply Theorem 1 to MLWRSign and we obtain (12). In Sect. 5.5 we show how we derived concrete bit-security shown in Table 1 based on (12).

5.1 Min-Entropy

Lemma 3. For a fixed matrix $\mathbf{A} \leftarrow R_{q}^{k \times l}$ and \mathbf{w}_{1}, let

$$
\begin{equation*}
P_{\mathbf{A}, \mathbf{w}_{1}}:=\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[\operatorname{HighBits}_{p}\left(\left\lceil\frac{p}{q} \mathbf{A} \mathbf{y}\right\rfloor, 2 \bar{\gamma}_{2}\right)=\mathbf{w}_{1}\right] \tag{15}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\underset{\mathbf{A} \leftarrow R_{q}^{k \times l}}{\operatorname{Pr}}\left[\forall \mathbf{w}_{1}: P_{\mathbf{A}, \mathbf{w}_{1}} \leq\left(\frac{2 \gamma_{2}+1}{2 \gamma_{1}-1}\right)^{n}\right]>1-(n / q)^{k l} . \tag{16}
\end{equation*}
$$

Proof. The probability that a random polynomial $a \leftarrow R_{q}$ is invertible in $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ when the polynomial $X^{n}+1$ splits into n linear factors is $(1-1 / q)^{n}>1-n / q$. Thus the probability that at least one of the $k l$ polynomials in $\mathbf{A} \leftarrow R_{q}^{k \times l}$ is invertible is greater than $1-(n / q)^{k l}$.

We will now prove that for all \mathbf{A} that contain at least one invertible polynomial, we will have that for all \mathbf{w}_{1}, $P_{\mathbf{A}, \mathbf{w}_{1}} \leq\left(\frac{2 \gamma_{2}+1}{2 \gamma_{1}-1}\right)^{n}$, which will prove the lemma. Let us only consider the row of \mathbf{A} which contains the invertible polynomial. Denote the elements in this row by $\left[a_{1}, \ldots, a_{l}\right]$ and without loss of generality assume that a_{1} is invertible. We want to prove that for all w_{1} (element of \mathbf{w}_{1}),

$$
\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[\operatorname{HighBits}_{p}\left(\left\lceil\frac{p}{q} \sum_{i=1}^{l} a_{i} y_{i}\right\rfloor, 2 \bar{\gamma}_{2}\right)=w_{1}\right] \leq\left(\frac{2 \gamma_{2}+1}{2 \gamma_{1}-1}\right)^{n} .
$$

Let us define $T:=\left\{w \mid \operatorname{HighBits}_{p}\left(w, 2 \bar{\gamma}_{2}\right)=w_{1}\right\}$. By the definition of the Decompose ${ }_{p}$ routine in Fig. 7, the size of T is at most $\left(2 \bar{\gamma}_{2}+1\right)^{n}$. We can then rewrite the above probability as $\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[\left\lceil\frac{p}{q} \sum_{i=1}^{l} a_{i} y_{i}\right\rfloor \in T\right]=\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[y_{i} \in\right.$ $\left.a_{i}^{-1}\left(\frac{q}{p}(T-\xi)-\sum_{i=2}^{l} a_{i} y_{i}\right)\right]$ where ξ is a rounding error defined as $\xi:=\left\lceil\frac{p}{q} \sum_{i=1}^{l} a_{i} y_{i}\right\rfloor-\left(\frac{p}{q} \sum_{i=1}^{l} a_{i} y_{i}\right)$. The size of the set $a_{i}^{-1}\left(\frac{q}{p}(T-\xi)-\sum_{i=2}^{l} a_{i} y_{i}\right)$ is at most $\left(2 \frac{q}{p} \bar{\gamma}_{2}+1\right)^{n}=\left(2 \gamma_{2}+1\right)^{n}$, and the size of the set $S_{\gamma_{1}-1}^{l}$ is exactly $\left(2 \gamma_{1}-1\right)^{n}$, thus we have $\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[\left\lceil\frac{p}{q} \sum_{i=1}^{l} a_{i} y_{i}\right\rfloor \in T\right]=\left(\frac{2 \gamma_{2}+1}{2 \gamma_{1}-1}\right)^{n}$.

For the values in Table 1, we have that $\left(\frac{2 \gamma_{2}+1}{2 \gamma_{1}-1}\right)^{n}<2^{-255}$ for every parameter sets and $(n / q)^{k l}=2^{-90}, 2^{-180}, 2^{-300}$, $2^{-450}, 2^{-840}$ and 2^{-1080} for parameter sets (I), (II), (III), (IV), (V), and (VI), respectively. Thus, by Definition 7, the minentropy of MLWRSign for parameter sets (I), (II), (III), (IV),

Fig. 9 Left: a real transcript output by the transcript algorithm Trans(sk); Right: a simulated transcript output by the $\operatorname{Sim}(p k)$ algorithm.
(V), and (VI), is greater than 90, 180, 255, 255, 255, and 255, respectively.

It is important to note here that the real min-entropy should be a lot higher since the HighBits ${ }_{p}$ function maps onto a set of size larger than 25000 and is heuristically close to uniform over this set. To get a formal proof would be significantly more involved than the proof above which took advantage of the fact that $\gamma_{1}=2 \gamma_{2}$, and gave us a sufficiently high min-entropy bound for practical purposes.

5.2 Non Abort Honest Verifier Zero-Knowledge

In this section, we show that ID is perfect naHVZK (Definition 6), in other words, we show that the distribution of the output of the Trans algorithm (Fig. 9, left) that takes the secret key as input is exactly the same as that of the Sim algorithm (Fig. 9, right) that takes only the public key as input.
Lemma 4. If $\beta_{1} \geq \max _{\mathbf{s}_{1} \in S_{\eta}, c \in \mathrm{ChSet}}\left\|c \mathbf{s}_{1}\right\|_{\infty}$, then ID in Fig. 6 is perfectly naHVZK.

Proof. Let $\mathbf{s}_{1} \in S_{\eta}^{l}$ be any polynomials satisfying $\frac{p}{q}\left\lceil\mathbf{A s}_{1}\right\rfloor=$ t. We show that the output distributions of Trans and Sim from Fig. 9 are identical. For any $\mathbf{z} \in S_{\gamma_{1}-\beta_{1}-1}^{l}$, we compute the probability that \mathbf{z} is generated in line 7 of Trans. For any $c \in$ ChSet, we have

$$
\begin{equation*}
\operatorname{Pr}_{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}\left[\mathbf{y}+c \mathbf{s}_{1}=\mathbf{z}\right]=\underset{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}{\operatorname{Pr}}\left[\mathbf{y}=\mathbf{z}-c \mathbf{s}_{1}\right] . \tag{17}
\end{equation*}
$$

Because $\left\|c \mathbf{s}_{1}\right\|_{\infty} \leq \beta_{1}$, we know $\mathbf{z}-c \mathbf{s}_{1} \in S_{\gamma_{1}-1}^{l}$. Thus,

$$
\begin{equation*}
\operatorname{Pr}_{\mathbf{y} \leftarrow S_{\gamma_{1}-1}^{l}}\left[\mathbf{y}=\mathbf{z}-c \mathbf{s}_{1}\right]=1 /\left|S_{\gamma_{1}-1}^{l}\right| . \tag{18}
\end{equation*}
$$

Therefore, every $\mathbf{z} \in S_{\gamma_{1}-\beta_{1}-1}^{l}$ has an equal probability of being generated. Furthermore, the probability of producing a $\mathbf{z} \in S_{\gamma_{1}-\beta_{1}-1}^{l}$, which equals the probability of not returning
\perp in line 10 of Trans, is exactly $\frac{\left|S_{\gamma_{1}-\beta_{1}-1}^{l}\right|}{\left|S_{\gamma_{1}-1}^{l}\right|}$. Thus, after line 10, either \perp has been returned (with probability $1-\frac{\left|S_{\gamma_{1}-\beta_{1}-1}^{l}\right|}{\left|S_{\gamma_{1}-1}^{l}\right|}$), or the distribution of (c, \mathbf{z}) is uniform in $\operatorname{ChSet} \times S_{\gamma_{1}-\beta_{1}-1}^{l}$. This is exactly the same distribution as that after line 16 of Sim. To complete the proof, we note that $\left[\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}=\mathbf{w}-\left\lceil c \mathbf{s}_{2}\right\rfloor-v$ holds from (3), thus all the steps in Trans after line 10 are identical to those after line 16 of Sim.

5.3 Computational Unique Response

In this section we prove that our ID satisfies the CUR property defined in Definition 8 required for strongunforgeability of the signature scheme. The following Lemma 5 directly implies that $\operatorname{Adv}_{\text {ID }}^{\mathrm{CUR}}(\mathrm{A}) \leq \operatorname{Adv}_{k, l, \zeta^{\prime}}^{\mathrm{MSII}}(\mathrm{E})$ for ζ^{\prime} defined in (14).
Lemma 5. If $\left(\mathbf{w}_{1}, c,(\mathbf{z}, \mathbf{h})\right)$ and $\left(\mathbf{w}_{1}, c,\left(\mathbf{z}^{\prime}, \mathbf{h}^{\prime}\right)\right)$ are such that $\mathrm{V}\left(p k, \mathbf{w}_{1}, c,(\mathbf{z}, \mathbf{h})\right)=\mathrm{V}\left(p k, \mathbf{w}_{1}, c,\left(\mathbf{z}^{\prime}, \mathbf{h}^{\prime}\right)\right)=1$ and $(\mathbf{z}, \mathbf{h}) \neq$ $\left(\mathbf{z}^{\prime}, \mathbf{h}^{\prime}\right)$, then there exist \mathbf{v}, \mathbf{u} such that $\|\mathbf{v}\|_{\infty}<2\left(\gamma_{1}-\beta_{1}\right)$, $\|\mathbf{u}\|_{\infty} \leq 4 \gamma_{2}+6 \eta$ such that $\mathbf{A v}+\mathbf{u}=0$.

Proof. The two conditions of the Lemma imply that $\mathbf{w}_{1}=$ $\operatorname{UseHint}_{p}\left(\mathbf{h},\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}, 2 \bar{\gamma}_{2}\right), \mathbf{w}_{1}=\operatorname{UseHint}_{p}\left(\mathbf{h}^{\prime}\right.$, $\left\lceil\frac{p}{q} \mathbf{A} \mathbf{z}^{\prime}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}, 2 \bar{\gamma}_{2}$) We first point out that it must be that $\mathbf{z} \neq \mathbf{z}^{\prime}$. This is because Lemma 1 implies that if $\mathbf{z}=\mathbf{z}^{\prime}$ then necessarily $\mathbf{h}=\mathbf{h}^{\prime}$ (and then $Z=Z^{\prime}$). The above two equations imply (again by Lemma 1) that

$$
\begin{align*}
&\left\|\left[\frac{p}{q} \mathbf{A z}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}-\mathbf{w}_{1} \cdot 2 \bar{\gamma}_{2}\right\|_{\infty} \leq 2 \bar{\gamma}_{2}+1 \tag{19}\\
&\left\|\left\lceil\frac{p}{q} \mathbf{A} \mathbf{z}^{\prime}\right\rfloor-c \mathbf{t}_{1} \cdot 2^{d}-\mathbf{w}_{1} \cdot 2 \bar{\gamma}_{2}\right\|_{\infty} \leq 2 \bar{\gamma}_{2}+1 \tag{20}
\end{align*}
$$

We have $\mathbf{u}:=\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor=\left\lceil\frac{p}{q} \mathbf{A}\left(\mathbf{z}-\mathbf{z}^{\prime}\right)\right\rfloor+\boldsymbol{v}$ where $\boldsymbol{\xi}_{1}:=\left\lceil\frac{p}{q} \mathbf{A z}\right\rfloor-\frac{p}{q} \mathbf{A} \mathbf{z}, \boldsymbol{\xi}_{2}:=\left\lceil\frac{p}{q} \mathbf{A} \mathbf{z}^{\prime}\right\rfloor-\frac{p}{q} \mathbf{A} \mathbf{z}^{\prime}$ and $\boldsymbol{v}:=\left\lceil\boldsymbol{\xi}_{1}-\boldsymbol{\xi}_{2}\right\rfloor$. From (19) and (20), we have $\|\mathbf{u}\|_{\infty} \leq 4 \bar{\gamma}_{2}+2$ by the triangular inequality. Also, Let $\mathbf{u}:=\mathbf{u}-v$ then we have $\|\mathbf{u}-v\|_{\infty} \leq$ $4 \bar{\gamma}_{2}+3$ since $\|\boldsymbol{v}\|_{\infty} \leq 1$. Thus, $\left\lceil\frac{p}{q} \mathbf{A}\left(\mathbf{z}-\mathbf{z}^{\prime}\right)\right\rfloor+\mathbf{u}^{\prime}=0$ for some

$$
\mathrm{H}^{\prime}\left(\mu \|\left[\mathbf{A}\left|\mathbf{t}^{\prime}\right| \mathbf{I}_{k}\right]\left[\begin{array}{c}
\mathbf{z} \tag{22}\\
-c \\
\frac{q}{p} \mathbf{u}^{\prime}
\end{array}\right]\right)=c
$$

where $\mathrm{H}^{\prime}(\mu \| x)=\mathrm{H}\left(\mu \| \frac{1}{2 \gamma_{2}} x\right)$, and $\mathbf{t}^{\prime}:=\frac{q}{p} \mathbf{t}+\mathbf{v}$ by definition. Since $\mathbf{A} \in R_{q}^{k \times l}$ and $\mathbf{t}^{\prime} \in R_{q}^{k}$ are random, $\mathbf{y}:=$ $\left[\mathbf{z}^{\top}|-c| \frac{q}{p} \mathbf{u}^{\top}\right]^{\top}$ is a solution to SelfTargetMSIS ${ }_{\mathrm{H}^{\prime}, k, l+1, \zeta}$ defined in Definition 4 , where $\zeta=\max \left\{\|\mathbf{z}\|_{\infty},\left\|\frac{q}{p} \mathbf{u}^{\prime}\right\|_{\infty}\right\} \leq 4 \gamma_{2}$ as shown in (13).

5.5 Concrete Security

We follow the methodology of [14] to derive the security parameters in Table 1 with minor adaptations considering the MLWR problem. Since there are no known attacks that benefit the module structure, we view MLWR and MSIS problems as the LWR and SIS problems. The LWR and SIS problems are exactly the same as those in the definitions of MLWR and MSIS in Sect. 2.3 with the ring R_{q} being replaced by \mathbb{Z}_{q}.
Concrete hardness of $\mathrm{MLWR}_{p, k, l, D}$. We can view an $\mathrm{MLWR}_{p, k, l, D}$ instance as an LWR instance of dimensions $256 l$ and $256 k$: we can rewrite $\mathrm{MLWR}_{p, k, l, D}$ as finding $\operatorname{vec}\left(\mathbf{s}_{1}\right) \in \mathbb{Z}^{256 l} \times \mathbb{Z}^{256 k}$ from $(\operatorname{rot}(\mathbf{A}), \operatorname{vec}(\mathbf{t}))$, where $\operatorname{vec}(\cdot)$ maps a vector of R_{q} to the vector obtained by concatenating the coefficients of its coordinates, and $\operatorname{rot}(\mathbf{A}) \in \mathbb{Z}_{q}^{256 k \times 256 l}$ is obtained by replacing all entries $a \in R$ of \mathbf{A} by the 256×256 matrix whose z-th column is $\operatorname{vec}\left(x^{z-1} \cdot a_{i j}\right)$. Given an LWR instance ($\mathbf{A}, \mathbf{t}:=\left\lceil\frac{p}{q} \mathbf{A s}\right\rfloor$), we convert it to a LWE instance $\left(\mathbf{A}, \frac{q}{p} \mathbf{t}=\mathbf{A s}+\frac{q}{p} \boldsymbol{\xi}\right)$, where $\boldsymbol{\xi}:=\left\lceil\frac{p}{q} \mathbf{A s}\right\rfloor-\frac{p}{q} \mathbf{A s}$ is a vector of rounding error uniformly distributed over ($-\frac{1}{2}, \frac{1}{2}$). Thus, we obtain the variance of noise of the converted LWE sample as $\sigma^{2}=\frac{q^{2}}{12 p^{2}}$, and we estimate the concrete hardness (BKZ block size b) based on the value of $256 l, q$ and σ using the lwe-estimator [35].
Concrete hardness of SelfTargetMSIS $\mathrm{H}_{\mathrm{H}, k, l+1, \zeta}$. It is shown in [14] that, by using a standard forking lemma argument, an adversary to solve the above problem in the random oracle model can solve the MSIS problem. As discussed in the paper, since the reduction using the forking lemma lacks tightness, our scheme also relies on the exact hardness of analogues of the problem of (22). Under the assumption H is a cryptographic hash function, the only approach for solving the problem of (22) appears to be picking some \mathbf{w} such that $\mathrm{H}^{\prime}(\mu \| \mathbf{w})=c$, and then finding a pair $\mathbf{z}, \mathbf{u}^{\prime}$ that satisfies $\mathbf{w}=\mathbf{A z}-c \frac{q}{p} \mathbf{t}+\frac{q}{p} \mathbf{u}^{\prime}$. Let $\mathbf{t}^{\prime}:=\mathbf{w}+c \frac{q}{p} \mathbf{t}$, then we can rewrite this as

$$
\left[\mathbf{A} \mid \mathbf{I}_{k}\right]\left[\begin{array}{c}
\mathbf{z} \tag{23}\\
\frac{q}{p} \mathbf{u}^{\prime}
\end{array}\right]=\mathbf{t}^{\prime}
$$

The concrete security that we are concerned with is the hardness of the problem of finding a pair $\mathbf{z}, \frac{q}{p} \mathbf{u}^{\prime}$ that satisfies (23) and $\left\|\frac{q}{p} \mathbf{u}^{\prime}\right\|_{\infty},\|\mathbf{z}\|_{\infty}<4 \gamma_{2}$. This amounts to solving the

Fig. 10 Illustration of the bit length of $\mathbf{t}=\mathbf{t}_{1} \cdot 2^{d}+\mathbf{t}_{0}$ (pk part: \mathbf{t}_{1}, sk part: \mathbf{t}_{0}).
$\mathrm{MSIS}_{k,(l+1), \zeta}$ problem for the matrix $\left[\mathbf{A} \mid \mathbf{t}^{\prime}\right]$.
Concrete hardness of $\mathrm{MSI}_{k, l, \zeta}$. Furthermore, the $\mathrm{MSI}_{k,(l+1), \zeta}$ instance can be mapped to a $\mathrm{SIS}_{256 k, 256(l+1), \zeta}$ instance with the matrix $\operatorname{rot}\left(\mathbf{A} \mid \mathbf{t}^{\prime}\right) \in \mathbb{Z}_{q}^{256 \cdot k \times 25 \cdot(l+1)}$. Similarly, the $\mathrm{MSI}_{k, l, \zeta^{\prime}}$ instance can be mapped to the $\mathrm{SIS}_{256 \cdot k, 256 \cdot l, \zeta^{\prime}}$ instance. Since the values of q, k, l, and ζ^{\prime} in (14) of our scheme are almost the same as those of Dilithium (only the value of q is slightly different), the MSIS instances above are also the same. Thus, in Table 1, we refer to the BKZ block size b to break SIS given in [14].

6. Results and Comparison

6.1 Data Size

Public key. The size of public key $p k=\left(\rho, \mathbf{t}_{1}\right)$ in MLWRSign is $32([\log p\rceil-d) \cdot k+1)$ bytes, while that of Dilithium is $\left.32\left(\left(\int \log q\right\rceil-14\right) \cdot k+1\right)$ bytes. The bit-length of a coefficient of a polynomial of vector \mathbf{t}_{1} is always 9 bits, as you can see in Fig. 10. This is because we select d such that $\left\lceil\log _{2}(60 \cdot\right.$ $\left.\left.2^{d-1}\right)\right\rceil=\log _{2}\left(2 \bar{\gamma}_{2}\right)$, thus $d:=\log \left(2 \bar{\gamma}_{2}\right)-5$. Therefore, the bit length of \mathbf{t}_{1} is $\log p-\log \left(2 \bar{\gamma}_{2}\right)+5=\log q-\log \left(2 \gamma_{2}\right)+5$, which is equivalent to that of Dilithium.
Secret key. The size of secret key $s k=\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{t}_{0}\right)$ in MLWRSign is $112+32\left(l\left\lceil\log _{2}(2 \eta+1)\right\rceil+d k\right)$ bytes, while that of Dilithium is $112+32\left((k+l)\left\lceil\log _{2}(2 \eta+1)\right\rceil+14 k\right)$ bytes. While in Dilithium the noise vector \mathbf{s}_{2} has to be included in the secret key, it is not needed to be stored since we can generate it in the Sign procedure thanks to the deterministic characteristic of LWR. Furthermore, as the modulus of \mathbf{t} is reduced from q to p, the length of d is less than the value fixed in Dilithium ($d<14$), as you can see in Fig. 10. The concrete sizes of the secret keys in Dilithium [14] are 2096, 2800, 3504, and 3856 bytes
for "weak", "medium", "recommended", and "very high" parameter sets, respectively. Thus, our secret key sizes are short by 26% to 34%.

Signature. The size of the signature sig $=(\mathbf{z}, \mathbf{h}, c)$ is $32 l \log _{2}\left(2 \gamma_{1}\right)+\omega+k+40$ bytes. This is the same as that of Dilithium, since the values of γ_{1}, β_{1} (corresponds to β in Dilithium) and ω in our scheme are the same as those of Dilithium.

6.2 CPU Cycles

We implemented our scheme, and the results are shown in Table 2. They are the number of CPU cycles for KeyGen, Sign, and Verify. The numbers for Sign are lower quartile (L), median (M), and upper quartile (U) of 10,000 executions each. For Verify and KeyGen, we presented only the median of the cycles since those values did not fluctuate significantly. Signing was performed with a 32 -byte message. Throughout this paper, we performed the experiments on a laptop with an Intel Core i7-9700 that runs at a base clock frequency of 3.0 GHz , and the Hyperthreading and Turbo Boost options were switched off. The code was compiled with gcc 7.5.0. Our implementation is based on the reference implementation of Dilithium that is available at [14]. Furthermore, we presented an optimized implementation of MLWRSign for CPUs that supports the AVX2 instruction set. The optimized implementation speeds up the polynomial multiplication and expansion of the matrix and vectors since these computations are the most time-consuming operations.

As we stated before, we could not utilize the NTT for polynomial multiplication since we selected the modulus q in the powers of 2 . To mitigate this disadvantage, we used Toom-Cook and Karatsuba polynomial multiplication instead of NTT. Additionally, we efficiently implemented the rounding operation with a simple bit shift following the method used in [8], [9]. As a result, the running time of our scheme is comparable with that of Dilithium, although our secret key is short. Furthermore, the results show that our AVX2-optimized version is faster than our reference implementation in total CPU cycles by $1.49 \mathrm{x}, 1.75 \mathrm{x}, 1.89 \mathrm{x}$, $1.89 x, 2.08 x$, and $2.07 x$, for parameter sets (I), (II), (III), (IV), (V), and (VI), respectively.

Note that CPU cycles of Sign for the parameter set III (in the median or upper quartile) are lower than those for the parameter set II, although the parameter set III achieves higher security. This is because we use lower η in III and due to this, the expected number of rejections is less than that of the parameter set II.

6.3 Comparison with Other Lattice Signatures

Table 3 compares MLWRSign to lattice-based signature schemes that are proposed for NIST PQC, in terms of security, signature, and key sizes, and the performance of portable C reference implementations.

Table 2 Data sizes and CPU cycles of MLWRSign. The parameter sets are from Table 1. For Sign, we measure the lower quartile (L), median (M), and upper quartile (U) of the cycles. For Verify and KeyGen, we write only the median of the cycles since they do not fluctuate significantly.

	I	II	III	IV	V	VI
Public key size (bytes)	896	1184	1472	1760	2336	2624
Secret key size (bytes)	1392	1872	2384	2864	3856	4336
Signature size (bytes)	1387	2044	2701	3358	4672	5329
Expected repeats ((9))	4.9	8.9	4.1	5.6	3.3	3.9
Average repeats observed	4.0	8.1	3.2	4.7	2.4	3.0
Sign cycles	$\left(\begin{array}{rr}\mathrm{L}: & 399 \mathrm{~K} \\ \mathrm{M}: & 631 \mathrm{~K} \\ \mathrm{U}: & 1004 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{c}\text { L: }\end{array}(928 \mathrm{~K}\right.$	$\left(\begin{array}{c}\text { L: } 1029 \mathrm{~K} \\ \text { M: } 1398 \mathrm{~K} \\ \text { U: } 2149 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{c}\text { L: } \\ \text { M: } 2314 \mathrm{~K} \\ \text { U: } 3900 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{c}\text { L: } 1934 \mathrm{~K} \\ \mathrm{M}: 2850 \mathrm{~K} \\ \mathrm{U}: 4215 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{c}\text { L: } 2473 \mathrm{~K} \\ \text { M: } 4074 \mathrm{~K} \\ \text { U: } 5965 \mathrm{~K}\end{array}\right.$
Verify cycles	181K	311 K	473 K	681 K	1216K	1527K
KeyGen cycles	157K	285K	432K	626 K	1259 K	1447K
Sign cycles (AVX2)	$\left(\begin{array}{c}\text { L: } 271 \mathrm{~K} \\ \mathrm{M}: 429 \mathrm{~K} \\ \mathrm{U}: 685 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{rr}\text { L: } & 520 \mathrm{~K} \\ \mathrm{M}: & 949 \mathrm{~K} \\ \mathrm{U}: & 1668 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{cr}\text { L: } & 555 \mathrm{~K} \\ \mathrm{M}: & 759 \mathrm{~K} \\ \mathrm{U}: & 1172 \mathrm{~K}\end{array}\right.$	$\left(\begin{array}{rr}\text { L: } & 814 \mathrm{~K} \\ \mathrm{M}: & 1273 \mathrm{~K} \\ \mathrm{U}: & 2086 \mathrm{~K}\end{array}\right.$		$\left(\begin{array}{c}\text { L: } 1304 \mathrm{~K} \\ \mathrm{M}: 2001 \mathrm{~K} \\ \text { U: } 2925 \mathrm{~K}\end{array}\right.$
Verify cycles (AVX2)	114 K	170K	248K	352 K	580K	719K
KeyGen cycles (AVX2)	106K	153K	213K	317 K	530 K	662K

Table 3 Comparison with lattice signatures in reference implementations.

Scheme	Sec.	Cycles	Cycles (AVX2)	Bytes	Assumption	Framework
MLWRSign-III (this paper)	123	Sign: $\left(\begin{array}{c}\text { L: } 1029 \mathrm{~K} \\ \mathrm{M}: 1398 \mathrm{~K} \\ \mathrm{U}: 2149 \mathrm{~K}\end{array}\right.$ Verify: 486 K KeyGen: 447 K	$\begin{aligned} \text { Sign: } & \begin{array}{cc} \text { L: } & 555 \mathrm{~K} \\ \mathrm{M}: & 759 \mathrm{~K} \\ \mathrm{U}: 1172 \mathrm{~K} \\ \text { Verify: } & 254 \mathrm{~K} \\ \text { KeyGen: } & 219 \mathrm{~K} \\ \hline \end{array} \mathrm{l} \end{aligned}$	pk: 1472 sk: 2384 sig: 2701	MLWR, MSIS	FS with abort
Dilithium-III [36]	125	Sign: $\left(\begin{array}{c}\text { L: } 1363 \mathrm{~K} \\ \text { M: } 2092 \mathrm{~K} \\ \text { U: } 3308 \mathrm{~K}\end{array}\right.$ Verify: 634 K KeyGen: 647 K	$\begin{aligned} & \hline \text { Sign: }\left(\begin{array}{c} \text { L: } 313 \mathrm{~K} \\ \mathrm{M}: 453 \mathrm{~K} \\ \mathrm{U}: 688 \mathrm{~K} \end{array}\right. \\ & \text { Verify: } 204 \mathrm{~K} \\ & \text { KeyGen: } 262 \mathrm{~K} \\ & \hline \end{aligned}$	pk: 1472 sk: 3504 sig: 2701	MLWE, MSIS	FS with abort
Falcon-512 [37]	108	Sign: $\left(\begin{array}{c}\text { L: } 890 \mathrm{~K} \\ \mathrm{M}: 898 \mathrm{~K} \\ \mathrm{U}: 924 \mathrm{~K}\end{array}\right.$ Verify: 122 K KeyGen: 23381 K	Sign: L: 964 K M: 974 K $\mathrm{U}: 998 \mathrm{~K}$ Verify: 122 K KeyGen: 27128 K	$\begin{array}{rr} \text { pk: } & 897 \\ \text { sk: } & 1281 \\ \text { sig: } & 666 \end{array}$	NTRU-SIS	Hash-and-sign
q TESLA-p-III [12]	129*	Sign:(L: 3753 K M: 6774 K $\mathrm{U}:$ 12002 KVerify:2122 KKeyGen:28445 K	\sim^{\dagger}	pk: 38432 sk: 12392 sig: 5664	RLWE	FS with abort

${ }^{*}$ Calculated from $2^{0.265 b}$ with BKZ block size $b=489 \quad{ }^{\dagger}$ No AVX2-optimized version is publicly available

The most compact, in terms of key and signature sizes, lattice-based schemes are NTRU-based schemes, e.g., Falcon [16], [38]. However, they contain several disadvantages. One disadvantage is that the security of these schemes is based on NTRU rather than (ring or module variants of) LWE. The geometric structure of NTRU lattices has recently been exploited [39] to produce significantly better attacks against the NTRU problem with large-modulus or small-secret, although these attacks are not applicable to the recent parameter set used in the digital signatures. The other disadvantage is that changing the security levels of those schemes is not easy since it requires a reconstruction of the schemes.

The other lattice constructions are digital signatures based on the hardness of RLWE/LWE, e.g., [12], [32], [40]. The disadvantage of these schemes is that both key and
signature sizes and running times are high. As you can see in Table 3, data sizes and CPU cycles of the latest implementation of q TESLA [12] are much higher than other schemes.

The MLWE-based signature scheme, Dilithium, offers reasonably small signatures and public keys, and high speeds of signing and verification. In particular, the sum of the size of the public key and signature of the scheme is smaller than all the non-lattice-based schemes, to the best of our knowledge. By basing its security on MLWR, our scheme MLWRSign offers a smaller secret key than Dilithium, while the size of the public key and signature are exactly the same, and speeds of signing and verification are at the same level.

7. Conclusion

We proposed an MLWR-based digital signature scheme MLWRSign, which is a variant of Dilithium that is one of the third-round finalists of NIST PQC. To the best of our knowledge, our scheme MLWRSign is the first signature scheme whose security is based on the (variants of) LWR problem. By utilizing the simplicity of LWR in our scheme, we reduced the size of the secret key by approximately 30% compared to Dilithium, while achieving the same level of security. We efficiently implemented MLWRSign using the Toom-Cook and Karatsuba polynomial multiplication, and observed that the running time of MLWRSign is comparable to that of the reference implementation of Dilithium.

References

[1] H. Okada, A. Takayasu, K. Fukushima, S. Kiyomoto, and T. Takagi, "A compact digital signature scheme based on the module-LWR problem," ICICS, eds. W. Meng, D. Gollmann, C.D. Jensen, and J. Zhou, pp.73-90, 2020.
[2] National Institute of Standards and Technology, "Post-quantum cryptography," 2019. https://csrc.nist.gov/Projects/Post-QuantumCryptography, Accessed: Feb. 27, 2019.
[3] National Institute of Standards and Technology, "Post-quantum cryptography - Round 2 submissions," 2020. https://csrc.nist. gov/projects/post-quantum-cryptography/round-2-submissions, Accessed: April, 2020.
[4] O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," STOC'05, pp.84-93, ACM, 2005.
[5] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Stebila, "Frodo: Take off the ring! practical, quantum-secure key exchange from LWE," CCS 2016, pp.1006-1018, 2016.
[6] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, "Post-quantum key exchange - A New Hope," USENIX Security, pp.327-343, 2016.
[7] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P. Schwabe, G. Seiler, and D. Stehle, "CRYSTALSKyber: A CCA-secure module-lattice-based KEM," EuroS\&P 2018, pp.353-367, 2018.
[8] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Rietman, M.J.O. Saarinen, L. Tolhuizen, and Z. Zhang, "Round5: Compact and fast post-quantum public-key encryption," Post-Quantum Cryptography 2019, eds. J. Ding and R. Steinwandt, pp.83-102, 2019.
[9] J.P. D'Anvers, A. Karmakar, S.S. Roy, and F. Vercauteren, "Saber: Module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM," AFRICACRYPT 2018, pp.282-305, 2018.
[10] D.J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal, "NTRU prime: Reducing attack surface at low cost," Selected Areas in Cryptography - SAC 2017, eds. C. Adams and J. Camenisch, pp.235-260, 2018.
[11] A. Hülsing, J. Rijneveld, J. Schanck, and P. Schwabe, "Highspeed key encapsulation from NTRU," Cryptographic Hardware and Embedded Systems - CHES 2017, eds. W. Fischer and N. Homma, pp.232-252, 2017.
[12] E. Alkim, P.S.L.M. Barreto, N. Bindel, J. Kramer, P. Longa, and J.E. Ricardini, "The lattice-based digital signature scheme qTESLA," Cryptology ePrint Archive, Report 2019/085, 2019. https://eprint.iacr.org/2019/085
[13] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé, "CRYSTALS-dilithium: A lattice-based
digital signature scheme," TCHES, vol.2018, no.1, pp.238-268, Feb. 2018.
[14] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé, "CRYSTALS-Dilithium: Algorithm specifications and supporting documentationn," Technical Report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
[15] E. Kiltz, V. Lyubashevsky, and C. Schaffner, "A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model," Advances in Cryptology - EUROCRYPT 2018, eds. J.B. Nielsen and V. Rijmen, pp.552-586, 2018.
[16] P.A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, "Falcon: Fast-Fourier lattice-based compact signatures over NTRU," Technical Report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
[17] National Institute of Standards and Technology, "Post-quantum cryptography - Round 3 submissions," 2020. https://csrc.nist.gov/ Projects/post-quantum-cryptography/round-3-submissions, Accessed: Sept. 2020.
[18] D.J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang, "Classic mceliece: Conservative code-based cryptography," Technical Report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
[19] J. Ding, M. Chen, A. Petzoldt, D. Schmidt, and B. Yang, "Rainbow - algorithm specification and documentation," Technical Report, National Institute of Standards and Technology, 2019. https://csrc. nist.gov/projects/post-quantum-cryptography/round-2-submissions
[20] A. Banerjee, C. Peikert, and A. Rosen, "Pseudorandom functions and lattices," Advances in Cryptology - EUROCRYPT 2012, eds. D. Pointcheval and T. Johansson, pp.719-737, 2012.
[21] A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen, "On the hardness of learning with rounding over small modulus," TCC, eds. E. Kushilevitz and T. Malkin, pp.209-224, 2016.
[22] L. Chen, Z. Zhang, and Z. Zhang, "On the hardness of the computational ring-LWR problem and its applications," Advances in Cryptology - ASIACRYPT 2018, eds. T. Peyrin and S. Galbraith, pp.435-464, 2018.
[23] M.V. Beirendonck, J.P. D'Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede, "A side-channel resistant implementation of saber," Cryptology ePrint Archive, Report 2020/733, 2020. https:// eprint.iacr.org/2020/733
[24] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, "Practical CCA2-secure and masked ring-LWE implementation," IACR Transaction Cryptographic Hardware and Embedded Systems, vol.2018, no.1, pp.142-174, Feb. 2018.
[25] M. Bellare and P. Rogaway, "The security of triple encryption and a framework for code-based game-playing proofs," Advances in Cryptology - EUROCRYPT 2006, eds. S. Vaudenay, pp.409-426, 2006.
[26] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, "Quantum lower bounds by polynomials," J. ACM, vol.48, no.4, pp.778-797, July 2001.
[27] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry, "Random oracles in a quantum world," Advances in Cryptology - ASIACRYPT 2011, eds. D.H. Lee and X. Wang, pp.41-69, 2011.
[28] M. Bellare and P. Rogaway, "Random oracles are practical: A paradigm for designing efficient protocols," CCS'93, pp.62-73, ACM, 1993.
[29] M. Zhandry, "Secure identity-based encryption in the quantum random oracle model," Advances in Cryptology - CRYPTO 2012, eds. R. Safavi-Naini and R. Canetti, pp.758-775, 2012.
[30] D. Pointcheval and J. Stern, "Security arguments for digital
signatures and blind signatures," J. Cryptol., vol.13, no.3, pp.361396, June 2000.
[31] M. Bellare and G. Neven, "Multi-signatures in the plain public-key model and a general forking lemma," Proc. 13th ACM Conference on Computer and Communications Security, CCS'06, pp.390-399, ACM, 2006.
[32] V. Lyubashevsky, "Lattice signatures without trapdoors," Advances in Cryptology - EUROCRYPT 2012, eds. D. Pointcheval and T. Johansson, pp.738-755, 2012.
[33] V. Lyubashevsky, "Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures," Advances in Cryptology ASIACRYPT 2009, eds. M. Matsui, pp.598-616, 2009.
[34] M. Bellare, B. Poettering, and D. Stebila, "From identification to signatures, tightly: A framework and generic transforms," Advances in Cryptology - ASIACRYPT 2016, eds. J.H. Cheon and T. Takagi, pp.435-464, 2016.
[35] M.R. Albrecht, B.R. Curtis, A. Deo, A. Davidson, R. Player, E.W. Postlethwaite, F. Virdia, and T. Wunderer, "Estimate all the \{LWE, NTRU\} schemes!," SCN 2018, pp.351-367, 2018.
[36] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé, "CRYSTALS-Dilithium: Algorithm specifications and supporting documentationn," Technical Report, National Institute of Standards and Technology, 2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
[37] P. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, "Falcon: Fast-Fourier lattice-based compact signatures over NTRU - Specifications v1.2. 2020," Technical Report, National Institute of Standards and Technology, 2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
[38] T. Pornin, "New efficient, constant-time implementations of Falcon," Cryptology ePrint Archive, Report 2019/893, 2019. https:// eprint.iacr.org/2019/893
[39] P. Kirchner and P.A. Fouque, "Revisiting lattice attacks on overstretched NTRU parameters," Advances in Cryptology EUROCRYPT 2017, eds. J.S. Coron and J.B. Nielsen, pp.3-26, 2017.
[40] E. Alkim, N. Bindel, J. Buchmann, Ö. Dagdelen, E. Eaton, G. Gutoski, J. Krämer, and F. Pawlega, "Revisiting TESLA in the quantum random oracle model," Post-Quantum Cryptography 2017, eds. T. Lange and T. Takagi, pp.143-162, 2017.

Hiroki Okada received his B.E. and M.E. in applied mathematics and physics from Kyoto University, Japan, in 2014 and 2016, respectively. He joined KDDI in 2016 and has been engaged in research on lattice-based cryptography and homomorphic encryption. He is currently an associate research engineer at the Information Security Laboratory of KDDI Research, Inc.

Atsushi Takayasu received his B.E. in mathematical engineering and information physics from the University of Tokyo in 2012, M.S. and Ph.D. in complexity science and engineering from the University of Tokyo in 2014 and 2017. He was a JSPS Research Fellow (DC1) during his Ph.D. course. He is currently an assistant professor in the Graduate School of Information Science and Technology at the University of Tokyo, a Collaborative Researcher in National Institute of Advanced Industrial Science and Technology. He received Best Student Paper Award in ACISP 2016. His research interest includes cryptography and information security.

Kazuhide Fukushima received his M.E. in Information Engineering from Kyushu University, Japan, in 2004. He joined KDDI and has been engaged in the research on postquantum cryptography, cryptographic protocols, and identification technologies. He is currently a research manager at the Information Security Laboratory of KDDI Research, Inc. He received his Doctorate in Engineering from Kyushu University in 2009. He received the IEICE Young Engineer Award in 2012. He is a member of the Information Processing Society of Japan.

Shinsaku Kiyomoto received his B.E. in engineering sciences and his M.E. in Material Science from Tsukuba University, Japan, in 1998 and 2000, respectively. He joined KDD (now KDDI) and has been engaged in research on stream ciphers, cryptographic protocols, and mobile security. He is currently a senior researcher at the Information Security Laboratory of KDDI Research, Inc. He was a visiting researcher of the Information Security Group, Royal Holloway University of London from 2008 to 2009. He received his doctorate in engineering from Kyushu University in 2006. He received the IEICE Young Engineer Award in 2004 and Distinguished Contributions Awards in 2011. He is a member of IEICE and JPS.

Tsuyoshi Takagi received the B.Sc. and M.Sc. degrees in mathematics from Nagoya University in 1993 and 1995, respectively. He was engaged in research on network security at NTT Laboratories from 1995 to 2001. He received the PhD from the Technical University of Darmstadt in 2001. He was an Assistant Professor in the Department of Science at Technical University of Darmstadt until 2005. He is currently a Professor in the Graduate School of Information Science and Technology at University of Tokyo and in the Institute of Mathematics for Industry at Kyushu University. His current research interests are information security and cryptography. He received DOCOMO Mobile Science Award in 2013, IEICE Achievement Award in 2013, and JSPS Prize in 2014. Dr. Takagi was a Program Chair of the 7th International Conference on Post-Quantum Cryptography, PQCrypto 2016.

[^0]: Manuscript received September 18, 2020.
 Manuscript revised January 26, 2021.
 Manuscript publicized March 19, 2021.
 ${ }^{\dagger}$ The authors are with KDDI Research, Inc., Fujimino-shi, 3568502 Japan.
 ${ }^{\dagger}{ }^{\dagger}$ The authors are with The University of Tokyo, Tokyo, 1138654 Japan.
 *Presently, with National Institute of Communication and Technology, Tokyo, 184-8795 Japan.
 ${ }^{* *}$ During a part of this work, the author belonged to the University of Tokyo.
 ${ }^{* * *}$ A preliminary version of this paper [1] was presented at ICICS 2020.
 a) E-mail: ir-okada@kddi-research.jp

 DOI: 10.1587/transfun.2020DMP0012

