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A Compact Digital Signature Scheme Based on the Module-LWR
Problem∗∗∗
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SUMMARY We propose a new lattice-based digital signature scheme
MLWRSign by modifying Dilithium, which is one of the second-round
candidates of NIST’s call for post-quantum cryptographic standards. To the
best of our knowledge, our scheme MLWRSign is the first signature scheme
whose security is based on the (module) learning with rounding (LWR)
problem. Due to the simplicity of the LWR, the secret key size is reduced by
approximately 30% in our scheme compared to Dilithium, while achieving
the same level of security. Moreover, we implemented MLWRSign and
observed that the running time of our scheme is comparable to that of
Dilithium.
key words: lattice cryptography, digital signatures, learning with rounding

1. Introduction

Lattice-based cryptography is believed to be a promising
candidate for the NIST’s call for post-quantum crypto-
graphic (PQC) standards [2]. In the second round of
the NIST PQC [3], for key encapsulation mechanisms
(KEM), the lattice-based schemes proposed are the schemes
based on the learning with errors (LWE) problem [4], e.g.
FrodeKEM [5], NewHope [6], CRYSTALS-Kyber [7], the
learning with rounding (LWR)-based schemes Round5 [8]
and SABER [9], and NTRU-based schemes [10], [11].
For digital signatures, LWE-based schemes qTESLA [12],
CRYSTALS-Dilithium [13]–[15], and the NTRU-based
scheme FALCON [16] are the only lattice-based schemes.
In July 2020, the third-round finalists of the NIST PQC
were announced [17]. The finalists for KEM were
CRYSTALS-Kyber, SABER, NTRU [11], and Classic
McEliece [18]. The finalists for digital signatures are
CRYSTALS-Dilithium, FALCON, and Rainbow [19]. NIST
mentions in [17] that NIST should standardize Classic
McEliece and Rainbow for special-purpose use, since the
schemes offers very small ciphertexts or signature at the
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expense of very large public keys. The rest of the
finalists, CRYSTALS-Kyber, SABER, NTRU, CRYSTALS-
Dilithium, and FALCON are all lattice-based schemes. It is
also mentioned that NIST intends to select (at most) one
lattice-based schemes for the standard for each of general-
purpose KEM and digital signature. Here, note that no
LWR-based scheme is proposed for signature in the NIST
PQC, and moreover, no LWR-based signature scheme has
been proposed to date.

Banerjee et al. [20] introduced the LWR problem,
which is a variant of LWE where the random errors are
replaced by a deterministic rounding function. Bogdanov
et al. [21] showed that there exists a reduction from
search Ring-LWE (RLWE) to search Ring-LWR (RLWR).
Following the work, Chen et al. [22] introduced a
computational RLWR (CRLWR) problem, which is a
counterpart of the computational Diffie-Hellman problem,
and showed a reduction from decisional RLWE to CRLWR.
This paper also showed that the KEM scheme based on
Module-LWR (MLWR), to which RLWR can be viewed as
a special case, Saber and the RLWR-based scheme Round5
are secure under the CRLWR assumption.

The RLWR-based KEM scheme, namely, the third-
round finalist Saber, is among the most promising
candidates for the NIST PQC standards due to the
efficiency resulting from the simplicity of the RLWR
problem. The RLWE-based KEM schemes require sampling
noise from discrete Gaussian distributions, resulting in
higher bandwidth. In contrast, RLWR-based KEM
schemes naturally reduce bandwidth, avoiding additional
randomness for the noise, since the (R)LWR problem
generates noise through rounding of some least significant
bits. RLWR schemes are usually designed with power-of-
two moduli, and due to this, the rounding operation can be
simply performed with a bit-shift operation. Furthermore,
Beirendonck et al. [23] presented an efficient side-channel
resistant masked implementation of Saber by leveraging
the characteristic of the (R)LWR: power-of-two moduli,
and limited noise sampling. While Oder et al. [24]
presented a masked implementation of a complete chosen
ciphertext attack (CCA) secure RLWE decapsulation similar
to NewHope KEM [6] with a factor 5.7x overhead
over an unmasked implementation, Saber’s CCA-secure
decapsulation algorithm [23] has an overhead factor of only
2.5x over the unmasked implementation.

The Module-LWE (MLWE)-based signature scheme
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CRYSTALS-Dilithium [13]–[15] (hereinafter, referred to as
Dilithium) is also among the most promising candidates due
to its efficiency, especially on its public key size. Dilithium
decreases the size of the public key by separating the
high/low order bits of the element of the LWE sample. The
high part is included in the public key and the low part is
included in the secret key. This technique is conceptually
similar to the construction of the LWR-based KEM schemes.
In the LWR, the low order bits are rounded off to be the
deterministic noise (corresponds to a part of the secret
key), and the high order bits are the LWR sample, which
corresponds to the public key.

Our contributions. In this paper, we propose an MLWR-
based digital signature scheme MLWRSign by modifying
Dilithium. To the best of our knowledge, our scheme is
the first digital signature scheme based on the (ring variants
of) LWR problem. We modify Dilithium to be a MLWR-
based scheme, aiming to obtain the best of both worlds of
the LWR-based KEM schemes and Dilithium. As a result,
the size of the secret key in our scheme is reduced by
approximately 30%, compared to Dilithium. We present
detailed analytical results on the probability of the rejection
sampling during the signing procedure of our scheme, and
show that the expected number of rejections is at the same
level as Dilithium. This analysis is applicable to Dilithium,
and it would be helpful for optimizing parameters of the
scheme.

We efficiently implement MLWRSign and the results
show that the running time of our scheme is comparable
to Dilithium. Following the LWR-based KEM schemes
such as Round5 and Saber, we also use all moduli of the
powers of 2 in our scheme. Due to this setting, the bit
decomposing technique in our scheme becomes simpler and
more efficient. As discussed in [9], when the moduli are
powers of 2, (negligibly small) exceptional biased sets exist
for the secret key: If all coefficients of the polynomials in
a secret vector are divisible by a high power of 2, then
the same property will hold for the linear combination
of them. However, since all the coefficients of a secret
vector are small enough (≤ 23) in our parameters, our
scheme can disregard the case. Although the number
theoretic transform (NTT) cannot be used to speed up
polynomial multiplication in our setting of the moduli,
this disadvantage can be mitigated with Toom-Cook and
Karatsuba polynomial multiplication. We implement our
scheme using the Toom-Cook and Karatsuba, and the results
show that the running time of our scheme is comparable to
that of the reference implementation of Dilithium that uses
NTT for polynomial multiplication.

This paper is the full version of the paper [1]. We
have three main additional technical contributions over
the preliminary version. First, we provide a full proof
for the tight security reduction for MLWRSign in the
Quantum random-oracle model (QROM) from the MLWR
problem and another non-interactive assumption, based on
the framework give in [15]. Second, we present the

additional parameter sets that 192- and 256-bits security,
while neither the preliminary version [1] nor the Dilithium
[13]–[15] provides the corresponding parameter sets. Third,
we give an optimized implementation of MLWRSign for
CPUs that supports the AVX2 instruction set, and the results
show that CPU cycles of AVX2 optimized versions of
MLWRSign achieves 1.41x-1.80x speed-ups.

Organizations. We refer to the definition of QROM,
canonical identification scheme, signature scheme, and the
Fiat-Shamir transformation in Sect. 2. In Sect. 3, we
propose our identification scheme ID, and we construct
the our signature scheme MLWRSign in Sect. 4 by using
Fiat-Shamir transformation on ID. In Sect. 5 we provide a
full proof for the tight security reduction for MLWRSign
in the QROM from the MLWR problem and another
non-interactive assumption. We implement MLWRSign
and provide a comparison with other signature schemes
proposed to NIST PQC in Sect. 6.

2. Preliminary

2.1 Notations

We write the rings R = Z[X]/(Xn +1) and Rq = Zq[X]/(Xn +

1), where q and n are integers, and the value of n is always
256 throughout this paper. We denote elements in R or Rq
(which includes elements in Z and Zq) in regular font letters,
and bold lower-case letters represent column vectors whose
elements are in R or Rq. All vectors will be column vectors
by default. Bold upper-case letters are matrices. For a vector
v, we denote its transpose by v>.

For an even (resp. odd) positive integer α, we define
r′ = r mod± α to be the unique element r′ in the range
−α2 < r′ ≤ α

2 (resp. −α−1
2 ≤ r′ ≤ α−1

2 ) such that r′ ≡
r mod α. For an element u ∈ Zq, let ‖u‖∞ := |u mod± q|.
We define the `∞ and `2 norms for a polynomial w =∑n−1

i=0 wiXi ∈ R as ‖w‖∞ := max
i
‖wi‖∞ = max

i
|wi mod± q| and

‖w‖ :=
√
‖w0‖

2
∞ + · · · + ‖wn−1‖

2
∞, respectively. Similarly,

for a vector v = (v0, . . . , vk−1) ∈ Rk, we define ‖v‖∞ :=
max

i
‖vi‖∞ and ‖v‖ :=

√
‖v0‖

2 + · · · + ‖vk−1‖
2. We define

S η := {w ∈ R | ‖w‖∞ ≤ η}. Let Bh be the set of elements of R
whose h coefficients are either −1 or 1 and the rest are 0. By
Hw(w) we denote the # of non-zero coefficients in w ∈ Rk

for k > 0.
We denote rounding to the nearest integer by d·c, and

we extend it to polynomials and matrices coefficient-wise.
The Boolean operator JstatementK outputs 1 if the statement

is true, and 0 otherwise. We denote by a
$
← A the process

of drawing an element a from a set A uniformly at random.
Let A be an algorithm. Unless otherwise stated, we

assume all algorithms to be probabilistic. We denote by y←
A(x) probabilistic computation of the algorithm A on input
x, where the output is stored as y. A(x) ⇒ y denotes the
event that A on input x returns y. With fixed randomness,
we can run any probabilistic A deterministically. We write
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y := A(x; r) to indicate that A is run on input x with a fixed
randomness r.

We follow [25] to use code-based games. We implicitly
assume that values of boolean flags, numerical types, sets,
and strings are initialized to be false, 0, ∅, and the empty
string ε, respectively. We make the convention that a
procedure terminates once it returned an output. We write
the event that an algorithm A return 1 for a game GAME by
GAMEA

⇒ 1.

2.2 Quantum Computation

Quantum states. The state of a qubit |φ〉 is described by a
two-dimensional complex vector |φ〉 = α |0〉 + β |1〉 where
{|0〉 , |1〉} form an orthonormal basis of C2 and α, β ∈ C with
|α|2 + |β|2 = 1 are the complex amplitudes of |φ〉. The qubit
|φ〉 is called in superposition if 0 < |α| < 1. A classical bit
b ∈ {0, 1} is naturally encoded as state |b〉 of a qubit.

The state of n qubits can be expressed by the linear
combination |ψ〉 =

∑
x∈{0,1}n αx |x〉 ∈ C2n

where {αx}x∈{0,1}n is
a set of 2n complex amplitudes such that

∑
x∈{0,1}n |αx|

2 = 1.
The standard orthonormal or computational basis is given
by {|x〉}x∈{0,1}n . When the quantum state |ψ〉 is measured on a
computational basis, the outcome is the classical string x ∈
{0, 1}n with probability |αx|

2 and the quantum state collapses
to the observed |x〉.

The evolution of a quantum system in state |ψ〉 can be
described by a linear transformation U : C2n

→ C2n
. The

transformations correspond to unitary matrices U ∈ C2n×2n

and U has the property that UU† = 1, where U† is the
complex-conjugate transpose of U.

Quantum oracles and quantum adversaries. We follow
the standard approach of [26], [27] to execute the classical
oracle function O : {0, 1}n → {0, 1}m with a reversible
unitary transformation. Let x ∈ {0, 1}n and y ∈ {0, 1}m,
and we model the quantum access to O by UO : |x〉 |y〉 7→
|x〉 |y ⊕ O(x)〉. Note that UO is its own inverse, and also we
obtain U†O = UO, and hence, UOU†O = U2

O = 1. Quantum
oracle adversaries A|O〉 can access O in superposition by
applying UO. The quantum time that takes for applying UO
is linear in the time that takes to evaluate O classically. We
write A|O〉 to indicate that an oracle is quantum-accessible,
contrary to oracles that can only be accessed classically
denoted by AO.

Quantum random-oracle model. We consider security
games in the quantum random-oracle model (QROM)
[27] as their counterparts in the classical random-oracle
model [28], with the difference that we consider quantum
adversaries that are given quantum access to the random
oracles, and classical access to all other oracles such as
the signing oracle. Zhandry [29] proved that no quantum
algorithm A|H〉, issuing at most Q quantum queries to |H〉,
can distinguish between a random function H : {0, 1}m →
{0, 1}n and a 2Q-wise independent function f2Q. Concretely,
we regard f2Q : {0, 1}m → {0, 1}n as a random polynomial
of degree 2Q over the finite field F2n . The running time to

evaluate f2Q is linear in Q. Let an adversary B simulates
quantum adversary A|H〉 which makes at most Q queries to
|H〉, then the running time of B is Time(B) = Time(A) + q ·
Time(H), where Time(H) is the running time to simulate |H〉.
From this observation, B can use a 2Q-wise independent
function to simulate |H〉 and we obtain that the running
time of B is Time(B) = Time(A) + Q · Time( f2Q), and the
time Time( f2Q) to evaluate f2Q is linear in Q. The second
term of this running time that is quadratic in Q can be
reduced to linear in Q in the QROM where B can simply
use another random oracle to simulate |H〉. Assuming that
the random oracle can be evaluated by one time unit, we
write Time(B) = Time(A) + Q ' Time(A).

2.3 Problems

We define the MLWR problem, the Module-SIS (MSIS)
problem, and the SelfTargetMSIS problem, on which the
hardness and the security of our scheme MLWRSign is
based.
Definition 1 (MLWRp,k,l,D distribution). Let q, p, k, l be
positive integers such that q > p ≥ 2. For a probability
distribution D : Rq → {0, 1}, choose a random matrix

A
$
← Rk×l

q , and a vector s← Dl, and output (A, d p
q Asc).

Definition 2 (decision MLWRp,k,l,D problem). Given a pair
(A, t) decide, with non-negligible advantage, whether it
came from the MLWRp,k,l,D distribution or it was generated
uniformly at random from Rk×l

q × Rk
p. The advantage of an

algorithm A in solving the decision MLWRp,k,l,D problem is

AdvMLWR
p,k,l,D(A) :=∣∣∣∣Pr

[
b = 1

∣∣∣ A← Rk×l
q ; t← Rk; b← A(A, t)

]
−Pr

[
b = 1

∣∣∣∣ A← Rk×l; s← Dl; b← A(A, d p
q Asc)

]∣∣∣∣ .
We say MLWR is hard when the above advantage is
negligible for all (quantum) probabilistic polynomial-time
algorithms A.

Definition 3 (MSISk,l,ζ problem). Given A
$
← Rk×l

q , find
a vector y =

[
z> | u>

]
> ∈ Rl+k

q such that ‖y‖∞ ≤ ζ and[
A | Ik

]
· y = 0. The advantage of an algorithm A in solving

the MSISk,l,ζ problem is

AdvMSIS
k,l,ζ (A) := Pr

 ‖y‖∞ ≤ ζ∧[
A | Ik

]
· y = 0

∣∣∣∣∣∣∣ A
$
← Rk×l

q ;
y← A(A)

 .
Definition 4 (SelfTargetMSISH,k,l+1,ζ problem). Let H
{0, 1}∗ → B60 be a cryptographic hash function. Given a

random matrix
[
A | t

] $
← Rk×(l+1), find a message µ and a

vector y =
[
z> | c | u>

]
> ∈ Rl+1+k such that ‖y‖∞ ≤ ζ and

H
(
µ ‖

[
A | t | Ik

]
· y

)
= c. The advantage of an algorithm A

in solving the SelfTargetMSISH,k,l+1,ζ is

AdvSelfTargetMSIS
H,k,l+1,ζ (A)
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:= Pr


‖y‖∞ ≤ ζ ∧
c =

H
(
µ ‖

[
A | t | Ik

]
· y

)
∣∣∣∣∣∣∣∣∣
[
A | t

] $
← Rk×(l+1);

y← A|H(·)〉(A)

 .
Note that the SelfTargetMSIS problem is classically at least
as hard as MSIS [15]. There is a (non-tight) reduction in
the classical random-oracle model from the MSIS to the
SelfTargetMSIS problem. Let A and B be the adversaries
to the MSISk,l,ζ and SelfTargetMSISH,k,l+1,ζ , respectively. If
A only has classical access to H, then there is a reduction
based on the forking lemma [30], [31] to prove that

AdvSelfTargetMSIS(B) ≈
√

AdvMSIS(A)/QH, where QH is the
number of classical queries to H. This reduction is standard
and is implicit in the security proofs of digital signatures
based on the hardness of the SIS problem (cf. [13], [32]).
We refer the readers to [15] for the details.

2.4 Pseudorandom Functions

A pseudorandom function PRF is a mapping PRF : K ×
{0, 1}n → {0, 1}k, where K is a finite space for the key
and n and k are integers. To a quantum adversary A and
PRF we associate the advantage function AdvPR

PRF(A) :=∣∣∣Pr[APRF(K,·) ⇒ 1|K ← K] − Pr[ARF(·) ⇒ 1]
∣∣∣, where RF :

{0, 1}n → {0, 1}k is a perfect random function. Note that
while adversary A is a quantum adversary, it only has
classical access to the oracles PRF(K, ·) and RF(·).

Extendable output function. We denote by Sam an
extendable output function, that is a function on bit strings
the output of which can be extended to arbitrary length.
We write y ∼ S := Sam(x) when Sam takes x as the
input value and output y that is distributed according to
the distribution S (or uniformly distributed over a set S ).
This procedure is deterministic: for a given x Sam will
always output the same y. For simplicity we assume that
distribution of the output of Sam is perfect, whereas Sam
can be regarded as the random oracles and the output of
which is statistically close to the perfect distribution. If K
is a secret key, then Sam(K ‖ x) is a pseudorandom function
from {0, 1}∗ → {0, 1}∗.

2.5 Identification Schemes

A canonical identification scheme ID is a three-move
protocol as shown in Fig. 1. Firstly, the prover send a
message W, which is called commitment, to the verifier. The
verifier uniformly sample a challenge c from set ChSet and
send it to the prover. The prover send a response Z, and then
the verifier makes a deterministic decision.
Definition 5 (Canonical Identification Scheme). A canon-
ical identification scheme ID is defined as a tuple of
algorithms ID := (IGen,P,ChSet,V).

• The key generation algorithm IGen takes system
parameters par as input and returns a pair of public
and secret keys (pk, sk). We assume that pk defines the

Fig. 1 A canonical identification scheme and its transcript (W, c,Z).

Fig. 2 Trans(sk).

set of challenges ChSet, the set of commitments WSet,
and the set of responses ZSet.

• The prover algorithm P is a pair of two algorithms
(P1,P2). P1 takes as input the secret key sk and returns
a commitment W ∈ WSet and a state S t; P2 takes as
input the secret key sk, a commitment W, a challenge c,
and a state S t and returns a response Z ∈ ZSet ∪ {⊥},
where ⊥ < ZSet is a special symbol indicating failure.

• The verifier algorithm V takes the public key pk and the
conversation transcript (W, c,Z) as input and outputs a
deterministic decision, 1 (acceptance) or 0 (rejection).

We also define a transcript oracle Trans in Fig. 2 that
returns a real interaction transcript, which is a three-tuple
(W, c,Z) ∈ WSet × ChSet × ZSet ∪ {⊥,⊥,⊥}. between
the prover and the verifier as depicted in Fig. 1, with
the important convention that the transcript is defined as
(⊥,⊥,⊥) if Z = ⊥. The transcript is called valid (with
respect to public-key pk) if V(pk,W, c,Z) = 1. We
define no-abort honest-verifier zero-knowledge (naHVZK),
which is a weak variant of honest-verifier zero-knowledge
that requires the transcript to be publicly simulatable,
conditioned on Z , ⊥.
Definition 6 (naHVZK). A canonical identification scheme
ID is said to be εzk-perfect naHVZK if there exists an
algorithm Sim that, given only the public key pk, outputs
(W, c,Z) such that the following conditions hold:

• The distribution of (W, c,Z) ← Sim(pk) has statistical
distance at most εzk from (W ′, c′,Z′) ← Trans(sk),
where Trans is defined in Fig. 2.

• The distribution of c from (W, c,Z) ← Sim(pk)
conditioned on c , ⊥ is uniform random in ChSet.

Definition 7 (Min-Entropy). If the most likely value of
a random variable W that is selected from a discrete
distribution D occurs with probability 2−α, then we say
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Fig. 3 Games UF-CMA and UF-NMA.

that H∞(W | W ← D) = α. We say that a canonical
identification scheme ID has α bits of min-entropy, if

Pr
(pk,sk)←IGen(par)

[H∞(W |(W, S t)← P1(sk)) ≥ α] ≥ 1 − 2−α.

In other words, over the choice of (pk, sk), the min-
entropy of W will be at least α, except with probability
2−α. An identification scheme has unique responses if
for all W and c there exists at most one Z such that
V(pk,W, c,Z) = 1. We relax this notion to a computational
unique response (CUR): An identification scheme has
CUR if it is computationally hard to find (W, c,Z,Z′) with
V(pk,W, c,Z) = V(pk,W, c,Z′) = 1 and Z′ , Z.
Definition 8 (Computational Unique Response). To an
adversary A we associate the advantage function

AdvCUR
ID (A)

:= Pr

 V(pk,W, c,Z) = 1
V(pk,W, c,Z′)=1
Z , Z′

∣∣∣∣∣∣∣∣ (pk, sk)← IGen(par);
(W, c,Z,Z′)← A(pk)

 .
2.6 Digital Signatures

We define the syntax and security of a digital signature
scheme. Let par be public system parameters.
Definition 9 (Digital Signature). A digital signature
scheme SIG is defined as a triple of algorithms SIG =

(KeyGen, Sign, Verify). The key generation algorithm
KeyGen(par) returns the public and secret keys (pk, sk).
We assume that pk defines MSet that is the space for the
message M. The signing algorithm Sign(sk,M) returns
a signature ς. The deterministic verification algorithm
Verify(pk,M, ς) returns 1 (accept) or 0 (reject).

The signature scheme SIG has a correctness error γ if
we have Pr[Verify(pk,M,Sign(sk,M)) = 0] ≤ γ for all key
pairs (pk, sk) ∈ KeyGen(par), and all messages M ∈ MSet.

We define unforgeability against chosen-message
attack (UF-CMA), unforgeability against one-per-message
chosen-message attack (UF-CMA1), and unforgeability
against no-message attack (UF-NMA) advantage functions
of a (quantum) adversary A against SIG as AdvUF-CMA

SIG (A) :=
Pr[UF-CMAA

⇒ 1], AdvUF-CMA1
SIG (A) := Pr[UF-CMAA

1 ⇒ 1],
and AdvUF-NMA

SIG (A) := Pr[UF-NMAA ⇒ 1], where the games
UF-CMA, UF-CMA1 and UF-NMA are shown in Fig. 3. We
also consider strong unforgeability against chosen-message
attack (SUF-CMA) and strong unforgeability against one-
per-message chosen-message attack (SUF-CMA1), where
the adversary may return a forgery on a message previously

Sign(sk,M)
1 κ := 0
2 while Z = ⊥ and κ ≤ κm do
3 κ := κ + 1
4 (W, S t)← P1(sk)
5 c = H(W ‖M)
6 Z ← P2(sk,W, c, S t)
7 end
8 if Z = ⊥ then return ς = ⊥

9 return ς = (W,Z)

Verify(pk,M, ς)
10 Parse ς = (W,Z) ∈ WSet × ZSet
11 c = H(W ‖M)
12 return V(pk,W, c,Z) ∈ {0, 1}

Fig. 4 Sign and Verify of the signature scheme SIG := (KeyGen =

IGen,Sign,Verify) obtained by the Fiat-Shamir transformation with aborts
FS[ID,H, κm].

queried to the signing oracle, but with a different
signature. In the corresponding experiments SUF-CMA and
SUF-CMA1, the set M contains tuples (M, ς) and for the
winning condition it is checked that (M∗, ς∗) <M.

2.7 Fiat-Shamir Signatures

Let ID := (IGen,P,ChSet,V) be a canonical identification
scheme, κm be a positive integer, and let H : {0, 1}∗ →
ChSet be a hash function. The following signature scheme
SIG := (KeyGen = IGen,Sign,Verify) described in Fig. 4
is obtained by the Fiat-Shamir transformation with aborts
FS[ID,H, κm] [33].

Kiltz et al. [15] showed the generic framework for
constructing tight reductions in the QROM from underlying
hard problems to Fiat-Shamir signatures.
Theorem 1 ([15], Theorem 3.2). Assume the identification
scheme ID is εzk-perfect naHVZK and has α bits of
min entropy. For any UF-CMA1 (SUF-CMA1) quantum
adversary A that issues at most QH queries to the quantum
random oracle |H〉 and QS (classical) queries to the signing
oracle SIGN1, there exists a quantum adversary B against
UF-NMA security making QH queries to its own quantum
random oracle (and a quantum adversary C against CUR)
such that

AdvUF-CMA1
SIG (A) ≤AdvUF-NMA

SIG (B) + κmQS · εzk + 2−α+1,

AdvSUF-CMA1
SIG (A) ≤AdvUF-NMA

SIG (B) + κmQS · εzk + 2−α+1

+ AdvCUR
ID (C),

and Time(B) = Time(C) = Time(A) + κm(QH + QS ) '
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Fig. 5 DSign of the deterministic variant of the Fiat-Shamir signature
DFS[ID,H,PRF, κm].

Time(A).
Consider a deterministic variant DSIG := DFS[ID, H,

PRF, κm] = (KeyGen, DSign, Verify) of FS where lines 4
and 6 Sign is replaced with deterministic PRF, where the
key K is part of the secret key. We show the DFS in
Fig. 5. The UF-CMA (SUF-CMA) security of DFS is
implied by the UF-CMA1 (SUF-CMA1) security of FS. This
construction is known in the classical setting [34], and the
same proof works in the quantum setting [15]. Concretely,
the advantages are upper bounded by the same terms as in
Theorem 1 with an additional term AdvPR

PRF(D) accounting
for the quantum security of the PRF: We have

AdvUF-CMA
SIG (A) ≤AdvUF-NMA

SIG (B) + κmQS · εzk + 2−α+1

+ AdvPR
PRF(D), (1)

AdvSUF-CMA
SIG (A) ≤AdvUF-NMA

SIG (B) + κmQS · εzk + 2−α+1

+ AdvCUR
ID (C) + AdvPR

PRF(D). (2)

3. Our Identification Scheme

We show our identification scheme ID in Sect. 3.2, and
we show our simple supporting algorithms for the bit
decomposing technique in Sect. 3.1. Our scheme ID will be
converted to our deterministic signature scheme MLWRSign
in Sect. 4 with the deterministic Fiat-Shamir transform DFS.

3.1 Supporting Algorithms

We show in Fig. 7 the supporting algorithms for our
identification scheme and MLWRSign, which are analogues
of those of Dilithium. These algorithms are used for
extracting higher-order and lower-order bits of elements in
Zq, to decrease the size of the public key. In Dilithium, q is a
prime and α is an even number so the algorithm Decompose
has to consider the case when r − r0 = q − 1. Since we use
moduli q, p in the power of twos, our Decompose can be
efficiently performed in a simpler bit-wise manner to break
up an element.

The following lemmas state the properties of these
supporting algorithms on which the correctness and security
of our scheme is based. Since these lemmas are analogues
of the Lemmas 1, 2, and 3 in [14], we omit their proofs.
Lemma 1 (Lemma 1 in [14]). Suppose that p and α are

positive integers such that p > 2α, p ≡ 0 (mod α) and α
even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤
α/2, and let h,h′ be vectors of bits. Then the HighBitsp,
MakeHintp, and UseHintp algorithms satisfy the following
properties:

1. UseHintp(MakeHintp(z, r, α), r, α) = HighBitsp(r +

z, α).

2. Let v1 = UseHintp(h, r, α). Then ‖r − v1 · α‖∞ ≤ α +

1. Furthermore, if the number of 1s in h is ψ, then
all except at most ψ coefficients of r − v1 · α will have
a magnitude of at most α/2 after centered reduction
modulo q.

3. For any h, h′, if UseHintp(h, r, α) = UseHintp(h′, r,
α), then h = h′.

Lemma 2 (Lemma 2 in [14]). If ‖s‖∞ ≤ β and
‖LowBitsp(r, α)‖∞ < α/2 − β, then HighBitsp(r, α) =

HighBitsp(r + s, α) holds.
The function CRH is a collision resistant hash function

that maps to {0, 1}384. The function Sam used in lines 2
and 11 is an extendable output function. In line 2 the
function Sam maps a uniform seed ρ ∈ {0, 1}256 to a
matrix A ∈ Rk×l. In line 11, Sam deterministically
generates the randomness of the signature scheme, mapping
a concatenation of K, µ and κ to y ∈ S l

γ1−1.

3.2 Identification Scheme

We show our identification protocol ID = (IGen,P1,P2,V)
in Fig. 6, with the concrete parameters par = (q, n, k, l, d,
γ1, γ2, γ1, γ2, η, β1, β1) given in Table 1.

Key generation. The key generation of ID proceeds by
selecting a random 256-bit seed ρ and expanding into a
matrix A ∈ Rk×l

q by an extendable output function Sam
modeled as a random oracle. The secret vector s1 ∈ S l

η

has uniformly random coefficients in [−η, η]. The value
t := d

p
q As1c ∈ Rk

p is then computed. The public key
that is required for verification is (ρ, t1) with t1 output by
the (t1, t0) := Decomposep(t, 2d) while the secret key is
(ρ, s1, t0). While the verifier does not need the value t0
(and thus it is not needed to be included in the public key
of MLWRSign), we need to include this value to simulate
transcripts (see Sect. 5.2). Thus the security of our scheme
is constructed in the condition that the adversary gets both
t1 and t0. In reality the adversary only gets t1, thus this
is conservative condition. The set ChSet is defined as in
(10), and ZSet = S l

γ1−β1−1 × {0, 1}
k. The set of commitments

WSet is defined as WSet = {w1 | ∃y ∈ S γ1−1 s.t. w1 :=
HighBitsp(d p

q Ayc, 2γ2)}.

Protocol execution. Our ID scheme is based on the canonical
identification scheme in Fig. 1. The prover starts the
identification protocol by (W = w1, S t = (w, ξ1, y)) ←
P1(sk) and sends W = w1 to the verifier, and then the verifier
generates a random challenge c ← ChSet and sends it to
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IGen(par)

1 ρ
$
← {0, 1}256

2 A← Rk×l
q := Sam(ρ)

3 s1 ← S l
η

4 t := d p
q As1c ∈ Rk

p

5 (t1, t0) := Decomposep(t, 2d)
6 pk = (ρ, t1, t0)
7 sk = (ρ,K, tr, s1, t0)
8 return (pk, sk)

V(pk,W = w1, c,Z = (z,h))
9 return J‖z‖∞ < γ1 − β1K ∧

Jw1 = UseHintp(h, d p
q Azc − ct1 · 2d, 2γ2)K

P1(sk)
10 A← Rk×l

q := Sam(ρ),
11 y← S l

γ1−1

12 w := d p
q Ayc ∈ Rk

p,
13 ξ1 := d p

q Ayc − p
q Ay

14 w1 := HighBitsp(w, 2γ2)
15 return (W = w1, S t = (w, ξ1, y))

P2(sk, (W = w1, c, S t = (w, ξ1, y))
16 t = t1 · 2d + t0, s2 := (t − p

q As1)
17 z := y + cs1
18 ξ2 := dcs2c − cs2, ν := dξ1 − ξ2c

19 r0 := LowBitsp(w − dcs2c − ν, 2γ2)
20 if ‖z‖∞ ≥ γ1 − β1 or ‖r0‖∞ ≥ γ2 − β2 then
21 return Z = ⊥

22 end
23 h := MakeHintp(−ct0,w − dcs2c − ν + ct0, 2γ2)
24 return Z = (z,h)

Fig. 6 Our identification scheme ID– a concrete instantiation based on the hardness of the MLWR
problem of the canonical identification scheme in Fig. 1.

Fig. 7 Supporting algorithms for MLWRSign.

the prover. The prover computes z := y + cs1 in line 17 and
r0 := LowBitsp(w−dcs2c−ν, 2γ2) in line 19. He replies with
⊥ if z < S l

γ1−β1−1 or r0 < S l
γ2−β2−1. This part of the protocol

is necessary for security, it makes sure that z does not leak
any information about the secret vectors s1, s2.

If the checks pass and a ⊥ is not sent, then it can be
shown (see Sect. 4.1) that HighBitsp(d p

q Azc − ct, 2γ2) =

w1. At this point, if the verifier had known the entire t
and (z, c), he could have recovered w1 and checked that
‖z‖∞ < γ1 − β1 and that the high-order bits of d p

q Azc − ct
are indeed w1. However, to compress the size of the public
key, the verifier only knows t1. To allow the verifier to
compute HighBitsp(d p

q Azc − ct, 2γ2) without t0, the signer
needs to provide a hint vector h. The verifier checks whether
‖z‖∞ < γ1 − β1 and that w1 can be reconstructed from
d

p
q Azc − ct1 · 2d and the hint h.

4. Our Signature Scheme: MLWRSign

We present our scheme MLWRSign in Fig. 8, which is
obtained by deterministic Fiat-Shamir transformation on the
ID in Sect. 3. The correctness of MLWRSign is shown
in Sect. 4.1. We analyze the probability of the rejection
sampling of our signing procedure in Sect. 4.2. We explain
the concrete settings of parameters in Sect. 4.3, and the
values are shown in Table 1.

4.1 Correctness

We prove the correctness of our signature scheme in this
subsection. If ‖ct0‖∞ < γ2, then by Lemma 1 we know that
UseHintp(h,w−dcs2c+ct0, 2γ2) = HighBitsp(w−dcs2c, 2γ2).
From the definitions of w, t, and z, we obtain⌈

p
q Az

⌋
− ct = w − dcs2c − ν (3)

where s2 = d
p
q As1c−

p
q As1, ξ1 := d p

q Ayc− p
q Ay, ξ2 := dcs2c−

cs2 and ν := dξ1 − ξ2c. Since ξ1 and ξ2 are polynomials
whose coefficients are rounding errors that are heuristically
i.i.d and uniformly distribute on (− 1

2 ,
1
2 ], we have ‖ν‖∞ ≤

1. Using t = t1 · 2d + t0, we can rewrite (3) as d p
q Azc −

ct1 · 2d = w − dcs2c − ν + ct0. Thus, the verifier computes
w′1 = UseHintp(h,w− dcs2c − ν+ ct0, 2γ2) = HighBitsp(w−
dcs2c − ν, 2γ2). Since the signer also checks that r1 = w1 in
line 19, we obtain HighBitsp(w− dcs2c − ν, 2γ2) := r1 = w1.
Therefore, w′1 that the verifier computes is the same as w1
that the signer computes, and the verification procedure is
always accepted.

4.2 Rejection Sampling

We analyze the probability of the rejection of our signing
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procedure in this subsection. Our analysis in this subsection
for P3 := Pr[‖dcs2c‖∞ < β′2] in (6), P4 := Pr[‖ct0‖∞ < γ2]
in (7), and P5 := Pr[Hw(h) < ω] in (8) would also be
helpful in analyzing the rejection sampling probability of the
Dilithium in more detail. In [13], it was mentioned that it is
difficult to formally compute the probability of the rejection
of the Dilithium that corresponds to 1 − P4 · P5, and they
heuristically selected parameters such that the probability
become less than 1%. It was also mentioned in [13] that
they chose the parameter such that the probability that

KeyGen(par)

1 ρ
$
← {0, 1}256, K

$
← {0, 1}256

2 A ∈ Rk×l
q := Sam(ρ), s1 ← S l

η, t := d p
q As1c ∈ Rk

p

3 (t1, t0) := Decomposep(t, 2d), tr := CRH(ρ ‖ t1)
4 return (pk = (ρ, t1), sk = (ρ,K, tr, s1, t0))

Sign(pk, sk,M)
5 A ∈ Rk×l

q := Sam(ρ), t = t1 · 2d + t0, s2 := (t − p
q As1)

6 µ := CRH(tr ‖M), κ := 0
7 repeat
8 repeat
9 repeat
10 κ := κ + 1
11 y ∈ S l

γ1−1 := Sam(K ‖ µ ‖ κ)

12 w := d p
q Ayc ∈ Rk

p, ξ1 := d p
q Ayc − p

q Ay
13 w1 := HighBitsp(w, 2γ2)
14 c ∈ B60 := H(µ ‖w1)
15 z := y + cs1

16 until ‖z‖∞ < γ1 − β1
17 ξ2 := dcs2c − cs2, ν := dξ1 − ξ2c

18 (r1, r0) := Decomposep(w − dcs2c − ν, 2γ2)
19 until ‖r0‖∞ < γ2 − β2 and r1 = w1
20 h := MakeHintp(−ct0,w − dcs2c − ν + ct0, 2γ2)
21 until Hw(h) ≤ ω and ‖ct0‖∞ < γ2
22 return sig = (z,h, c)

Verify(pk, sig,M)
23 A ∈ Rk×l

q := Sam(ρ), µ := CRH(CRH(pk) ‖M)
24 w′1 := UseHintp(h, d p

q Azc − ct1 · 2d , 2γ2),
c′ := hash(µ ‖w′1)

25 return
(
J‖z‖∞ < γ1 − βK ∧ Jc = c′K ∧ JHw(h) ≤ ωK

)
Fig. 8 Our signature scheme MLWRSign.

Table 1 Parameters for MLWRSign.

I
weak

II
medium

III
recomm.

IV
high

V
very high

VI
paranoia

(q, p) (223, 219) (223, 219) (223, 220) (223, 220) (223, 221) (223, 221)
d 10 10 11 11 12 12

(γ1 = q/16, γ1 =
p
q γ1) (219, 215) (219, 215) (219, 216) (219, 216) (219, 217) (219, 217)

(γ2 = γ1/2, γ2 = γ1/2) (218, 214) (218, 214) (218, 215) (218, 215) (218, 216) (218, 216)
η = q/2p 8 8 4 4 2 2

(k, l) (3, 2) (4, 3) (5, 4) (6, 5) (8, 7) (9, 8)
ω 64 80 96 112 144 160

(β1, β2) (425, 25) (425, 25) (225, 25) (225, 25) (125, 25) (125, 25)
# of 1 or −1 in c 60 60 60 60 60 60

BKZ block-size b to break MSIS 235 355 475 605 - -
Core-Sieve bit-cost 20.292b 68 103 138 176 - -

Q-Core-Sieve bit-cost 20.265b 62 94 125 160 - -
BKZ block-size b to break MLWR 208 362 465 619 850 1002

Core-Sieve bit-cost 20.292b 60 105 135 180 248 292
Q-Core-Sieve bit-cost 20.265b 55 95 123 164 225 265

corresponds to P3 was higher than 1− 2128 for the Dilithium,
but its analysis was not shown.

We first calculate the probability of the rejection in
line 16, i.e., we calculate P1 := Pr[‖z‖∞ < γ1 − β1]. P1
can be computed by considering each coefficient separately.
For each coefficient σ of cs1, the corresponding coefficient
of z will be in (−γ1 + β1 + 1, γ1 − β1 − 1] whenever the
corresponding coefficient of yi is in (−γ1 + β1 + 1 − σ, γ1 −

β1 − 1 − σ). The size of this range is 2(γ1 − β1) − 1, and the
coefficients of y have 2γ1 − 1 possibilities since y ∈ S l

γ1−1.

Thus, we obtain P1 =
(

2(γ1−β1)−1
2γ1−1

)nl
=

(
1 − β1

γ1−1/2

)nl
. Thus,

when γ1 is large enough, we can approximate

P1 := Pr[‖z‖∞ < γ1 − β1] ' e−nlβ1/γ1 . (4)

Second, we calculate the probability of the rejection
in line 19, i.e., P2 := Pr[‖r0‖∞ < γ2 − β2]. In a similar

way to calculating (4), we obtain P2 =
( 2(γ2−β2)−1

2γ2

)nk
=(

1 − β2+1/2
γ2

)nk
. Therefore, when we assume that each

coefficient of r0 is uniformly distributed modulo 2γ2, and
γ2 is large enough and β2 � 1/2, we can approximate

P2 := Pr[‖r0‖∞ < γ2 − β2] ' e−nkβ2/γ2 . (5)

The check of r1 := HighBitsp(w − dcs2c − ν, 2γ2) =

HighBitsp(w, 2γ2) := w1 always succeeds if the condition
‖dcs2c+ν‖∞ ≤ β2 and ‖r0‖∞ < γ2−β2 holds, from Lemma 2.
Since ‖ν‖∞ ≤ 1 holds by definition, we have ‖dcs2c + ν‖∞ ≤
‖dcs2c‖∞ + 1.

In the following, we calculate P3 := Pr[‖dcs2c‖∞ < β
′
2],

where β′2 := β2 − 1, i.e., the probability that the check of
r1 = w1 always succeeds. Let Xi be the i-th coefficient
of an element of the vector s2, and let Y be a coefficient
of an element of the vector cs2. Then, since s2 ∈ S k

1
2
, if

we assume that X1 . . . Xn are i.i.d. and Xi ∼ U(− 1
2 ,

1
2 ), we

can approximate that Y ∼ N(0, 60σ2
X) by the central limit

theorem when n is large enough, where σ2
X = Var(Xi) =

1/12. Thus, we can approximate Pr[|Y | < β′2] ' 1 −
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2FN(0,5)(−β′2), and then

P3 := Pr[‖dcs2c‖∞ < β
′
2] ' (1 − 2FN(0,5)(−β′2))nk, (6)

where FN(0,5) be the c.d.f of N(0, 5). We set the parameter
β2 such that ‖dcs2c‖∞ < β′2 holds with a probability higher
than 1 − 2−30. Thus, the rejection probability in line 19 is
dominated by P2.

Finally, we calculate the probability of rejection in
line 21, i.e., P4 := Pr[‖ct0‖∞ < γ2] and P5 := Pr[Hw(h) <
ω]. We first calculate P4. By construction, t = t1 · 2d + t0
and ‖t0‖∞ ≤ 2d−1. Let Xi be the i-th coefficient of an
element of the vector t0, and let Y be the coefficient of an
element of the vector ct0. Note that c ∈ B60 so Y is the
sum of 60 random elements of {Xi}

n
i=1. If we (heuristically)

assume that X1 . . . Xn are i.i.d. and Xi ∼ U(−2d−1, 2d−1),
we can approximate that Y ∼ N(0, σ2

Y ) by the central limit
theorem when n is large enough, where σ2

Y := 60σ2
X and

σ2
X = Var(Xi) = (2 · 2d−1)2/12 = 22d/12. Thus, we

can approximate Pr[|Y | < γ2] ' 1 − 2FN(0,σ2
Y )(−γ2), where

FN(0,σ2
Y ) is the c.d.f. of N(0, σ2

Y ). Since Y is the coefficient
of an element of the vector in Rk

p, we obtain

P4 := Pr[‖ct0‖∞ < γ2] ' (1 − 2FN(0,σ2
Y )(−γ2))nk. (7)

We set the parameter γ2 so that ‖ct0‖∞ < γ2 holds with
overwhelming probability. Also note that we set parameter
d to satisfy 60 · 2d−1 < 2γ2 (as shown in Sect. 4.3) and the
fact that ‖ct0‖∞ ≤ ‖c‖1 · ‖t0‖∞. From these we obtain σY :=

1
6
√

5
· 60 · 2d−1 < 1

3
√

5
· γ2, and approximately γ2 > 6.7σY .

Thus, we can also estimate that FN(0,σ2
Y )(−γ2) is negligibly

small, without numerical computation of FN(0,σ2
Y )(−γ2).

Next, we calculate P5 := Pr[Hw(h) < ω]. Let X, Y and
h be the coefficient of an element of the vector r0, ct0 and h,
respectively, and define Z := X + Y . Recall that

h =JHighBitsp(w − dcs2c − ν + ct0, 2γ2)

, HighBitsp(w − dcs2c − ν, 2γ2)K,

and h = 1 when the corresponding Z satisfies |Z| > γ2, h = 0
otherwise. We now calculate Pr[h = 1]. In line 21, the
conditions ‖r0‖∞ < γ2 − β2 and ‖ct0‖∞ ≤ γ2 are already
satisfied. Thus, we assume that X ∼ U(−(γ2−β2), (γ2−β2))
as already derived, then we obtain

fZ(z) :=
∫ z+(γ2−β2)

z−(γ2−β2)
fX(z − y) fY (y)dy

1
2(γ2 − β2)

∫ z+(γ2−β2)

z−(γ2−β2)
fY (y)dy

=
1

2(γ2 − β2)
(FY (z + (γ2 − β2)) − FY (z − (γ2 − β2))),

and FZ(z) =
∫ z
−∞

fZ(x)dx = 1
2(γ2−β2)

∫ z+(γ2−β2)
z−(γ2−β2) FY (x)dx,

where fX , fY and fZ are the p.d.f. of the distribution of X,
Y and Z, respectively. Then, we obtain

Pr[h = 1] = Pr[|Z| > γ2] = 2FZ(−γ2)

=
1

γ2 − β2

∫ 0

−2(γ2−β2)
FY (x)dx,

and thus we obtain Hw(h) ∼ B(nk,Pr[h = 1]) since h ∈ Rk
p.

Because we can estimate that Y ∼ N(0, σ2
Y = 5 · 22d)

as we derived before, we obtain P := Pr[h = 1] '
1

γ2−β2

∫ 0
−2(γ2−β2) FN(0,5·22d)(x)dx. Therefore, let FB(nk,P) be the

c.d.f. of the binomial distribution B(nk, P), then we can
approximate

P5 := Pr[Hw(h) < ω] ' FB(nk,P)(ω). (8)

We set the parameter ω such that Hw(h) < ω with a
probability higher than 1 − 210.

To summarize, disregarding the conditions with
overwhelming probability, i.e., assuming P3, P4, P5 ' 1,
we can estimate the probability of exiting the loop in lines 6
to 21 using (4) and (5) as follows:

P1 · P2 ' e−n(β1l/γ1+β2k/γ2). (9)

Thus, the expected number of iterations of the loop is
en(β1l/γ1+β2k/γ2).

4.3 Parameter Settings

We show our parameters in Table 1. In the following, we
explain how we select these values.

Moduli q and p. We set q = 223 for all parameter sets of the
security category. This value is the nearest power of two of
8380417 that is the value of the modulo q used in Dilithium.
We set q and p as the power of twos to perform rounding by
simple bit-shift operation, similar to the LWR-based PKE
schemes Saber [9] and Round5 [8].

Module dimensions (k, l) and noise parameter η. The
parameter η corresponds to the standard deviation σ of
the LWE problem. Dilithium bases its security on LWE
with uniform distribution whose standard deviation is σ =

2η/
√

12, which is the standard deviation of the uniform
distribution U(−η, η). For our scheme, the parameter η is
defined by η := d q

2p e =
q

2p . We estimate the bit-security

based on the values of σ = 2η/
√

12, k, l, and n, using
the lwe-estimator [35]. See Sect. 5.5 for details of the
estimation of the bit-security. Note that η is also restricted to
be the power of two since we set q, p as the power of twos.
As a limitation, this setting loses a little flexibility to control
the rejection rate and bit-security.

Space for challenge c. A cryptographic hash function that
hashes onto B60 is used in Dilithium and our signature
scheme. Bh ⊂ R is a ring whose h coefficients are either
−1 or 1 and the rest are 0. Thus, we obtain |Bh| = 2h ·

(
n
h

)
,

and then |B60| = 260 ·
(

256
60

)
' 2257.01 > 2256. Thus, let the

space of challenge c in our scheme be ChSet, then we have

ChSet := B60, and |ChSet| > 2256. (10)
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Setting of β1, β2. The parameters β1 and β2 are the
counterpart of β used in Dilithium. In the scheme, the
corresponding s1 and s2 are the variables that uniformly
distribute on S η, and β is selected such that ‖csi‖∞ < β
for i = 1, 2 with overwhelming probability. Since c ∈ B60,
si ∈ S η, we obtain the bound ‖csi‖∞ ≤ ‖c‖1 · ‖si‖∞ = 60η,
thus it can be seen that β ≤ 60η. In MLWRSign, while
we use the same s1 ∈ S η as Dilithium, s2 is a polynomial
whose coefficients uniformly distribute on (− 1

2 ,
1
2 ]. Thus,

we define the two parameters β1 and β2 such that ‖cs1‖∞ <
β1, ‖dcs2c‖∞ < β2 − 1(< β1) with overwhelming probability.
This probability was analyzed in (6).

Setting of γ1, γ2, γ1, γ2. We set γ1 := q/16, γ2 := γ1/2,
γ1 := p

qγ1, and γ2 := γ1/2. These parameters are related to
the rejection rate of the signing and the security, which we
describe in Sect. 5.4.

Setting of d. The parameter d defines the length of t0, which
is part of the pk and sk (see also Fig. 10). We select d such
that

60 · (2d−1 + 1) < 2γ2 − 1 (11)

for the security of our scheme, as discussed in Sect. 5.4.
Here, 60 · 2d−1 is the upper bound of ‖ct0‖∞.

5. Security

The goal of this section is to provide full proof for the tight
security reduction for MLWRSign in the QROM from the
MLWR, SelfTargetMSIS, and MSIS, which is the following
theorem:
Theorem 2 (QROM security of MLWRSign). For any
quantum adversary A against SUF-CMA security that issues
at most QH queries to the quantum random oracle |H〉, there
exist quantum adversaries B, C, D, and E such that

AdvSUF-CMA
MLWRSign(A) ≤ AdvMLWR

p,k,l,D(B) + AdvSelfTargetMSIS
H,k,l+1,ζ (C)

+ AdvPR
Sam(D) + AdvMSIS

k,l,ζ′ (E) + 2−α+1, (12)

where D is a uniform distribution over S η, α is bits of min-
entropy of the identification scheme ID shown in Fig. 6, and
ζ and ζ′ are defined as follows:

ζ = max{γ1 − β1,
q
p (2γ2 + 1 + 60 · 2d−1)} ≤ 4γ2, (13)

ζ′ = max{2(γ1 − β1), 4γ2 + 2} ≤ 4γ2 + 6η. (14)

We obtain the bound of (12) based on Theorem 1, and
equations (1) and (2). The proof of this is modular. We
constructed in Sect. 3.2 the identification scheme ID from
which we obtain MLWRSign via the (deterministic) Fiat-
Shamir transform, i.e., ID satisfies MLWRSign = DFS[ID,
H, PRF, κm]. We show the following properties of ID in the
rest of this section:

• ID has α bits of min-entropy, where α ≥ 90, 180, 255,
255,255 and 255, for parameter sets in Table 1 (I), (II),

(III), (IV), (V), and (VI), respectively. (Sect. 5.1)

• ID is perfectly naHVZK, i.e. εzk-perfect naHVZK for
εzk = 0 (Sect. 5.2)

• AdvCUR
ID (A) ≤ AdvMSIS

k,l,ζ′ (E) (Sect. 5.3)

• UF-NMA security of MLWRSign (Sect. 5.4)

Combining all of these properties, we can apply Theorem 1
to MLWRSign and we obtain (12). In Sect. 5.5 we show how
we derived concrete bit-security shown in Table 1 based on
(12).

5.1 Min-Entropy

Lemma 3. For a fixed matrix A← Rk×l
q and w1, let

PA,w1 := Pr
y←S l

γ1−1

[HighBitsp(d p
q Ayc, 2γ2) = w1] (15)

Then,

Pr
A←Rk×l

q

[
∀w1 : PA,w1 ≤

(
2γ2 + 1
2γ1 − 1

)n]
> 1 − (n/q)kl. (16)

Proof. The probability that a random polynomial a ← Rq
is invertible in Rq = Zq[X]/(Xn + 1) when the polynomial
Xn + 1 splits into n linear factors is (1 − 1/q)n > 1 − n/q.
Thus the probability that at least one of the kl polynomials
in A← Rk×l

q is invertible is greater than 1 − (n/q)kl.
We will now prove that for all A that contain at least

one invertible polynomial, we will have that for all w1,
PA,w1 ≤

(
2γ2+1
2γ1−1

)n
, which will prove the lemma. Let us

only consider the row of A which contains the invertible
polynomial. Denote the elements in this row by [a1, . . . , al]
and without loss of generality assume that a1 is invertible.
We want to prove that for all w1 (element of w1),

Pr
y←S l

γ1−1

[HighBitsp(d p
q
∑l

i=1 aiyic, 2γ2) = w1] ≤
(

2γ2+1
2γ1−1

)n
.

Let us define T := {w | HighBitsp(w, 2γ2) = w1}. By the
definition of the Decomposep routine in Fig. 7, the size of
T is at most (2γ2 + 1)n. We can then rewrite the above
probability as Pr

y←S l
γ1−1

[d p
q
∑l

i=1 aiyic ∈ T ] = Pr
y←S l

γ1−1

[yi ∈

a−1
i ( q

p (T−ξ)−
∑l

i=2 aiyi)] where ξ is a rounding error defined
as ξ := d p

q
∑l

i=1 aiyic − ( p
q
∑l

i=1 aiyi). The size of the set
a−1

i ( q
p (T − ξ)−

∑l
i=2 aiyi) is at most (2 q

pγ2 + 1)n = (2γ2 + 1)n,
and the size of the set S l

γ1−1 is exactly (2γ1 − 1)n, thus we

have Pr
y←S l

γ1−1

[d p
q
∑l

i=1 aiyic ∈ T ] =
(

2γ2+1
2γ1−1

)n
.

For the values in Table 1, we have that
(

2γ2+1
2γ1−1

)n
< 2−255

for every parameter sets and (n/q)kl = 2−90, 2−180, 2−300,
2−450, 2−840 and 2−1080 for parameter sets (I), (II), (III), (IV),
(V), and (VI), respectively. Thus, by Definition 7, the min-
entropy of MLWRSign for parameter sets (I), (II), (III), (IV),
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Trans(sk)
1 A← Rk×l

q := Sam(ρ),
2 y← S l

γ1−1

3 w := d p
q Ayc ∈ Rk

p,
4 ξ1 := d p

q Ayc − p
q Ay

5 w1 := HighBitsp(w, 2γ2)
6 c← ChSet
7 z := y + cs1
8 s2 := (t − p

q As1)
9 ξ2 := dcs2c − cs2, ν := dξ1 − ξ2c

10 if ‖z‖∞ ≥ γ1 − β1 then return ⊥
11 if ‖LowBitsp(w − dcs2c − ν, 2γ2)‖∞ ≥ γ2 − β2 then return
⊥

12 h := MakeHintp(−ct0,w − dcs2c − ν + ct0, 2γ2)
13 return (c, (z,h))

Sim(pk)
14 A← Rk×l

q := Sam(ρ),

15 With probability 1 −
|S l
γ1−β1−1 |

|S l
γ1−1 |

, return ⊥

16 c← ChSet
17 z← S l

γ1−β1−1

18 if ‖LowBitsp(d p
q Azc − ct, 2γ2)‖∞ ≥ γ2 − β2

then return ⊥
19 h := MakeHintp(−ct0,

p
q dAzc − ct + ct0, 2γ2)

20 return (c, (z,h))

Fig. 9 Left: a real transcript output by the transcript algorithm Trans(sk); Right: a simulated
transcript output by the Sim(pk) algorithm.

(V), and (VI), is greater than 90, 180, 255, 255, 255, and
255, respectively.

It is important to note here that the real min-entropy
should be a lot higher since the HighBitsp function maps
onto a set of size larger than 25000 and is heuristically close
to uniform over this set. To get a formal proof would be
significantly more involved than the proof above which took
advantage of the fact that γ1 = 2γ2, and gave us a sufficiently
high min-entropy bound for practical purposes.

5.2 Non Abort Honest Verifier Zero-Knowledge

In this section, we show that ID is perfect naHVZK
(Definition 6), in other words, we show that the distribution
of the output of the Trans algorithm (Fig. 9, left) that takes
the secret key as input is exactly the same as that of the Sim
algorithm (Fig. 9, right) that takes only the public key as
input.
Lemma 4. If β1 ≥ max

s1∈S η,c∈ChSet
‖cs1‖∞, then ID in Fig. 6 is

perfectly naHVZK.

Proof. Let s1 ∈ S l
η be any polynomials satisfying p

q dAs1c =

t. We show that the output distributions of Trans and Sim
from Fig. 9 are identical. For any z ∈ S l

γ1−β1−1, we compute
the probability that z is generated in line 7 of Trans. For any
c ∈ ChSet, we have

Pr
y←S l

γ1−1

[y + cs1 = z] = Pr
y←S l

γ1−1

[y = z − cs1]. (17)

Because ‖cs1‖∞ ≤ β1, we know z − cs1 ∈ S l
γ1−1. Thus,

Pr
y←S l

γ1−1

[y = z − cs1] = 1/|S l
γ1−1|. (18)

Therefore, every z ∈ S l
γ1−β1−1 has an equal probability of

being generated. Furthermore, the probability of producing
a z ∈ S l

γ1−β1−1, which equals the probability of not returning

⊥ in line 10 of Trans, is exactly
|S l
γ1−β1−1 |

|S l
γ1−1 |

. Thus, after line 10,

either ⊥ has been returned (with probability 1−
|S l
γ1−β1−1 |

|S l
γ1−1 |

), or

the distribution of (c, z) is uniform in ChSet×S l
γ1−β1−1. This

is exactly the same distribution as that after line 16 of Sim.
To complete the proof, we note that

⌈
p
q Az

⌋
−ct = w−dcs2c−ν

holds from (3), thus all the steps in Trans after line 10 are
identical to those after line 16 of Sim.

5.3 Computational Unique Response

In this section we prove that our ID satisfies the CUR
property defined in Definition 8 required for strong-
unforgeability of the signature scheme. The following
Lemma 5 directly implies that AdvCUR

ID (A) ≤ AdvMSIS
k,l,ζ′ (E)

for ζ′ defined in (14).
Lemma 5. If (w1, c, (z,h)) and (w1, c, (z′,h′)) are such that
V(pk,w1, c, (z,h)) = V(pk,w1, c, (z′,h′)) = 1 and (z,h) ,
(z′,h′), then there exist v,u such that ‖v‖∞ < 2(γ1 − β1),
‖u‖∞ ≤ 4γ2 + 6η such that Av + u = 0.

Proof. The two conditions of the Lemma imply that w1 =

UseHintp(h, d p
q Azc − ct1 · 2d, 2γ2), w1 = UseHintp(h′,

d
p
q Az′c −ct1 · 2d, 2γ2) We first point out that it must be

that z , z′. This is because Lemma 1 implies that if z = z′
then necessarily h = h′ (and then Z = Z′). The above two
equations imply (again by Lemma 1) that

‖d
p
q Azc − ct1 · 2d − w1 · 2γ2‖∞ ≤ 2γ2 + 1, (19)

‖d
p
q Az′c − ct1 · 2d − w1 · 2γ2‖∞ ≤ 2γ2 + 1. (20)

We have u := d p
q Azc − d p

q Az′c = d
p
q A(z − z′)c + ν where

ξ1 := d p
q Azc− p

q Az, ξ2 := d p
q Az′c− p

q Az′ and ν := dξ1−ξ2c.
From (19) and (20), we have ‖u‖∞ ≤ 4γ2+2 by the triangular
inequality. Also, Let u := u − ν then we have ‖u − ν‖∞ ≤
4γ2 +3 since ‖ν‖∞ ≤ 1. Thus, d p

q A(z−z′)c+u′ = 0 for some
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u′ such that ‖u′‖∞ ≤ 4γ2 + 3 and ‖z − z′‖∞ < 2(γ1 − β1).
Furthermore, we can rewrite A(z − z′) + u′′ = 0 such that
‖u′′‖∞ ≤ q

p (4γ2 + 3) = 4γ2 + 6η.

5.4 UF-NMA Security

In this section we show UF-NMA security of MLWRSign.
Theorem 3 (UF-NMA security of MLWRSign). Let q, p be
positive integers such that q > p ≥ 2 and p | q. For any
quantum adversary A against UF-NMA security that issues
at most QH queries to the quantum random oracle |H〉, there
exist quantum adversaries B and C such that

AdvUF-NMA
MLWRSign(A) ≤ AdvMLWR

p,k,l,D(B) + AdvSelfTargetMSIS
H,k,l+1,ζ (C),

(21)

and Time(B) = Time(C) = Time(A) + QH , where D is the
uniform distribution over S η, and ζ is defined as in (13).

Proof. The adversary C obtains
[
A | t′

]
∈ Rk×(l+1)

q , which is
an instance of SelfTargetMSISH,k,l+1,ζ , and decompose t′ as
t′ := q

p t + v, where t ∈ Rk
p is the higher log p bits of t′

and v ∈ Rk
q/p is the lower (log q − log p) bits. Note that t

is uniformly random in Rk
p because t′ is uniformly random

in Rk
q. Then, C sets (A, t) as the public key of the signature

scheme and sends it to A. The public key pk generated by
IGen is indistinguishable from uniform over Rk×l

q ×Rk
p except

with the probability AdvMLWR
p,k,l,D(B). Thus, with probability

AdvUF-NMA
MLWRSign(A) − AdvMLWR

p,k,l,D(B), A will return a signature
(c, (z,h)) of some message µ such that ‖z‖∞ < γ1 − β1
satisfies the verification equation

c = H(µ ‖UseHintp(h, d p
q Azc − ct1 · 2d, 2γ2)).

From Lemma 1 we can write 2γ2 ·UseHintp(h, d p
q Azc−ct1 ·

2d, 2γ2) = d
p
q Azc−ct1 ·2d +u, where, ‖u‖∞ ≤ 2γ2 +1. Since

d
p
q As1c = t = t1 · 2d + t0 and ‖t0‖∞ ≤ 2d−1, we can rewrite

d
p
q Azc − ct1 · 2d + u =

p
q Az + ξ − ct + ct0 − c p

q v + c p
q v + u

=
p
q

[
A | qp t + v | Ik

]
z
−c
q
p u′

 ,
where u′ := (c(t0 +

p
q v) + u + ξ), ξ := d p

q Azc − p
q Az. Since v

is a random vector uniformly distributed on Rk
q/p, the upper-

bound for ‖u′‖∞ is given as

‖u′‖∞ ≤ ‖c‖1 · ‖t0 +
p
q v‖∞ + ‖u + ξ‖∞

≤ 60 · (2d−1 + 1) + 2γ2 + 1 < 4γ2 = 4 p
qγ2.

Note that we select d such that 60·(2d−1 +1) < 2γ2−1, as we
described in Sect. 4.3 (see also Table 1). Thus, the adversary
A can find (z, c,u′) and µ ∈ {0, 1}∗ such that ‖z‖∞ < γ1 − β1,
‖c‖∞ = 1, ‖u′‖∞ < 4 p

qγ2 and

H′

µ ‖ [A | t′ | Ik

]
z
−c
q
p u′


 = c, (22)

where H′(µ ‖ x) = H(µ ‖ 1
2γ2

x), and t′ := q
p t + v by

definition. Since A ∈ Rk×l
q and t′ ∈ Rk

q are random, y :=[
z> | −c | q

p u′>
]
> is a solution to SelfTargetMSISH′,k,l+1,ζ

defined in Definition 4, where ζ = max{‖z‖∞, ‖ q
p u′‖∞} ≤ 4γ2

as shown in (13).

5.5 Concrete Security

We follow the methodology of [14] to derive the security
parameters in Table 1 with minor adaptations considering
the MLWR problem. Since there are no known attacks that
benefit the module structure, we view MLWR and MSIS
problems as the LWR and SIS problems. The LWR and SIS
problems are exactly the same as those in the definitions
of MLWR and MSIS in Sect. 2.3 with the ring Rq being
replaced by Zq.

Concrete hardness of MLWRp,k,l,D. We can view an
MLWRp,k,l,D instance as an LWR instance of dimensions
256l and 256k: we can rewrite MLWRp,k,l,D as finding
vec(s1) ∈ Z256l × Z256k from (rot(A), vec(t)), where vec(·)
maps a vector of Rq to the vector obtained by concatenating
the coefficients of its coordinates, and rot(A) ∈ Z256k×256l

q is
obtained by replacing all entries a ∈ R of A by the 256×256
matrix whose z-th column is vec(xz−1 · ai j). Given an LWR
instance (A, t := d p

q Asc), we convert it to a LWE instance
(A, q

p t = As +
q
pξ), where ξ := d p

q Asc − p
q As is a vector of

rounding error uniformly distributed over (− 1
2 ,

1
2 ). Thus, we

obtain the variance of noise of the converted LWE sample
as σ2 =

q2

12p2 , and we estimate the concrete hardness (BKZ
block size b) based on the value of 256l, q and σ using the
lwe-estimator [35].

Concrete hardness of SelfTargetMSISH,k,l+1,ζ . It is shown in
[14] that, by using a standard forking lemma argument, an
adversary to solve the above problem in the random oracle
model can solve the MSIS problem. As discussed in the
paper, since the reduction using the forking lemma lacks
tightness, our scheme also relies on the exact hardness of
analogues of the problem of (22). Under the assumption
H is a cryptographic hash function, the only approach for
solving the problem of (22) appears to be picking some w
such that H′(µ ‖w) = c, and then finding a pair z, u′ that
satisfies w = Az− c q

p t +
q
p u′. Let t′ := w + c q

p t, then we can
rewrite this as[

A | Ik

][ z
q
p u′

]
= t′. (23)

The concrete security that we are concerned with is the
hardness of the problem of finding a pair z, q

p u′ that satisfies
(23) and ‖ q

p u′‖∞, ‖z‖∞ < 4γ2. This amounts to solving the
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Fig. 10 Illustration of the bit length of t = t1 · 2d + t0 (pk part: t1, sk
part: t0).

MSISk,(l+1),ζ problem for the matrix
[
A | t′

]
.

Concrete hardness of MSISk,l,ζ . Furthermore, the
MSISk,(l+1),ζ instance can be mapped to a SIS256k,256(l+1),ζ in-
stance with the matrix rot(A | t′) ∈ Z256·k×256·(l+1)

q . Similarly,
the MSISk,l,ζ′ instance can be mapped to the SIS256·k,256·l,ζ′

instance. Since the values of q, k, l, and ζ′ in (14) of our
scheme are almost the same as those of Dilithium (only the
value of q is slightly different), the MSIS instances above
are also the same. Thus, in Table 1, we refer to the BKZ
block size b to break SIS given in [14].

6. Results and Comparison

6.1 Data Size

Public key. The size of public key pk = (ρ, t1) in MLWRSign
is 32(dlog pe − d) · k + 1) bytes, while that of Dilithium is
32((dlog qe−14) ·k +1) bytes. The bit-length of a coefficient
of a polynomial of vector t1 is always 9 bits, as you can see
in Fig. 10. This is because we select d such that dlog2(60 ·
2d−1)e = log2(2γ2), thus d := log(2γ2) − 5. Therefore, the
bit length of t1 is log p− log(2γ2) + 5 = log q− log(2γ2) + 5,
which is equivalent to that of Dilithium.

Secret key. The size of secret key sk = (ρ,K, tr, s1, t0) in
MLWRSign is 112 + 32(ldlog2(2η + 1)e + dk) bytes, while
that of Dilithium is 112 + 32((k + l)dlog2(2η + 1)e + 14k)
bytes. While in Dilithium the noise vector s2 has to be
included in the secret key, it is not needed to be stored
since we can generate it in the Sign procedure thanks to
the deterministic characteristic of LWR. Furthermore, as
the modulus of t is reduced from q to p, the length of d
is less than the value fixed in Dilithium (d < 14), as you
can see in Fig. 10. The concrete sizes of the secret keys
in Dilithium [14] are 2096, 2800, 3504, and 3856 bytes

for “weak”, “medium”, “recommended”, and “very high”
parameter sets, respectively. Thus, our secret key sizes are
short by 26% to 34%.

Signature. The size of the signature sig = (z,h, c) is
32l log2(2γ1) + ω + k + 40 bytes. This is the same as that
of Dilithium, since the values of γ1, β1 (corresponds to β
in Dilithium) and ω in our scheme are the same as those of
Dilithium.

6.2 CPU Cycles

We implemented our scheme, and the results are shown
in Table 2. They are the number of CPU cycles for
KeyGen, Sign, and Verify. The numbers for Sign are
lower quartile (L), median (M), and upper quartile (U)
of 10,000 executions each. For Verify and KeyGen, we
presented only the median of the cycles since those values
did not fluctuate significantly. Signing was performed with
a 32-byte message. Throughout this paper, we performed
the experiments on a laptop with an Intel Core i7-9700
that runs at a base clock frequency of 3.0 GHz, and the
Hyperthreading and Turbo Boost options were switched off.
The code was compiled with gcc 7.5.0. Our implementation
is based on the reference implementation of Dilithium that is
available at [14]. Furthermore, we presented an optimized
implementation of MLWRSign for CPUs that supports
the AVX2 instruction set. The optimized implementation
speeds up the polynomial multiplication and expansion of
the matrix and vectors since these computations are the most
time-consuming operations.

As we stated before, we could not utilize the NTT for
polynomial multiplication since we selected the modulus
q in the powers of 2. To mitigate this disadvantage, we
used Toom-Cook and Karatsuba polynomial multiplication
instead of NTT. Additionally, we efficiently implemented
the rounding operation with a simple bit shift following the
method used in [8], [9]. As a result, the running time of
our scheme is comparable with that of Dilithium, although
our secret key is short. Furthermore, the results show that
our AVX2-optimized version is faster than our reference
implementation in total CPU cycles by 1.49x, 1.75x, 1.89x,
1.89x, 2.08x, and 2.07x, for parameter sets (I), (II), (III),
(IV), (V), and (VI), respectively.

Note that CPU cycles of Sign for the parameter set III
(in the median or upper quartile) are lower than those for
the parameter set II, although the parameter set III achieves
higher security. This is because we use lower η in III and due
to this, the expected number of rejections is less than that of
the parameter set II.

6.3 Comparison with Other Lattice Signatures

Table 3 compares MLWRSign to lattice-based signature
schemes that are proposed for NIST PQC, in terms of
security, signature, and key sizes, and the performance of
portable C reference implementations.
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Table 2 Data sizes and CPU cycles of MLWRSign. The parameter sets are from Table 1. For Sign,
we measure the lower quartile (L), median (M), and upper quartile (U) of the cycles. For Verify and
KeyGen, we write only the median of the cycles since they do not fluctuate significantly.

I II III IV V VI

Public key size (bytes) 896 1184 1472 1760 2336 2624
Secret key size (bytes) 1392 1872 2384 2864 3856 4336
Signature size (bytes) 1387 2044 2701 3358 4672 5329
Expected repeats ( (9)) 4.9 8.9 4.1 5.6 3.3 3.9

Average repeats observed 4.0 8.1 3.2 4.7 2.4 3.0

Sign cycles

 L: 399K
M: 631K
U: 1004K

 L: 928K
M: 1630K
U: 2780K

 L: 1029K
M: 1398K
U: 2149K

 L: 1514K
M: 2355K
U: 3900K

 L: 1934K
M: 2850K
U: 4215K

 L: 2473K
M: 4074K
U: 5965K

Verify cycles 181K 311K 473K 681K 1216K 1527K
KeyGen cycles 157K 285K 432K 626K 1259K 1447K

Sign cycles (AVX2)

 L: 271K
M: 429K
U: 685K

 L: 520K
M: 949K
U: 1668K

 L: 555K
M: 759K
U: 1172K

 L: 814K
M: 1273K
U: 2086K

 L: 991K
M: 1426K
U: 2095K

 L: 1304K
M: 2001K
U: 2925K

Verify cycles (AVX2) 114K 170K 248K 352K 580K 719K
KeyGen cycles (AVX2) 106K 153K 213K 317K 530K 662K

Table 3 Comparison with lattice signatures in reference implementations.

Scheme Sec. Cycles Cycles (AVX2) Bytes Assumption Framework

MLWRSign-III
(this paper) 123

Sign:

 L: 1029K
M: 1398K
U: 2149K

Verify: 486K
KeyGen: 447K

Sign:

 L: 555K
M: 759K
U: 1172K

Verify: 254K
KeyGen: 219K

pk: 1472
sk: 2384

sig: 2701
MLWR, MSIS FS with abort

Dilithium-III [36] 125
Sign:

 L: 1363K
M: 2092K
U: 3308K

Verify: 634K
KeyGen: 647K

Sign:

 L: 313K
M: 453K
U: 688K

Verify: 204K
KeyGen: 262K

pk: 1472
sk: 3504

sig: 2701
MLWE, MSIS FS with abort

Falcon-512 [37] 108
Sign:

 L: 890K
M: 898K
U: 924K

Verify: 122K
KeyGen: 23381K

Sign:

 L: 964K
M: 974K
U: 998K

Verify: 122K
KeyGen: 27128K

pk: 897
sk: 1281

sig: 666
NTRU-SIS Hash-and-sign

qTESLA-p-III [12] 129∗
Sign:

 L: 3753K
M: 6774K
U: 12002K

Verify: 2122K
KeyGen: 28445K

—†

pk: 38432
sk: 12392

sig: 5664
RLWE FS with abort

∗ Calculated from 20.265b with BKZ block size b = 489 † No AVX2-optimized version is publicly available

The most compact, in terms of key and signature
sizes, lattice-based schemes are NTRU-based schemes,
e.g., Falcon [16], [38]. However, they contain several
disadvantages. One disadvantage is that the security
of these schemes is based on NTRU rather than (ring
or module variants of) LWE. The geometric structure of
NTRU lattices has recently been exploited [39] to produce
significantly better attacks against the NTRU problem with
large-modulus or small-secret, although these attacks are not
applicable to the recent parameter set used in the digital
signatures. The other disadvantage is that changing the
security levels of those schemes is not easy since it requires
a reconstruction of the schemes.

The other lattice constructions are digital signatures
based on the hardness of RLWE/LWE, e.g., [12], [32], [40].
The disadvantage of these schemes is that both key and

signature sizes and running times are high. As you can
see in Table 3, data sizes and CPU cycles of the latest
implementation of qTESLA [12] are much higher than other
schemes.

The MLWE-based signature scheme, Dilithium, offers
reasonably small signatures and public keys, and high
speeds of signing and verification. In particular, the sum
of the size of the public key and signature of the scheme
is smaller than all the non-lattice-based schemes, to the
best of our knowledge. By basing its security on MLWR,
our scheme MLWRSign offers a smaller secret key than
Dilithium, while the size of the public key and signature are
exactly the same, and speeds of signing and verification are
at the same level.
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7. Conclusion

We proposed an MLWR-based digital signature scheme
MLWRSign, which is a variant of Dilithium that is one of
the third-round finalists of NIST PQC. To the best of our
knowledge, our scheme MLWRSign is the first signature
scheme whose security is based on the (variants of) LWR
problem. By utilizing the simplicity of LWR in our scheme,
we reduced the size of the secret key by approximately 30%
compared to Dilithium, while achieving the same level of
security. We efficiently implemented MLWRSign using the
Toom-Cook and Karatsuba polynomial multiplication, and
observed that the running time of MLWRSign is comparable
to that of the reference implementation of Dilithium.

References

[1] H. Okada, A. Takayasu, K. Fukushima, S. Kiyomoto, and T. Takagi,
“A compact digital signature scheme based on the module-LWR
problem,” ICICS, eds. W. Meng, D. Gollmann, C.D. Jensen, and
J. Zhou, pp.73–90, 2020.

[2] National Institute of Standards and Technology, “Post-quantum
cryptography,” 2019. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography, Accessed: Feb. 27, 2019.

[3] National Institute of Standards and Technology, “Post-quantum
cryptography — Round 2 submissions,” 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions, Ac-
cessed: April, 2020.

[4] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” STOC’05, pp.84–93, ACM, 2005.

[5] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig,
V. Nikolaenko, A. Raghunathan, and D. Stebila, “Frodo: Take off

the ring! practical, quantum-secure key exchange from LWE,” CCS
2016, pp.1006–1018, 2016.
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