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Research on Map Folding with Boundary Order on Simple Fold

Yiyang JIA†a), Jun MITANI†b), Nonmembers, and Ryuhei UEHARA††c), Member

SUMMARY Folding an m × n square grid pattern along the edges of
a grid is called map folding. We consider a decision problem in terms of
whether a partial overlapping order of the squares aligning on the boundary
of an m × n map is valid in a particular fold model called simple fold.
This is a variation of the decision problem of valid total orders of the map
in a simple fold model. We provide a linear-time algorithm to solve this
problem, by defining an equivalence relation and computing the folding
sequence sequentially, either uniquely or representatively.
key words: map folding, simple fold, boundary overlapping order

1. Introduction

We investigate the computational complexity of the validity
of the checking problem for a special kind of overlapping
order in m × n maps in the simple fold model. These over-
lapping orders, called boundary overlapping orders, are or-
ders given on only the squares aligning on the boundary. As
illustrated in Fig. 1, the input is a total order of these squares
indexed from bottom to top when the map is folded to a size
of 1× 1. The output is whether the input is a valid boundary
overlapping order that corresponds to a flat-folded state of
size 1 × 1 and is foldable via simple folds or not. We con-
clude that we can determine the validity of a given boundary
overlapping order and find a feasible way to fold it by simple
folds for a given valid overlapping order in O(m + n) time.
The folding procedure is called a whole simple folding se-
quence. We also provide a method to enumerate all the other
feasible folding sequences for the input.

In earlier research [1], we provided an O(mn) time al-
gorithm to solve the same decision problem but with the or-
derings given on all the squares. When inputs are consti-
tuted by partial orders, the relevant decisions are more in-
tricate. With the objective to identify tractable results with
such inputs, we consider the boundary overlapping orders.

The base model of this problem, the map folding prob-
lem, is a fundamental topic in flat-folding. Variations of
this have been investigated for many years. Bern and Hayes
proved the NP-hardness of the decision problem on the flat-
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Fig. 1 A map is folded into a square of m × n layers. The overlapping
order of the boundary squares (colored gray) in the folded state is given.

foldability of a general crease pattern [2]. Map folding prob-
lems tend to be recognized as a simplification from gen-
eral patterns to grid patterns. Further, determining the flat-
foldability restricted to box-pleated crease patterns is NP-
hard [3]. The original map folding problem, which was pro-
posed by Edmonds in 1997 and remains unsolved, explores
the complexity to decide the flat-foldability of a rectangular
grid pattern of size m × n [4]. Every edge shared by two
squares is assigned as either a Mountain or a Valley. The
entire assignment is called a Mountain-Valley assignment
(an MV assignment). Arkin et al. [5] provided a method
to determine the flat-foldability of one-dimensional maps.
Morgan [6] gave an O(n9) time algorithm to determine the
flat-foldability of maps of size 2 × n. There is still no result
for m × n maps by general folds when m ≥ 3.

In opposition to general folds, Arkin et al. [5] proposed
a particular type of fold called the simple fold. A simple fold
applies on a certain number of layers along a single line so
that the state after a simple fold is also flat. In [5], the simple
fold concept is divided into three types. Among them, some-
layers simple fold (Fig. 2), in which, at every step, some lay-
ers are folded simultaneously, is the most popular model and
also used in this research. Hereafter, we use the term sim-
ple fold to refer to it. Results concerning the computational
complexity of simple folding general patterns are given in
[7].

Some extant research has focused on the reachability
of a given final overlapping order of layers. A reachable
overlapping order is called valid. In the general fold model,
Bern and Hayes showed that determining a suitable over-
lapping order is NP-hard [2]. Nishat [8] provided an O(mn)
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Fig. 2 An example of some-layers simple fold and the two basic opera-
tions.

time algorithm to decide the validity of a given order of map
folding. Enumerating all the valid orders costs exponential
time even for 1D maps [9], [10]. Uehara [10] proved that
for maps of size 1 × n, all the reachable flat states by gen-
eral folds are also reachable by simple folds and the validity
can be checked in O(n) time. Research about the existence
of valid total orders with partial orders as inputs shows in-
tractability in general cases. For example, the general de-
cision problem on the plan viability is NP-complete [11].
Despite the wide range of relevant research, no study has
hitherto considered both partial orders and simple folds in
map folding problems. Considering this new combination,
we investigate the validity of boundary overlapping orders
in the simple fold model.

2. Preliminaries

2.1 Map Notations

A map Mm,n is a rectangular sheet of paper with m × n con-
gruent squares arrayed in m rows and n columns. Its two
sides are differentiated as the front and the back. The basic
notation of Mm,n is illustrated in Fig. 1. The crease pattern
is specified as a grid pattern consisting of all the edges of
the squares other than the ones on the boundary of the map.
These edges are called creases and their non-boundary end-
points are called vertices (following [5]). An MV assign-
ment is a mapping from the set of creases to the set {M,V}.
“M”s are denoted by red solid-line segments, and “V”s are
denoted by blue dashed line segments. A crease line com-
prises a set of creases aligning on the same line and passing
through the map. We use points to denote the creases in a
1D map. Each vertex in Mm,n has degree four. A vertex is
locally flat-foldable if and only if exactly three of its creases
are assigned the same [12]–[14].

We use si, j (0 ≤ i < m, 0 ≤ j < n) to refer to the
square with its lower-left vertex located at (i, j) before any
fold. Specifically, our research concerns the squares align-
ing on the boundary of Mm,n (shadowed in figures), i.e., the
set {si, j | i ∈ {0,m−1} or j ∈ {0, n−1}}. We call these squares
boundary squares. A boundary strip is a set of boundary
squares aligning on the same side. Corner squares refer to
s0,0, sm−1,0, s0,n−1, sm−1,n−1, which are located at the corner
in the initial state. Without loss of generality, s0,0 is fixed to
(0, 0) and it always faces the front up during the folding.

2.2 Fold Definitions

Arkin et al. defined two kinds of folds, end-folds and crimps,
for a given MV assignment [5]. In a 1D map (see Fig. 2),
an end-fold is a fold at either the first or the last crease
point. The interval between the last crease point and its cor-
responding end of the map is not longer than its neighbor
interval. A crimp is a fold along a pair of adjacent crease
points labeled “MV” or “V M”, where the length of the in-
terval between the two creases is a local minimum value.
We use the same operations to indicate our foldings. In-
stead of handling a map with all creases, we put forward
a method to compute the current map at each step by only
regarding the creases to be folded at the step and neglect-
ing the creases remaining unfolded (details will be given in
Sect. 4.1). By mathematical induction, it can be clarified
that any valid partly folded state in a simple fold model is
reachable by our crimps and end-folds.

Both crimps and end-folds can be considered as con-
ditional simple folds. On the other hand, we call the un-
conditional simple folds along single lines general simple
folds. Hereafter, a simple fold refers to either a crimp or an
end-fold unless expressly stated otherwise. For a valid in-
put order, we seek a folding process F composed by crimps
and end-folds. Of note, we require F to satisfy the follow-
ing: once the surfaces of two squares touch each other, the
two squares can never be separated by subsequent folding
operations. This non-separating property is crucial in our
approach. Furthermore, it forces the crimps and end-folds
in F to be applied to all the layers where the corresponding
crease lines exist. We show that other possible folding pro-
cesses which do not satisfy this non-separating property can
be produced from F.

We define a simple folding sequence as a sequence of
crimps and end-folds. A simple folding sequence from the
map to a flat state of size 1 × 1 is called a whole sim-
ple folding sequence. Every partly flat-folded state can
be viewed as a smaller map. The sequence of partly flat-
folded states of boundary squares is indicated by R= (R0,
R1, R2, . . . ,Rt), where Rt represents the final state. We de-
fine all the possible partly flat-folded states by the set R.
Then, any end-fold or crimp can be described as a mapping
f : R → R. Specifically, a mapping from the state Ri−1
to Ri is denoted by fi where fi(Ri−1) = Ri. We say that a
pair of consecutive folds fi and fi+1 are interchangeable if
fi ◦ fi+1(Ri−1) = fi+1 ◦ fi(Ri−1) = Ri+1, where ◦ is the compo-
sition of mappings. A folding sequence from Ri to R j with
i < j is denoted by ( fi+1, fi+2, . . . , f j) and corresponds to
f j ◦ f j−1 ◦ . . . ◦ fi+1 mapping Ri to R j. Then, a whole sim-
ple folding sequence F is abstracted as the composition of
all the fis where 1 ≤ i ≤ t. Let F be the set of feasible
whole simple folding sequences; F is the solution space of
the decision problem on the validity of the input order.

From another perspective, F can be partitioned into
some sub-sequences of parallel folds. We denote these sub-
sequences by P = (p1, p2, . . . , pu) with 1 ≤ u ≤ t. This
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satisfies that (1) each pk is a maximal set of some parallel
fis which are perpendicular to those comprising pk+1 and
(2) the crease lines in pk are folded directly after pk−1 and
before pk+1. The sub-sequences in P are uniquely decided
by F and vice versa. Then, we have Observation 1.

Observation 1. The elements in p0, p2, p4, . . . , p2i are par-
allel folds; The elements in p1, p3, p5, . . . , p2i+1 are parallel
folds, which are perpendicular to the elements in p0, p2,
p4, . . . , p2i.

Without loss of generality, we assume that all elements
p2i are parallel to the x-axis, and all p2i+1 are parallel to the
y-axis.

The term neighbor squares refers to a pair sa,b, sa+1,b
or a pair sa,b, sa,b+1 in the initial state. When a partly flat-
folded state Ri is viewed as a new map, two squares sharing
a crease on the new map are called neighbor squares in Ri.
In any partly or totally flat-folded state, we say that a pair of
squares si and s j whose faces touch each other are adjacent
and denoted by si ↔ s j. Furthermore, we denote the closure
of↔ by↔∗, which can be constructed as follows: (1) si ↔

∗

si; (2) si ↔
∗ sk if si ↔

∗ s j and s j ↔ sk.
For a square s j in a folded state Ri, we can consider

the closure of squares adjacent to s j as the set of squares
{sl|s j ↔

∗ sl}. In our objective F, adjacent squares after any
fi would never become non-adjacent. Thus, the closure of
s j in Ri would be a subset of the closure of s j in Rk for any
k > i. Let Oi(a, b) denote the set of squares {sl|sa,b ↔

∗ sl} in
the state Ri. For a given Ri, when the ordering of the squares
in the set Oi(a, b) = {s1, . . . , sl} is fixed, we sometimes use
an ordered set (s1, s2, . . . , sl) such that s j ↔ s j+1(for any
1 ≤ j < l) to describe the order. The ordering of any two
neighbor squares in Rt is decided by the MV assignment [8].

2.3 Problem Definitions

Herein, a valid overlapping order refers to a feasible over-
lapping order Ot(0, 0) of the map in the simple fold model.
A valid boundary overlapping order is a total valid overlap-
ping order given on the set of boundary squares.

Our focus is the validity of the boundary overlapping
order of m × n maps. The problem is described as fol-
lows. Given an order O of the boundary squares, is O a
valid boundary overlapping order in the simple fold model?

We pose Theorem 2 as our conclusion.

Theorem 2. There exists an O(m + n) time algorithm that
determines the validity of the boundary overlapping order O
in the simple fold model and gives a feasible whole simple
folding sequence F when O is determined to be valid.

3. Outline

We study the decision problem on the validity of a given
order of the boundary squares in the simple fold model. The
method is summarized as follows. First, the MV assignment

Fig. 3 An instance with two parallel boundary strips overlapping each
other. (a) shows the state of the map. (b) is the top view of the flat-folded
state, i.e., the view from the top of s0,0, where locations of the boundary
strips and boundary squares in the folded state are shadowed. b1, b2, b3
and b4 correspond to boundary strips.

on the boundary strips is computed by traversing O. Then,
F is obtained by computing the sub-sequences of parallel
folds (p1, p2, . . . , pu). Every pk folds two parallel boundary
strips perpendicular to pk in the same way. Therefore, we
decide the simple folds in each pk by finding the same folds
on two parallel boundary strips.

Since there may exist other whole simple folding se-
quences inducing the given boundary overlapping order, we
have to prove that if no F can be obtained with our algo-
rithm, then there exists no valid whole simple folding se-
quence leading to the given order. The strategy is to consider
the interchangeable folds in F so that any other valid whole
simple folding sequences can be obtained by interchanging
these folds in F. By Cayley’s theorem [15], it is sufficient
to consider only the interchangeability between consecutive
simple folds.

We first analyze the condition that renders consecutive
folds interchangeable. Then, we assign an equivalence re-
lation on F such that equivalent whole simple folding se-
quences lead to the same boundary overlapping order. F
is computed as the representative of its equivalence class.
Then, deciding the validity of O resolves to deciding the ex-
istence of F.

Note that we do not discuss the interchangeable folds
when two parallel boundary strips totally overlap each other
(as illustrated in Fig. 3) because that can be handled with the
same operation for a single pk by considering the overlap-
ping formed on {b1,b2} and b3 together.

4. Interchangeable Consecutive Folds

The interchangeable conditions of consecutive parallel folds
and consecutive perpendicular folds are provided in this sec-
tion. Crimps and end-folds might be updated to new ones by
the condition in Sect. 4.2 so that other feasible foldings F
can also be obtained by the interchange. By this exhaustion,
we concern only crimps and end-folds as the interchange-
able perpendicular folds.

4.1 Recognizing Consecutive Parallel Folds

Because any partly flat-folded state can be viewed as a map,
here we only discuss pk with an odd k. The creases on
the two boundary strips simultaneously folded by pk should
have the same assignment, which can be confirmed by a par-
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ity check of the coordinates [8].
To simplify the exposition, we discuss the folds on a

single boundary strip. The two states after a crimp and after
an end-fold are given in Fig. 2. Note that instead of recog-
nizing the crimps and end-folds on the entire crease pattern,
once a step, we only consider the creases which are sup-
posed to be currently folded and assume the other creases
do not exist. These currently folded creases can be clarified
during the traverse of O. The size of the map is assumed to
be 1×n′ with its left end located on x = 0. We denote the co-
ordinates of points A to G as xA to xG, which are all integers.
Then, we have xB − xA > xC − xB < xD − xC for the crimp
and n′− xG ≤ xG− xF for the end-fold. The equals symbol is
permitted only for end-folds. The two states are respectively
described by the following equations, where o(x) indicates
the squares folded to the coordinate (x, 0), and tuples indi-
cate the order of the squares from bottom to top.

For the crimp, we have

o(x) =



(sx), x < 2xB − xC

(sx, s2xB−x−1, sx+2xC−2xB ),
2xB − xC ≤ x < xB

(sx+2xC−2xB ),
xB ≤ x < 2xB + n′ − 2xC

and for the end-fold, we have

o(x) =

(sx), x < 2xG − n′

(sx, s2xG−x−1), 2xG − n′ ≤ x < xG

By repeating the following three steps, it can be deter-
mined whether R j can be reached from Ri by parallel folds.
If reachable, the elements and the inner order of pk are also
decided.
Step 1. Update the 1D map representing a boundary strip of
Ri only with the creases whose neighbor squares are in the
same O j(a, b) in R j.
Step 2. Find crimps and end-folds by referring to the equa-
tions for o(x, 0). If no fold exists, R j is not reachable.
Step 3. Reduce the map to a new (smaller) map by applying
the folding operations found in Step 2.

This process can be completed in linear time of the
1D map by using a standard graph traverse algorithm, e.g.,
breadth-first search or depth-first search algorithm. An ex-
ample of this process for a 1 × 10 map is shown in Ap-
pendix A.

4.2 Interchangeable Parallel Folds

Next, we give the interchangeable condition of the parallel
folds. This condition can be used to produce other feasi-
ble foldings leading to the same boundary overlapping or-
der. Here we consider interchangeable general simple folds
(each along one crease line) to exhaust all the possibilities
of valid whole simple folding sequences.

The following lemma provides the necessary and suf-
ficient condition for a pair of parallel folds in a pk to be

Fig. 4 Two possible cases for interchangeable parallel folds.

interchangeable.

Lemma 3. A pair of consecutive parallel folds la and la+1 is
interchangeable if and only if (1) or (2) hold.
(1) la and la+1 are labelled “MV” or “VM”.
(2) The labels of la and la+1 are the same, Aa ∩ Aa+1 =

∅ where Aa = {(i, j)|Oa(i, j) , Oa−1(i, j)} and Aa+1 =

{(i, j)|Oa+1(i, j) , Oa(i, j)}.

Case (2) means that the overlapping part formed by
folding along la does not overlap with the overlapping part
formed by folding along la+1. Note that la and la+1 may only
affect the overlapping on some layers. Both cases are il-
lustrated in Fig. 4. The proof is omitted since the lemma is
reasonably straight-forward.

The interchange may form new crimps and end-folds
in pk. The computation also costs time linear in the size of
the 1D map. Every available order inside pk can be obtained
by interchanging these pairs finite times.

4.3 Interchangeable Perpendicular Folds

The interchangeable condition of consecutive perpendicu-
lar folds is discussed in this section. For convenience, we
say that a simple fold fa involves a square si, j if Oa(i, j) ,
Oa−1(i, j). By the condition that F would never let adja-
cent squares become non-adjacent again, the overlapping of
corner squares indicates the order of horizontal and verti-
cal folds. The most crucial factor for the interchangeabil-
ity of perpendicular folds is whether the folds involve cor-
ner squares. Based on this factor and the MV assignment
around the corner squares, we classify the interchangeable
cases into eight classes as illustrated in Fig. 7 and Fig. 8. De-
tailed instructions are given in the following paragraphs.

These classes concern partly folded states of the map,
where the corner squares may not lay on the corners, and
may not maintain their initial relative positions. Three pos-
sible relative positions of corner squares are illustrated in
the upper row in Fig. 5, where the back of the map is col-
ored gray.

For these eight classes, we have Lemma 4. The proof
is given through the following sections.

Lemma 4. (1) Every case satisfying the condition of one of
these eight classes is an interchangeable case;
(2) Every interchangeable case can be classified into one of
these eight classes.

Before the proof, we introduce a notion called merge
to explain that our interchangeable condition maintains the
boundary overlapping order. A pair (S a, Oa) is used to de-
scribe the folded state of a boundary strip, where S a is the
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Fig. 5 The corner squares in boundary areas.

Fig. 6 Possible relative positions of the corner squares and four end-folds
(two are in pk and the other two are in pk+1.)

set containing all the squares on this boundary strip and Oa
is the total order on S a, which represents the overlapping of
the squares. For two pairs (S a, Oa) and (S b, Ob), if a folding
sequence induces a new tuple (S a ∪ S b, Oc) where Oc is an
order on S a ∪ S b (two boundary strips) and satisfies both Oa
and Ob, then we say that this folding sequence merges the
two boundary strips.

4.3.1 Classes 1-3

In this section, we discuss the first three classes. In these
classes, four possible relative positions of the corner squares
and four consecutive end-folds are illustrated in Fig. 6. In
the following illustrations, the positions of creases are taken
only for convenience. With symmetric cases omitted, there
are only three interchangeable MV assignments (illustrated
in Fig. 7 (1-1), (2-1) and (3-1)). This is because every two
creases around a corner square must be labeled differently
so that whether the horizontal crease precedes the vertical
crease or not, they always form the same overlapping order.
The order can be described as the triple (a square from the
same vertical boundary strip as the corner square, the corner
square, a square from the same horizontal boundary strip as
the corner square) from bottom to top, or in reverse, and that
there should exist at least one matching MV assignment to
some crease line, to ensure the interchangeability.

If we consider each two parallel end-folds as a pair,
then for each class, there exist two possible ways to order the
four end-folds given as possible orders in Fig. 7 (all the pos-
sible ways to order two parallel folds in a pair are counted
as one). The order of folds is indicated by 1, 2, 3, 4. Their
interchangeable conditions are presented in Lemma 5. Let
w1 to w6 be the widths illustrated in Fig. 7 (1-2).

Lemma 5. (1) Interchangeability: in Classes 1–3 whose

Fig. 7 The first three cases for four consecutive end-folds.

MV assignments are illustrated in Fig. 7, when the inter-
changeable conditions:
Class 1. Either w1 + w3 < w2 or w4 + w6 < w5.
Class 2. w1 + w3 < w2 and w4 + w6 < w5.
Class 3. w1 + w3 < w2
are satisfied, the orders of the four end-folds illustrated as
Possible Order of Folds in Fig. 7 lead to the same boundary
overlapping order. (2) For the partly folded states as illus-
trated in Fig. 7, the four end-folds cannot be interchanged
when the interchangeable conditions are violated.

Proof. (1) The interchange of folds is feasible if it (a) does
not change the adjacent relation ↔ on respective boundary
strips, and (b) involves no merging. The certain MV as-
signment ensures (a). For (b), we use A1 to A9 to indicate
different areas, as shown in Fig. 7 (1-3). We consider the
case that the four corner squares are located in A1, A3, A7
and A9 as an example.

The interchangeable conditions avoid the boundary
overlapping orders on respective boundary strips being
merged in Classes 1 to 3. Correspondingly, in each class,
the two possible orders of the four end-folds with the same
given MV assignment lead to the same boundary overlap-
ping order on respective boundary strips. Taking Class 1 for
example, assume that A1 always faces the front up. The two
folding sequences shown in Fig. 7 (1-2) and (1-3) lead to
the same overlap order on respective boundary strips, which
can be described by the 3-tuples: ({A1, A7}, A4), (A2, {A1,
A3}), ({A3, A9}, A6) and (A8, {A7, A9}). Cases of the other
two classes are similar and straightforward. Since A5 con-
tains no boundary strip, it does not affect the order of the
boundary squares.
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Fig. 8 Classes 4–8: interchangeable perpendicular folds. For Classes 6–
8, the interchangeable condition is the same, that at least one of fi−1 and fi
does not involve corner squares.

(2) When the interchangeable conditions are violated, each
folding sequence merges the 3-tuples, i.e., the overlapping
orders on four boundary strips, to an 8-tuple. For example,
Fig. 7 (1-2) would lead to (A4,A7,A1,A6,A9,A3,A2,A8), while
Fig. 7 (1-3) would lead to (A6,A4,A7,A9,A8,A1,A2,A3). By
this fact, the necessity of the interchangeable conditions in
these cases is clear. �

4.3.2 Classes 4 and 5

Classes 4 and 5 are illustrated in Fig. 8. Their description
and conditions are detailed as follows.
Class 4. (1, 2) and (3, 4) form pairs of differently labeled
parallel end-folds or crimps. Each tuple involves the same
two corner squares. 1 and 3 are labeled differently.
Class 5. (1, 2) is a pair of parallel interchangeable end-folds
with the same labels. (3, 4) is a pair of differently labeled
parallel end-folds or a crimp. 3 and 4 involve the same two
corner squares. 1 and 3 are labeled differently.

Lemma 6. We have the conclusion for the interchangeabil-
ity of Classes 4 and 5: The interchange of the two tuples (1,
2) and (3, 4) in Classes 4 and 5 would not affect the bound-
ary overlapping.

The proof is omitted since the analysis is similar to the
proof for Classes 1 to 3.

4.3.3 Classes 6-8

The last three classes concern two consecutive perpendic-
ular folds fi−1 and fi. Note that in these classes, we do not
consider the cases already discussed. For these three classes,
we have Lemma 7. Figure 8 illustrates these interchangeable

cases.
We first give the definition of Classes 6 to 8 as follows.

Class 6. Both fi−1 and fi are crimps.
Class 7. fi−1 is an end-fold and fi is a crimp.
Class 8. Both fi−1 and fi are end-folds

Lemma 7. For Classes 6 to 8, when the following inter-
changeable condition: at least one of fi−1 and fi does not
involve corner squares is satisfied, we have the following
conclusions.
(1) Interchangeability: in Classes 6 to 8, when the inter-
changeable condition is satisfied, the interchange of fi−1 and
fi in Classes 6 to 8 would not affect the boundary overlap-
ping.
(2) Necessity of the interchangeable condition: in Classes
6 to 8, fi−1 and fi cannot be interchanged when the inter-
changeable condition is violated.

Proof. (1) We first offer a general explanation before pro-
viding specific details. Viewing Ri−2 as a reduced map,
it is clear that in each class, the MV assignment induces
the same overlapping order on every respective boundary
strip. Folds fi−1 and fi are applied on perpendicular bound-
ary strips. At least one of them involves no corner square.
Therefore, no overlapping order of a corner square would
be simultaneously affected by fi−1 and fi. Then, since only
one intersection of two boundary strips is a corner square,
the overlapping orders on different boundary strips would
not be merged by fi−1 and fi. Then, we provide a detailed
proof for Class 6. A1 to A9 in Fig. 8 (6-1) indicate the areas
separated by va, vb, hc, and hd. Without loss of generality,
we assume that fi−1 = {va, vb}, fi = {hc, hd}, and s0,0 is lo-
cated at A1. The certain MV assignment limits the locations
of boundary strips. They must be located at all or some of
A1, A3, A7 and A9.

The overlapping order on every boundary strip is
uniquely determined, because the MV assignment uniquely
determines the overlap on respective boundary strips as (A1,
A4, A7), (A9, A6, A3), (A3, A2, A1) and (A9, A8, A7). These tu-
ples are not merged by fi−1 and fi. With no boundary square
simultaneously involved in two tuples, the interchangeabil-
ity is proved.

Omitting the symmetric cases, the MV assignments of
two possible folding sequences in Classes 7 and 8 are also
illustrated in Fig. 8.

(2) We take an instance of Class 8 violating the interchange-
able condition to explain the necessity of the condition. As
illustrated in the last figure in Fig. 8, state (b) is obtained by
folding a single piece of paper along e1 and e2 as illustrated
in (a). For the flat-folded state (b), the two orders of end-
folds, (e3, e4) and (e4, e3), induce different Oi(0, n−1)s. This
means that the two end-folds are not interchangeable. Simi-
larly, the other instances of these three classes violating the
interchangeable condition also indicate the uninterchange-
able property of the two folds. �
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4.3.4 Completion of Proof

In the above three sections, we have concluded the proof of
(1) in Lemma 4. We have also proved that the interchange-
able conditions we provided for Classes 1 to 8 are necessary.
To complete the proof of Lemma 4, we have to prove that
every interchangeable case in a partly flat-folded state must
belong to one of Classes 1 to 8.

For a pattern with only a pair of perpendicular crease
lines, the four creases are definitely assigned either three
“M”s and a “V” or three “V”s and an “M”. The inter-
change of the two crease lines would change the labels of
two creases, which can also be considered as a prohibited
change of assignment on two perpendicular boundary strips.
By mathematical induction, the interchange of an odd num-
ber of pairs of perpendicular crease lines would definitely
change the MV assignment on the boundary strips, while
the interchange of an even number of pairs of perpendicu-
lar crease lines would maintain the original MV assignment
on the boundary strips. It forces every interchange of hori-
zontal folds and vertical folds to be implemented on both an
even number of horizontal crease lines and an even number
of vertical crease lines. Thus, we consider the interchange-
able perpendicular creases of the minimal even number such
that any feasible interchange between pk and pk+1 can be ob-
tained by a combination of these minimal interchanges.

The crimps always affect an even number of layers
at the initial state, so we consider a pair of perpendicular
crimps in Class 6. In a partly flat-folded state, it is possible
for an end-fold along a single line to fold an odd number or
an even number of layers and to involve an odd number or
an even number of crease lines. For the end-folds involving
an odd number of crease lines, we consider two consecu-
tive end-folds together to maintain the parity. In this case,
all the possible interchangeable cases can be classified to
(a) two pairs of end-folds (Classes 1 to 3) and (b) a pair of
end-folds and a crimp (Classes 4 and 5). In an intermedi-
ate state where the end-fold corresponds to an even number
of layers, its relevant possible interchangeable cases can be
classified to (a) two end-folds (Class 8) and (b) an end-fold
and a crimp (Class 7).

Because all the possible interchangeable cases are con-
sidered, Lemma 4(2) is proved. Lemmas 5, 6 and 7 conclude
the interchangeable conditions of consecutive perpendicular
folds on the eight classes. In the next section, we will put
forward a folding process based on these classes.

5. Algorithm for the Decision Problem

We first define the equivalence relation on F and the
method to find the representative F. Based on the inter-
changeable conditions, an equivalence relation can be de-
fined as follows: For any two elements F1 and F2 in F ,
if F2 can be induced from F1 by interchanging the inter-
changeable folds, then we write F1 ∼ F2. It is straightfor-
ward to check that ∼ is an equivalence relation.

Note that the number of elements in an equivalent class
can be exponential to m + n according to the number of pos-
sible interchanges.

We provide a description of the algorithm in what fol-
lows and show how to enumerate all the whole valid sim-
ple folding sequences. The algorithm itself is shown in Ap-
pendix B.

5.1 Description of the Algorithm

The algorithm for the decision problem consists of three
steps.

(1) First Step: Crimps

We now give the method to find F. Referencing Classes 6
and 7, crimps are interchangeable with any end-fold in R0.
We use the method introduced in Sect. 4.1 to find the crimps
and fold them if they exist. The map can then be reduced.
We repeat this process until no more crimp can be found.
After folding these crimps, corner squares should still locate
at the four corners.

(2) Second Step: End-Folds

The first feasible fold of the reduced map must be an end-
fold and must involve corner squares. It is sufficient to deter-
mine whether the end-fold is along a horizontal or vertical
crease line because based on the results we have for pk, we
can decide the feasible fold when its direction is known.

The possible cases of the first end-fold are divided into
(i) and (ii). In (i), at least one of the four corners has its two
adjacent squares on the same boundary strip. When a corner
square is the first or the last element in the overlapping order,
we also consider the case as (i). In (ii), the two adjacent
squares of any corner square are on perpendicular boundary
strips.

For (i), we first consider s0,0. Without loss of general-
ity, we assume that s0,0 is in (si,0, s0,0, s j,0), which indicates
that the first end-fold involving s0,0 must be vertical. It is
necessary to consider the squares adjacent to other corner
squares, and here we take s0,n−1 first.

We define the consistency between two adjacent pairs
of squares on parallel boundary strips. If (a) (si,n−1, s0,n−1)
(or (s0,n−1,s j,n−1)) holds when n is odd; (b) (s0,n−1, si,n−1) (or
(s j,n−1,s0,n−1)) holds when n is an even, we say that the over-
lapping of {s0,n−1, si,n−1}(or {s0,n−1,s j,n−1}) is consistent with
{s0,0, si,0}({s0,0, s j,0}); if the reverse holds, we say the over-
lappings of the corresponding pairs are inconsistent. When
both pairs satisfy the consistency, we say that {si,n−1, s0,n−1,
s j,n−1} is consistent with {si,0, s0,0, s j,0}. In this manner, the
definition of consistency can further be extended to sets of
arbitrary numbers of squares.

Corresponding to different cases of the closure of
s0,n−1, three valid cases omitting the symmetries are summa-
rized in the first column of Fig. 9. In some cases, a further
check on the closures of other corner squares is necessary.
The details are as follows:
Case (1). In the overlapping, {si,n−1, s0,n−1, s j,n−1} is ordered
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Fig. 9 Three sub-cases in the analysis of case (i). The arrows indicate
the adjacent squares.

consistently with {si,0, s0,0, s j,0}. In this case, the first end-
fold must be vertical. Otherwise, at least one of s0,0 and
s0,n−1 should be adjacent to a boundary square s0,y (for some
y).
Case (2). The overlapping includes (s0,k, s0,n−1, s0,l). Then,
at least one horizontal fold involving s0,n−1 precedes the end-
fold involving s0,0. Otherwise, s0,n−1 should be adjacent to a
boundary square si,n−1 or s j,n−1 in the overlapping. However,
there may exist end-folds involving only sm−1,0 and sm−1,n−1
that precede this horizontal fold. A further consideration
on the closure of sm−1,n−1 is necessary. Two of the three
possible cases are illustrated in Fig. 9:
(2-1). The adjacent squares of sm−1,n−1 are sm−1,k and sm−1,l
(in either order). This indicates that horizontal folds precede
vertical folds. Otherwise, at least either s0,n−1 or sm+1,n−1
should be adjacent to a boundary square sx,n−1 (for some x).
(2-2). If the closure of sm−1,n−1 is (si′,n−1, sm−1,n−1, s j′,n−1),
then the vertical folds involving sm−1,n−1 precede the hor-
izontal folds involving s0,n−1. The first end-fold should
be vertical. Otherwise, either s0,0 should be adjacent to
a boundary square s0,y or sm−1,n−1 should be adjacent to a
boundary square sm−1,y′ (for some y and y′).

To avoid repetition, another case (2-3) where adjacent
squares of sm−1,n−1 belong to different boundary strips, is not
discussed here. It can be classified into Case (3) by rotating.
Case (3). The overlapping includes (sa,n−1, s0,n−1, s0,b) or
(s0,b, s0,n−1, sa,n−1) where a = i or a = j. The first one of all
the folds involving s0,0 and the folds involving sm−1,0 must
be vertical, otherwise s0,0 should be adjacent to a boundary
square s0,y. However, we also have to consider the folds do
not involve s0,0 and sm−1,0. There are only two cases where
the first fold is horizontal.
(3-1). The first fold is horizontal if there exists an adjacent
relation on {su,n−1, sv,n−1} with u= 0 or m − 1, and is incon-
sistent with {su,0, sv,0}. This means that the folds on the two
horizontal parallel boundary strips are not the same. As il-
lustrated in Fig. 9, e2 induces the adjacent relation of {s0,n−1,

sa,n−1} and {s0,0, sa,0}, and it should thus be folded after e1.
The inconsistency corresponds to an odd number of hori-
zontal folds preceding the vertical folds.
(3-2). In the overlapping, if there exists S =(su,n−1, s0,a1 ,
s0,a2 , . . . , s0,ak , sv,n−1) (k > 2) including s0,n−1 as the sec-
ond or penultimate element in this tuple (as the sequence of
squares (1, 2, 3, 4, 5, 6) in 3-2 of Fig. 9), and there also ex-
ists a closure on {sm−1,a1 , sm−1,a2 , . . . , sm−1,ak } such that the
ordered set is consistent with this sub-sequence (as (2’, 3’,
4’, 5’)), then there exist an even number of horizontal folds
preceding the vertical folds. k > 2 ensures that the number
of horizontal folds is at least two. These horizontal folds
are either folded before the vertical folds, or would form a
zigzag for each corner square with the vertical folds in the
folded state. The zigzag case corresponds to Classes 4 and
5 and thus the horizontal fold can be applied first by inter-
changeability. This case corresponds to an even number of
horizontal folds preceding the vertical folds.

The above analysis exhausts both cases where the pro-
ceeding horizontal folds are an odd number and an even
number. In all other cases, it is determined that the first
end-fold is vertical.
(ii) is the case that each corner square has its two adjacent
squares on perpendicular boundary strips. The closures of
the four corner squares (we consider each corner square with
its adjacent two squares as the closure of the corner square
here) are formed by at least four end-folds. Fig. 7 shows all
the instances where the closures of the four corner squares
are formed by four consecutive end-folds. Each end-fold
assigns new adjacent squares to the pair of corner squares it
involves.

At the beginning of Sect. 5.1(2), we explained that it is
sufficient to identify the direction of the first end-fold be-
cause we can leave the task of finding legal end-folds to
the procedure introduced in Sect. 4.1. When more than four
end-folds form the closures of the four corner squares, there
must exist some end-folds which only assign one or even
no new adjacent square to the pair of corner squares it in-
volves. Because the first end-fold must assign new adjacent
squares to two corner squares, it is not possible for these
end-folds to be the first fold. Correspondingly, by checking
the consistency of adjacent relations of pairs of parallel cor-
ner squares, at most four end-folds can become candidates
for the first fold. Here, we only discuss the case where the
first four end-folds form all the closures of the four corner
squares. To form all the closures, every two creases around a
corner square must be labeled differently. Thus Fig. 7 (1-1),
(2-1), (3-1) exhaust all the possible cases of the MV assign-
ments.

The first check concerns whether the two parallel pairs
of folds respectively have unique orders. If the case matches
with the given MV assignments in Fig. 7, then there exist
two choices to order these end-folds. We choose an arbitrary
one. Otherwise, the order of the four folds can be uniquely
decided by the overlapping order of boundary strips. Their
MV assignments are the same as Classes 1 to 3 in Fig. 7,
whereas the interchangeable conditions are not satisfied. As
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given in the proof of Lemma 5, the known closures on the
boundary strips uniquely decide the order of these four end-
folds.

When the direction of the current fold is decided, the
first end-fold can be determined using the method intro-
duced in Sect. 4.1. After the first end-fold, we have to find
the crimps before applying other end-folds because some
boundary squares may change the upward side and form
new crimps.

(3) Third Step: Folds on Partly Folded States

After the steps introduced above, there may exist some
crimps involving corner squares and some end-folds involv-
ing no corner squares. According to Classes 6 to 8, if there
are some folds only influencing the overlapping outside the
rectangle formed by the four corner squares (as illustrated
by the red line segments in the last figure in Fig. 9 (3)), we
first apply these folds.

Next is a repeating process of the check as for R0 until
the map is reduced to a state where either pair of parallel
boundary strips overlap each other. When deciding the or-
der of perpendicular folds, if they form the cases in Classes
1 to 8, we can order the folds as any of the orders intro-
duced in Sect. 4.3. Otherwise, the order of the folds is al-
ways uniquely determined by the overlapping of the bound-
ary strips. This decision is similar to the analysis in the proof
of Lemma 5, just with crimps included.

The above checking process ends when a pair of paral-
lel boundary strips totally overlap each other. This state can
be viewed as a 1D map and then handled with the method in
Sect. 4.1. If O is a valid boundary overlapping order in the
simple fold model, we can finally reduce the map to a 1 × 1
size. A corresponding representative folding F is composed
of the uniquely decided folds and the arbitrary choices for
interchangeable folds.

5.2 Analysis of Computational Complexity

Referencing our algorithm in Appendix B, making the deci-
sion costs O(m + n) time. The computation of the MV as-
signment on the boundary strips costs O(m + n) time [8]. By
a traverse of O, the input order of all the boundary squares
can be saved as a directed graph G. Each node represents
a square and each edge represents an adjacent relation. The
initial weight of each edge is one. During the folding pro-
cess, once an adjacent relation is induced by the folds we
find, we reassign the corresponding edge weight to zero.
The reduction of the map is indicated by the decrease in the
values of the edges. A valid final state Rt corresponds to G
with a total weight of zero on all the edges. At each step, the
new neighbor squares can be found by checking the value of
the path connecting two nodes.

The search for the same crimps and end-folds on the
two parallel boundary strips needs O(m) (O(n)) time for hor-
izontal (vertical) crimps. During the construction of G, by
assigning zeros to edges, newly developed adjacency be-
tween squares is uniquely recorded. Because the closure

Fig. 10 A possible lock induced by Step 3. e3 is an end-fold after c1 and
c2. The interchange of c1 and c2 makes a later fold e3 become unavailable.

↔∗ finally forms a Hamiltonian path in G, which involves
O(m+n) edges, the total cost pf this search is O(m+n) time.

Each time we decide the direction of the end-fold,
checking for closures of the four corner squares costs con-
stant time. During the reduction of the map based on the
determined folds, every adjacent relation is considered in
the computation only once. Thus, the total cost of ordering
the end-folds and crimps is O(m + n) time.

5.3 Extension to Enumeration Algorithm

In this section, we give an extension to enumerate valid
whole simple folding sequences induced from F, which re-
quires the following steps.
S1. Compute P = (p1, p2, . . . , pl) by grouping the parallel
folds in F;
S2. Find all the interchangeable pairs of folds in each pi;
S3. Record all the different folding sequences obtained by
interchanging the pairs found in Step 2;
S4. For each sequence obtained in S3, output the sequence
as a valid whole simple folding sequence; then, find the per-
pendicular interchangeable folds in the sequence.
S5. Record all the different simple folding sequences by
interchanging the folds checked in S4 and identify their fea-
sibility. Some folds would form a lock (see Fig. 10 for a
lock). If there exists no such lock, output the sequence and
then reapply Steps 1 to 4.

6. Conclusion and Future Work

In this work, the decision problem of the validity of the
boundary overlapping orders in m × n maps in the simple
fold model has been solved. We showed how to recognize
the order of parallel and perpendicular folds, with the in-
terchangeable condition for consecutive folds as an equiva-
lence relation. The validity of the boundary overlapping or-
der is determined by the existence of a representative folding
via a reduction of the map. We then provide an extension
to enumerate other valid whole simple folding sequences.
The computational complexity of the enumeration and other
cases of partial orders are interesting open problems.
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Appendix A: An Instance of the Computation of
Crimps and End-Folds in a 1 × 10 Map

We use numbers 0 to 9 to label the squares of a 1 × 10 map
M from its left end to its right end. The input order O is
given as (9, 2, 3, 4, 1, 0, 5, 8, 7, 6). The objective is to
determine whether O is a valid overlapping order of M in
the simple fold model, and if it is, a feasible whole simple
folding sequence is also desired.

The process of computation is as follows: First, the MV
assignment of M is computed using the method introduced
in [8], as illustrated in Fig. A· 1(a). Then, by a traverse of the
map, all the pairs of neighbor squares are recorded. In this
instance, they are {2, 3}, {3, 4}, {1, 0}, {8, 7}, {7, 6}. Except
for the creases between every pair, all other creases are re-
moved from the map, which forms a new map as illustrated
in Fig. A· 1(b).

Next, by locally considering every single crease and
every pair of nearest creases, the candidates of crimps and
end-folds are the crimp forming (2, 3, 4), the crimp forming
(8, 7, 6), and the end-fold forming (1, 0). For the crimps,
referencing the equation provided in Sect. 4.1, the existence
of the adjacent relation (sx, s2xB−x−1, sx+2xC−2xB ) or its reverse
should be checked. For (2, 3, 4), x =2, xB =3 and xC =4,
satisfying the equation and thus the determination of the first
fold is made. The check for (8, 7, 6) proceeds in the same
way. Similarly, the existence of (sx, s2xG−x−1) or its reverse

Fig. A· 1 Computing the orders of folds an instance 1D map.

should be checked for the end-fold. For (1, 0), x=0 and
xG=1, the reverse (s2xG−x−1, sx) satisfies the equation and
indicates that this end-fold is firstly folded. The folded state
is shown in Fig. A· 1(b). These three folds are disordered.
After folding them, the map is reduced to a new map, as
illustrated in Fig. A· 1(c). For convenience, we use the labels
of the top layers to indicate the squares in the new map. O
is correspondingly updated to (9’, 2’, 0’, 5’, 8’). The MV
assignment is changed along with the change of the side that
these squares face up.

Two candidate end-folds in the new map are decided
as that corresponding to (2’, 0’) and that corresponding to
(5’, 8’). (2’, 0’) satisfies the equation and is thus folded first
in this step while (5’, 8’) does not satisfy the equation and
is checked in the new map after folding the end-fold of (2’,
0’). (5’, 8’) satisfies the equation in the new map and is then
folded. As per Sect. 5.2, using the graph structure in the
realization can reduce the check for every fold only once.

Following a similar process, we can finally determine
the validity of O and obtain the folding process as follows:
(the creases are indicated by neighbor squares) ({c1=(2, 3,
4), c2=(6, 7, 8), e1=(0, 1)}, e2=(1, 2), e3=(5, 6), e4={(4,
5), (8, 9)}). The folds in the same brace can be arbitrarily
ordered.

Appendix B: Algorithm Description

http://dx.doi.org/10.1007/978-3-319-48532-4_15
http://dx.doi.org/10.1007/978-3-319-48532-4_15
http://dx.doi.org/10.1007/978-3-319-48532-4_15
http://dx.doi.org/10.1007/978-3-319-48532-4_15
http://dx.doi.org/10.1017/cbo9780511735172
http://dx.doi.org/10.1017/cbo9780511735172
http://dx.doi.org/10.1016/j.comgeo.2004.03.012
http://dx.doi.org/10.1016/j.comgeo.2004.03.012
http://dx.doi.org/10.1016/j.comgeo.2004.03.012
http://dx.doi.org/10.2197/ipsjjip.25.580
http://dx.doi.org/10.2197/ipsjjip.25.580
http://dx.doi.org/10.1016/s0021-9800(68)80048-1
http://dx.doi.org/10.1016/s0021-9800(68)80048-1
http://dx.doi.org/10.1201/b10971-51
http://dx.doi.org/10.1201/b10971-51


1126
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.9 SEPTEMBER 2021

Input : A total order O on the set of boundary
squares//indicating 2m + 2n − 4 numbered squares

Output: A Boolean value // the validity of O in the simple fold
model

Begin
initialization
G ← A directed graph with 2m + 2n − 4 nodes // the folded

state of the map
F ← ∅ // the folds applied to the map in order
Compute the MV assignment on the boundary strips

according to O
if |F| = 0 then

Find the first horizontal and vertical folds (Sect. 4.1)
if no feasible folds can be found then

return false // O is invalid
end
while crimp exists do

Append the crimps to F, update G by assigning
zero to the edges incident to the new adjacent
pairs of nodes induced by these crimps

end
Find End-Folds(F, G)

end
while no parallel boundary strips totally overlap each

other according to G do
Find the crimps or end-folds involving no corner

squares in the current state of the map indicated by
G, append them to F, update G by assigning zero to
the edges incident to the new adjacent pairs

Find End-Folds(F, G)
end
while not all the edges in G are assigned zero do

Find out the folds involving no corner squares, append
them to F, update G

Find the next crimps or end-folds according to the
adjacent squares of the corner squares in the current
map

if no feasible folds can be found then
return false // O is invalid

else
Decide the unique order of folds, append them to

F, update G
end
return true

end
End
Function Find End-Folds(F, G):

Check the closure of the adjacent relation of corner squares
if Classes 1–3 exists then

Decide the first four consecutive end-folds. Assign
either of the corresponding feasible order to them
and append them to F, update G

else
if the first end-fold can be uniquely decided or is

arbitrarily decided by the interchangeability of
Classes 4 and 5 then

Append the first end-fold to F, update G and
check for crimps

if crimps exist in the current state then
Append the crimps to F, update G

else
Append the next end-folds to F, update G

end
else

return false // O is invalid
end

end
End Function

Algorithm 1: Algorithm of the decision problem of the
boundary overlapping order
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