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INVITED SURVEY PAPER
Radio Techniques Incorporating Sparse Modeling

Toshihiko NISHIMURA†a), Senior Member, Yasutaka OGAWA†, Takeo OHGANE†, Fellows,
and Junichiro HAGIWARA†, Member

SUMMARY Sparse modeling is one of the most active research areas in
engineering and science. The technique provides solutions from far fewer
samples exploiting sparsity, that is, the majority of the data are zero. This
paper reviews sparse modeling in radio techniques. The first half of this pa-
per introduces direction-of-arrival (DOA) estimation from signals received
by multiple antennas. The estimation is carried out using compressed sens-
ing, an effective tool for the sparse modeling, which produces solutions to
an underdetermined linear system with a sparse regularization term. The
DOA estimation performance is compared among three compressed sensing
algorithms. The second half reviews channel state information (CSI) acqui-
sitions in multiple-input multiple-output (MIMO) systems. In time-varying
environments, CSI estimated with pilot symbols may be outdated at the
actual transmission time. We describe CSI prediction based on sparse DOA
estimation, and show excellent precoding performance when using the CSI
prediction. The other topic in the second half is sparse Bayesian learning
(SBL)-based channel estimation. A base station (BS) has many antennas in
a massive MIMO system. A major obstacle for using the massive MIMO
system in frequency-division duplex mode is an overhead for downlink CSI
acquisition because we need to send many pilot symbols from the BS and to
get the feedback from user equipment. An SBL-based channel estimation
method can mitigate this issue. In this paper, we describe the outline of the
method, and show that the technique can reduce the downlink pilot symbols.
key words: sparse modeling, compressed sensing, sparse Bayesian learn-
ing, DOA estimation, channel estimation

1. Introduction

Radio techniques have developed rapidly for these decades.
Especially, mobile communication has evolved almost every
ten years. Many technologies supporting the fifth generation
(5G) have been extensively studied [1]–[6], and commer-
cial 5G services are being deployed in several countries.
More recently, the evolution beyond 5G or toward 6G is be-
ing discussed [7], [8]. Various signal processing techniques
enable advanced wireless communication. One of them is
a multiple-input multiple-output (MIMO) system, in which
both of the transmitter and the receiver have multiple anten-
nas [9], [10]. The MIMO technique, space-domain signal
processing, makes it possible to realize high-speed trans-
mission using space division multiplexing [11]. Other than
mobile communication, radio technologies have been widely
studied in several fields such as radars and wireless sensor
networks [12]–[16].
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On the other hand, sparse modeling has been collect-
ing considerable attention in several fields. The signal pro-
cessing technique is a framework which provides solutions
exploiting sparsity, that is, the majority of the data are equal
to zero. Several important concepts are discussed in [17].
Compressed sensing or compressive sensing is an effective
tool for the sparse modeling [18]–[30]. One of the biggest
successes of the method is magnetic resonance imaging
(MRI), which has been widely used for medical diagnosis
due to its high resolution and noninvasive merits [31], [32].
Another breathtaking result is black hole imaging achieved
by the Event Horizon Telescope Collaboration [33]–[39].

Compressed sensing plays a crucial role also in radio
techniques. We need channel state information (CSI) for
wireless communication. CSI is essential for detection at a
receiver, and is also required for MIMO precoding at a trans-
mitter. In radio engineering, information is transmitted by
radio waves. The waves are inevitably affected by propaga-
tion environments, that is, they are reflected, scattered, and
diffracted from the surrounding objects, and are received
as multipath signals. These multipath signals determine
channels. According to channel measurement campaigns
[40], [41], multipath components do not arrive uniformly
from all angles of arrival but as clusters. This propagation
property holds also in the delay domain, and we can assume
that wireless channels are sparse in spatial and temporal do-
mains. Thus, many researches have been done for channel
estimation with compressed sensing such as [42]–[50].

Another research area is high-resolution direction-of-
arrival (DOA) estimation of radio waves, which is of great
importance in such as radar, position estimation, radio as-
tronomy, and CSI estimation in MIMO systems. The re-
search dates back to the 1960s [51], and has been continued
until today [52]–[55]. In sparse radio environments, DOA
estimation based on compressed sensing has significant ben-
efits such as smaller number of snapshots required and has
ability to deal with coherent signals, therefore many refer-
ences have been published for example [56]–[61]. Further-
more, the DOA estimation technique that uses compressed
sensing and a generalized MUSIC criterion has been pro-
posed [62]. The method can reduce the number of antenna
elements.

Based on these research backgrounds, we review sparse
modeling in radio techniques. The first half of this paper in-
troduces DOA estimation using compressed sensing. After
taking a quick look at sparse modeling and formulating the
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problem as array signal processing, we will explain sparse
DOAestimation algorithms. The second half reviewsMIMO
CSI acquisition methods. In time-varying environments,
CSI estimated with pilot symbols may be outdated at the
actual transmission time. One of the solutions to this issue
is channel prediction based on sparse DOA estimation [63],
which can provide a long prediction range. We describe the
technique in detail. The other topic to be introduced in the
second half is sparse Bayesian learning (SBL)-based channel
estimation. A base station (BS) has many antennas in a mas-
siveMIMO system [64], [65]. Amajor obstacle for using the
massive MIMO system in frequency-division duplex (FDD)
mode is an overhead for downlink CSI acquisition, that is,
we need to send many pilot symbols from the BS and to
get the feedback from user equipment (UE) [66]–[68]. Dai
et al. [69] have proposed an SBL-based channel estimation
method to mitigate this issue, which will be discussed later.
Introduction of the above two channel acquisition methods
will be beneficial to readers who are interested in sparse
modeling in radio techniques.

The rest of the paper is organized as follows. In Sect. 2,
we briefly review sparse modeling and compressed sensing.
In Sect. 3, we explain the basics of array signal process-
ing and DOA estimation based on compressed sensing. In
Sect. 4, we introduce channel prediction using the DOA es-
timation in time-varying environments and downlink SBL-
based channel estimation in an FDDmassive MIMO system.
Conclusions follow in Sect. 5.

2. Brief Review of Sparse Modeling and Compressed
Sensing

This section briefly describes sparse modeling and com-
pressed sensing algorithms used for DOA estimation in
Sects. 3 and 4. For interested readers, refer to review pa-
pers or books such as [27], [28], [70], [71], [73] for further
details on this research area.

We consider the following simultaneous linear equa-
tions

y = Ax, (1)

where y and x are M-dimensional and N-dimensional
complex-valued vectors, respectively, and A is an M × N
complex-valued matrix. We want to solve the unknown vec-
tor x for given y and A. We assume M < N , that is, the
number of equations is less than that of unknowns. In this
case, (1) is called underdetermined systems, and its solution
is not unique. Infinitely many vectors x satisfy (1).

Here, we assume that x is sparse, that is, most of the
elements are zero. Due to the sparsity, it is natural to obtain
the solution x that has the least non-zero elements. We
define a vector 0-norm (`0-norm) as the number of non-zero
elements in x, and denote it as ‖x‖0. Then, the solution is
given by

min
x
‖x‖0 subject to y = Ax. (2)

Unfortunately, the 0-norm minimization is unrealistic be-
cause of the expected combinatorial explosion as the dimen-
sion of x increases.

We introduce a vector p-norm (`p-norm) defined by

‖x‖p = *
,

N∑
i=1
|xi |p+

-

1
p

(p > 0). (3)

We replace ‖x‖0 in (2) with ‖x‖p . Furthermore, using a
Lagrange multiplier α, we have the following unconstrained
minimization

arg min
x

(
1
2
‖Ax − y‖22 + α ‖x‖

p
p

)
, (4)

The above equation can also treat a case where y includes
noise as stated in later sections. When p ≥ 1, the objec-
tive function of (4) is a convex function of the variable x,
which allows us to efficiently find an approximate solution
by numerical computations. However, it is difficult to obtain
a sparse solution with 2-norm (`2-norm) minimization. By
using 1-norm (`1-norm) minimization, the sparse solution
can be obtained with realistic computational complexities,
and many methods have been presented so far [27]. As
will be mentioned later, some algorithm uses the value of
0 < p < 1.

One of the most typical algorithms for the 1-norm min-
imization is the fast iterative shrinkage thresholding algo-
rithm (FISTA) [74] which is an accelerated version of the
iterative shrinkage thresholding algorithm (ISTA), a kind of
proximity gradient method. The solution of ISTA is given
by the following iteration

x[k + 1] = S α
L

(
x[k] + L−1AH (

y − Ax[k]
))
, (5)

where H denotes Hermitian transpose and Sa (b) is a
shrinkage-thresholding function, also known as a soft thresh-
old function, defined by

Sa (b) =
{ (

|b |−a
|b |

)
b (a < |b|)

0 (otherwise)
. (6)

Note that the function is applied to each element of the vector.
Furthermore, L is a parameter satisfying

L ≥ ‖AHA‖. (7)

Here, ‖AHA‖ denotes the maximum eigenvalue of AHA,
which is the Lipschitz constant of the gradient of (1/2)‖Ax−
y‖22 . Note that when x, y, and A are real-valued, the Her-
mitian transpose in the above expressions is replaced with
transpose [27].

In FISTA, to accelerate the convergence, we slightly
change the iteration as follows

x[0] := AH y.
w[1] := x[0].
β := 1.
k := 1.
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loop
x[k] := Sα/L (w[k] + L−1AH (

y − Aw[k]
)
.

β[k + 1] := 1
2 +

√
1
4 + β[k]2.

w[k + 1] := x[k] + β[k]−1
β[k+1] (x[k] − x[k − 1]) .

k := k + 1.
end loop

It is seen that Aw[k] requires M N complex multipli-
cations. Since AH and (y − Aw[k]) are an N × M matrix
and an M-dimensional vector, respectively, thematrix-vector
multiplication AH (y − Aw[k]) needs N M complex multi-
plications. Thus, the computational complexity at each step
is O(M N ).

Now, we consider the half-quadratic regularization
(HQR) method [76]. In HQR, p < 1 is usually used in
(4). The algorithm is formulated deleting the constant 1/2
in (4) in [76]. In order to avoid problems due to non-
differentiability of the `p-norm around the origin when
p ≤ 1, the following smooth approximation is applied to
(3).

‖x‖p ≈ *
,

N∑
i=1

( |xi |2 + ε )p/2+
-

1/p

. (8)

Here, ε ≥ 0 is a small constant. HQR obtains the solution
by the iteration

x[k + 1] = H (x[k])−1AH y, (9)

where

H (x) = AHA + αΛ(x) (10)

Λ(x) = diag



p
2

( |xi |2 + ε )1− p
2



. (11)

In (11), diag{·} denotes a diagonal matrix whose ith diagonal
element is the expression inside the brackets.

It is seen that we can calculate AH y and AHA in ad-
vance before the iteration. Since H (x) is an N × N matrix,
we need complex multiplications in the order of N3 to carry
out the inversion H (x[k])−1 in (9). Furthermore, AH y is an
N-dimensional vector, and the matrix-vector multiplication
H (x[k])−1AH y requires N2 complex multiplications. Con-
sequently, we need O(N3) complex multiplications at each
step. The computational load is heavy because N usually
has a large value.

Finally, we introduce the Orthogonal Matching Pursuit
(OMP), which is one of the greedy algorithms [22], [23].
OMP is not based on (4) but obtains the support set of x
denoted by Ω. We express the K-dimensional vector whose
elements consist of x in Ω as xΩ, where K denotes the
number of non-zero elements in x. We also represent the
matrix deleting the columns except Ω from A as AΩ, which
is an M × K matrix. Using xΩ and AΩ, (1) is rewritten as

y = AΩxΩ. (12)

From the sparsity of x, K < M holds, and we can solve (12)
for xΩ. The solution is given as

xΩ =
(
AH
Ω AΩ

)−1
AH
Ω y. (13)

We iteratively obtain the support set Ω. Let Ω[k] and r[k]
denote the kth support set and residual y − AΩ[k]xΩ[k], re-
spectively. We start with Ω[0] = φ and xΩ[0] = 0, i.e.,
r[0] = y. Moreover, we express the jth column of A as a j .
At each iteration, we find a j most correlated with the resid-
ual, and include the column number into the support. Based
on this concept, we update the support set in the following
manner [27], [71].

Ω[0] := φ.
xΩ[0] := 0. i.e., r[0] = y − AxΩ[0] = y.
k := 0.
loop

J[k + 1] := arg maxj

|aH
j r [k] |
‖a j ‖2

.

Ω[k + 1] := Ω[k] ∪ {J[k + 1]}.
xΩ[k+1] :=

(
AH
Ω[k+1]AΩ[k+1]

)−1
AH
Ω[k+1]y.

r[k + 1] := y − AΩ[k+1]xΩ[k+1].
k := k + 1.

end loop

Since a j and r[k] are M-dimensional vectors, we need
M complex multiplications to calculate the scalar prod-
uct aHj r[k]. In the kth loop of the iteration, we need
M (N − k) complex multiplications to obtain a j that maxi-
mizes |aHj r[k]|/‖a j ‖2. Note that (k − 1) vectors have been
chosen up to the (k − 1)th loop, and we only need to search
for the vector a j among the remaining (N−k) ones. Further-
more, xΩ[k+1] and r[k + 1] require k (k M +M + k) +O(k3)
and k M complex multiplications for their updates, respec-
tively. In total, we need O(max(M N, k2M, k3)) complex
multiplications in the kth loop.

We have considered computational complexities at each
step of the algorithms. It would depend on an algorithm how
many steps we need for convergence. The authors advise
interested readers to try simulations.

3. DOA Estimation of Electromagnetic Waves

Estimating DOAs of radio waves from signals received by
multiple antennas is a typical example of array signal pro-
cessing. The handling of signals linearly observed by an
array antenna can be described by simultaneous linear equa-
tions. We usually need to treat an underdetermined linear
system with less observation data than the number of un-
knowns (original signals). However, when the original sig-
nal is sparse, the exact solution can be obtained by a concept
called compressed sensing. In this section, we introduce
DOA estimation with compressed sensing and compare the
performance of three algorithms.

3.1 Basics of DOA Estimation with Array Antenna

Figure 1 is a diagram of a DOA estimation system using an
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Fig. 1 DOA estimation with array antenna.

array antenna for a single source case. It is assumed that the
source is so far away that the radio wave is incident as a plane
wave on the array antenna, and the radio wave experiences
phase rotation between antenna elements according to the
path difference shown in Fig. 1. Therefore, the DOA of the
radio wave can be estimated by calculating the path differ-
ence between the elements from the phase difference. As can
be seen from Fig. 1, to calculate the DOA of a single wave,
the array antenna needs only two elements. If the positions
of the two antenna elements are known exactly, the DOA can
be readily calculated. However, the received signal contains
noise in addition to errors such as IQ imbalance due to the
fabrication process of the device. Although the latter can be
offset or mitigated by calibration, it is impossible to com-
pletely remove the effects of noise, and the estimated DOA
inevitably has an error. Furthermore, in general, we have
plural sources and multipaths. DOA estimation has been a
challenging issue for radio researchers, and has a long re-
search history [72]. In the next subsection, we introduce
compressed sensing-based DOA estimation.

3.2 Application of Compressed Sensing

As shown in Fig. 2, we assume that K narrowband signals
are incident on a uniform linear array (ULA) of M omni-
directional elements. Also, as seen from Fig. 2, we divide
the angular domain into N small regions, each of which is
called a “bin”. We define xn(t) as a signal arriving from the
direction of the nth bin at time t. If no signal arrives from
it, xn(t) = 0 holds. We express an N-dimensional column
vector consisting of xn(t) as x(t), which is called an orig-
inal signal vector. For example, when signals are incident
from the directions of the third and nth bins, the original sig-
nal vector is x(t) = [0, 0, x3(t), 0, . . . 0, xn(t), 0, . . . 0]T,
where [ ]Tdenotes transpose. We see that the DOAs of ar-
riving signals can be estimated from the support of x(t).

Next, we introduce an M × N matrix A whose the (m,
n)th element is given by

amn = e j 2π
λ dm sin θn, (14)

where λ, dm, and θn are the wavelength corresponding to

Fig. 2 DOA estimation model for compressed sensing.

the frequency of the arriving wave, the distance of the mth
antenna element from a reference point, and the angle of the
center of the nth bin, respectively. We refer to the center
of each bin as a grid point. Each column vector of A is
a steering vector for the angle θn. Note that A is called a
steering matrix, an observation matrix, or a sensing matrix.

We denote an M-dimensional column vector whose mth
element is a received signal at the mth antenna at time t as
y(t). The vector is given by

y(t) = Ax(t) + n(t), (15)

where n(t) is an M-dimensional noise vector. Note that
throughout this paper, we assume additive Gaussian noise
that is independent spatially and temporally.

In (15), y(t), x(t), and n(t) are continuous-time waves.
We assume that the DOAs of arriving signals do not change
during a limited time period. Sampling (15), we can estimate
x(t). Moreover, if the complex envelopes of x(t) do not
change temporally during the period, we can improve SNR
averaging plural snapshot measured data. We assume that
the number of arriving signals K is much less than that
of bins N , so x(t) is a sparse vector. Thus, the Eq. (15)
becomes an underdetermined system with a sparse solution.
The relationship among the number of arriving signals K
and the dimensions x(t) and y(t) is given by

K < M < N . (16)

From the above, it is seen that we can obtain x(t) using
compressed sensing stated in Sect. 2, and we can estimate
the DOAs of arrival signals.

3.3 Example of DOA Estimation Using Compressed Sens-
ing Algorithms

In this subsection, we show an example of DOA estima-
tion using FISTA, HQR, and OMP explained in Sect. 2.
The width of each bin shown in Fig. 2 is 1◦, and the
grid points are located at integer multiples of 1◦ such as
. . . ,−1◦, 0◦, 1◦, 2◦ . . . . Twouncorrelated narrow-bandwaves
with the same power impinge on a five-element ULA with
half-wavelength spacing. The DOAs are −10◦ and 30◦ that
coincide with grid points. We assumed that we knew in
advance the number of arrival signals 2. We applied each
algorithm with a certain convergence condition, and found
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Fig. 3 Comparison among three algorithms.

two largest elements in the estimated vector x(t). We con-
sidered them as the incident waves, and estimated the DOAs
from the supports of them.

Figure 3 shows the root mean square error (RMSE) of
the DOA estimation versus SNR. Here, RMSE is defined by

RMSE =

√√√
1
2I

2∑
k=1

I∑
i=1

���θ̂k,i − θk
���
2
, (17)

where I is the number of trials, which was 1000 in the
simulation. θ̂k,i and θk are the estimated incident angle and
the true one of the kth incident wave (k = 1, 2), respectively.
Here, SNR denotes the signal-to-noise power ratio of each
incident wave. From the figure, it can be seen that HQR
shows the best estimation result in almost the whole region
of the SNR. The reason for this may be due to the value
of 0 < p < 1. The effects of parameters including p to the
DOAestimation accuracy are discussed in [77]. RMSE in the
region of SNR larger than 20 dBwas 0. The estimated DOAs
coincided with grid points of −10◦ and 30◦, and we had
no estimation error in the 1000 trials. As stated previously,
however, HQRneeds an inversion of N×N matrix every step,
and the computational load is heavy. On the other hand, the
performance of FISTA was significantly poor at low SNR.
OMP had an error of about 1.5◦, regardless of the SNR. It
is interesting that although the computational complexity of
OMP is very low, the DOA estimation performance is much
better than that of FISTA at the low SNR region. The authors
advise readers to carefully consider algorithms before they
apply the compressed sensing to their issue.

4. MIMO CSI Acquisition Using Sparse Modeling

In this section, we introduce two examples of MIMO CSI
acquisition techniques based on DOA estimation. The first is
multi-user CSI prediction using compressed sensing in time-
varying environments. The second is SBL-based downlink
CSI estimation in an FDD massive MIMO system.

4.1 Multi-User MIMO CSI Prediction

Here, we review the basic concept of MIMO CSI predic-
tion using two-step compressed sensing [63]. In multi-user
MIMO downlink transmission, precoding is done at a BS to
prevent inter-user interference and to enhance transmission
rates. Downlink CSI is required at the BS for the precod-
ing, and is obtained using pilot symbols. In time-varying
environments, however, the MIMO channels change during
the time interval between channel estimation and actual sig-
nal transmission. This causes interference and deteriorates
communication quality. If we accurately predict channels
from past CSI, we can mitigate the problem. Many pre-
diction techniques have been presented so far [78]. Among
them, the sum-of-sinusoids (SOS) method predicts channels
by resolving an arrival signal to a UE into individual mul-
tipath components and summing the predicted ones. If the
Doppler frequency and complex amplitude of eachmultipath
component are estimated accurately, we can predict reliable
channels for a long prediction range. The SOSmethod stated
below is thus promising. Note that we assume a narrowband
system in which we can ignore the delay between multipath
components. The considerations below, however, also hold
for each subcarrier of OFDM in a broadband system.

A time-varying channel h(t) at a reference point of a
UE array from a certain BS antenna is given by

h(t) =
K∑
k=1

Ake j (2π fk t+φk ), (18)

whereK denotes the number ofmultipath components. Also,
Ak , φk , and fk denote the amplitude, phase, and Doppler
frequency for the kth multipath component, respectively.
From (18), if we obtain the complex amplitudes Ake jφk and
the Doppler frequencies fk at time t = 0 for the multipath
components, we can predict future channels for the UE by
summing the predicted multipath components.

We resolve the signal into multipath components by es-
timating the DOAs. Because the DOAs change relatively
slowly, we can assume that they are constant for the channel
prediction period. Moreover, we assume that UEs have a
uniform circular array (UCA) with M omnidirectional an-
tennas, and that the UEs move at a constant speed.

Here, we state the formulation for one UE. For the
other UEs, the formulation is the same. We divide the an-
gular domain surrounding the UE into N bins. We represent
the observation vector y(t), original signal vector x(t), and
thermal noise vector n(t) as

y(t) = [y1(t), y2, (t) . . . , yM (t)]T (19)
x(t) = [x1(t), x2(t), . . . , xN (t)]T (20)
n(t) = [n1(t), n2(t), . . . , nM (t)]T. (21)

Note that each element in x(t) is a complex amplitude of an
incident multipath component. Then, obtaining the original
signal vector x(t) corresponds toDOAestimation as stated in
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Sect. 3. The observation vector y(t) consists of the received
signal at each UE antenna, and is given by

y(t) = Ax(t) + n(t), (22)

where A is the M × N observation matrix.
We use a channel prediction method for a higher fre-

quency band such as 20 GHz, where we can consider that the
number of multipath components K is much fewer than N
[79]. Thus, the original signal vector x(t) is sparse, and we
can apply the compressed sensing technique to obtain x(t).
The HQR method is used for the DOA estimation. This is
the first-step compressed sensing.

In [63], the following procedures are used to estimate
more accurate DOAs, complex amplitudes, and Doppler fre-
quencies, and to predict future MIMO channels:

1. We apply Khatri-Rao processing [80] before the DOA
estimation. The processing improves the DOA estima-
tion accuracy because it works as if we had M2 antennas
at the UE. Khatri-Rao processing requires wide-sense
quasi-stationarity, which means that the second-order
statistics of the multipath components are time-varying,
but that they remain static over the channel prediction
period. This assumption holds because the channel
prediction can be done for a short period of time.

2. We have P sets of observation signals obtained at mul-
tiple times (t = t1, t2, . . . , tP). Khatri-Rao processing
works properly when the arrival signals are uncorre-
lated, but all the multipath components are coherent in
narrow band systems. Using the P sets of signals, we do
preprocessing to decrease the correlations between the
multipath components. Moreover, we need phases of
each multipath component at different times to obtain
Doppler frequency.

3. Using the estimated DOAs, we obtain the complex am-
plitudes and Doppler frequencies of the multipath com-
ponents with the second-step compressed sensing. The
two-step technique enables us to deal with the channel
changes due to themotion of the UE and/or surrounding
scatterers.

4. The above process is done for the channels between a
single BS antenna and all UE antennas. For the remain-
ing BS antennas, we calculate the complex amplitudes
of the multipath components using the least squares
method with less computational complexity.

Up to this point, we have estimated the Doppler frequencies
and complex amplitudes of the multipath components to the
UE antennas from all BS antennas. Using these values, we
can predict the MIMO channels at the actual transmission
time.

Here, we briefly show simulation results of the proposed
two-step predictionmethod. As shown in Fig. 4, we assumed
three UEs in the multipath environment. We used the Jakes
channel model, and there were nine scatterers around each

Fig. 4 Positions of BS and UEs in multipath environment. Reprinted
from [63] with permission (©2019 IEEE).

UE. The BS had a 24-element ULA with half-wavelength
spacing. The array was aligned along the y-axis. The UEs
had an eight-element UCA whose radius was a wavelength.
In Fig. 4, UE2 and UE3 are symmetrically located about the
y-axis, the array axis. In the Jakes channel model, multipath
components from the scatterers have equal amplitude but
different phases. Thus, the channels for UE2 and UE3 are
not symmetric about the y-axis, and the ULA can treat UE2
and UE3. The UEs moved at a constant speed of 1.5m/s.
The scatterers moved at a constant speed that was distributed
independently and uniformly in the range from 0 to 1.5m/s.
Also, the moving directions of the UEs and scatterers were
uniformly random from 0 to 2π. The channels were observed
every 5ms. We used a single snapshot at each observation
for DOA estimation using Khatri-Rao processing. Refer to
[63] for the other simulation parameters.

Figure 5 plots the average packet error rates (PERs) for
UE1 versus the normalized transmit (TX) power. The pre-
diction interval was 2.5ms, that is, we predicted the MIMO
channels at future time of 2.5ms from the last observation
time tP . Note that we added the performance of the proposed
channel prediction method for P = 5 on the assumption that
theDOAs of themultipath componentswere perfectly known
“Perfect DOA Estimation”. In this case, the complex am-
plitudes and Doppler frequencies were obtained with the
compressed sensing technique. The performance deterio-
rated when transmitting without channel prediction. The
improvement in the linear extrapolation was small, and the
performance of the autoregressive (AR)-model-based chan-
nel prediction method was worse than that of the case with-
out prediction. On the other hand, when using the proposed
channel prediction method, the PER performance greatly
improved. The deterioration for the proposed channel pre-
diction method (P = 5) was less than 3 dB from “Ideal
Case”, and 1 dB from “Perfect DOA Estimation” at the PER
of 10−2. Also, the larger P, the better the PER was obtained.
From these results, we can say that the channel prediction
method is effective in sparse channel environments.
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Fig. 5 Average packet error rate for UE1 versus normalized TX power.
Reprinted from [63] with permission (©2019 IEEE).

4.2 SBL-Based FDD Massive MIMO Downlink CSI Esti-
mation

As stated in the precedent subsection, DOA information is
effective for CSI estimation. Also, as we have described
so far, we discretize the angular domain into bins. The
center of each bin is called a grid point, which was defined
in Sect. 3.2. We have performance degradation in practical
situations where true DOAs are not on the grid point, and
a dense grid is preferable for accurate DOA estimation. On
the other hand, a dense grid leads to a high mutual coherence
[27] that violates the condition for the sparse signal recovery.
Against the backdrop of the problem, off-grid methods have
been studied in [81]–[84] where the estimated DOAs are no
longer constrained in the sampling grid set.

In this subsection, we introduce the basic concept of
SBL-based off-grid estimation proposed in [69]. This paper
addresses downlink CSI estimation in FDD massive MIMO
systems, where the base stations are equipped with many an-
tennas. The conventional training overhead for the downlink
channel acquisition grows proportionally with the number of
BS antennas, which can be quite large. The main points of
[69] are as follows.

We assume that the BS has an M-element ULA with
half-wavelength spacing, and that a UE has a single an-
tenna. The BS sends a sequence of T training pilot sym-
bols. We denote them by a T × M matrix X . Representing
the M-dimensional downlink channel vector as h, the T-
dimensional received signal vector v at the UE is given by

v = Xh + n, (23)

where n is theT-dimensional additive Gaussian noise vector.
We assume that the elements are independent, and havemean
0 and variance σ2. Since M is large and M > T , the
conventional channel estimation techniques do not work.

Here, we assume that K multipath components depart
from the BS array, and denote their azimuth directions-of-
departure (DODs) as {θ ′

k
, k = 1, 2, . . . , K }. Since we esti-

mate downlink channels and transmit training symbols from

the BS, we treat DODs instead of DOAs. However, the con-
cept is the same as the case where we consider DOAs. We
represent a fixed sampling grid that uniformly covers the
angular domain [−π/2, π/2] as θ = {θn, n = 1, 2, . . . , N }.
That is, we discretize the angular domain into N grid points.
Note that each angle θn is shown in Fig. 2. If all the K DODs
θk
′s are on the grid points, we have

h = Aw, (24)

where A is an M × N matrix defined as [a(θ1), a(θ2), . . . ,
a(θN )] and a(θn) is given by†

a(θn) =
[
1, e jπ sin θn, . . . , e jπ (N−1) sin θn

]T
. (25)

Also, w is an N-dimensional sparse vector whose non-zero
elements are the complex amplitudes of multipath com-
ponents corresponding to the true directions of {θk ′, k =
1, 2, . . . , K }.

Unfortunately, the above assumption that all the K
DODs θk ′s are on the grid points does not hold in gen-
eral. Then, we adopt an off-grid model. If θnk is the nearest
grid point to θk ′, we write θk ′ as

θk
′ = θnk + βnk , (26)

where βnk is the off-grid gap. From (25) and (26), we have
a(θk ′) = a(θnk + βnk ). Then, we can rewrite (24) as

h = A(β)w, (27)

where

β = [β1, β2, . . . , βN ]T , (28)
A(β) = [a(θ1 + β1), a(θ2 + β2), . . . , a(θN + βN )] (29)

and

βnk =

{
θk
′ − θnk , k = 1, 2, . . . , K

0, otherwise (30)

Substituting (27) into (23), we have

v = XA(β)w + n = Φ(β)w + n, (31)

where Φ(β) is given as

Φ(β) = XA(β). (32)

Although w is a sparse vector, we cannot apply compressed
sensing algorithms to (31). The reason for this is because
the observation matrix Φ(β) includes the unknowns β. To
jointly obtain w and β, we apply the SBL algorithm [85], [86]
to this problem as below.

It is seen that v is a T-dimensional complex Gaussian
random vector with a mean vector Φ(β)w and a covariance
matrix σ2I . Here, I denotes a T × T identity matrix. Then,
we have
†In [69], the sign of the phase is opposite to (25). This is due

to the difference of definition of the positive direction of angle θn.
Our definition is shown in Fig. 2.
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p(v |w, α, β) = CN
(
v |Φ(β)w, α−1I

)
, (33)

where α = σ−2 is the noise precision. Since α is unknown,
we regardα as a randomvariable. Given the observed signals
v, we estimate the random variables w, α, β that maximize
the posterior p(w, α, β |v). Note that this idea will be revised
later. Since w, α, β are independent, from Bayes’ theorem,
we have

p(w, α, β |v) ∝ p(v |w, α, β)p(α)p(β)p(w). (34)

Here, p(v |w, α, β) is the likelihood given by (33). Fur-
thermore, p(α), p(β), and p(w) are priors for α, β and
w, respectively. p(α) is expressed by a Gamma hyperprior
Γ(α; 1 + c, d) [69]†. We fix the hyperparameters c and d
to small non-negative values [85]. As for the off-grid gap,
we do not have prior information, and we do not know in
advance the nearest grid point for each multipath compo-
nent. Then, p(β) is given by an N-dimensional uniform
distribution [−π/2, π/2] as

p(β) = U
(
[−π/2, π/2]N

)
. (35)

Next, we consider the prior p(w). We assume that w given
the variance is an N-dimensional complex Gaussian vector
with mean 0. The elements are independent each other, and
we express the precision of the ith component, the inverse
of variance, as γi . Moreover, we define the N-dimensional
vector γ by

γ = [γ1, γ2, . . . , γN ]T . (36)

Then, we have

p(w |γ) = CN
(
w��0, diag(γ−1)

)
, (37)

where diag(γ−1) is an N × N diagonal matrix, and the ith
diagonal component is γ−1

i . As in the case of α, we express
p(γ) by independent Gamma hyperpriors, and we have

p(γ) =
N∏
i=1
Γ(γi; 1 + a, b). (38)

From (37) and (38), the prior p(w) is given as

p(w) =
∫ ∞

0
p(w |γ)p(γ)dγ

=

∫ ∞

0
CN

(
w��0, diag(γ−1)

)
p(γ)dγ

=

N∏
i=1

(b + |wi |
2/2)−(a+3/2) . (39)

Here, we omitted detailed derivations for brevity††. From
†The Gamma hyperprior is usually given by Γ(α; c, d) as in

[85]. However, for c > 0, we have Γ(0; 1 + c, d) = 0, which
means the probability density that α = 0 or σ2 = ∞ holds is
0. This matches physical phenomena, and we use the expression
p(α) = Γ(α; 1 + c, d) in this paper. This is the same also for (38).
††(39) is slightly different from (22) in [69]. It seems that the

authors of [69] regarded 2γi in the Gamma distribution as γi , which
does not cause any contradiction.

(39), we see the following:

i) The prior of wi follows the Student’s t-distribution.

ii) It has a sharp peak at zero with a small value of b, that
is, p(w) is a sparse prior.

iii) It has heavy tails, that is, the tails do not decay so
fast compared with an exponential distribution. This is
preferable because we do not know in advance which
value non-zero wi has.

It is seen from the above, we have obtained all the priors
and likelihood for (34). When we estimate the distribution
(34), the prior p(w) is implemented based on the hierarchical
specification via p(w |γ) and p(γ). Then, we extend the
random variables to be estimated to w,γ, α, β. The posterior
p(w,γ, α, β |v) is given by

p(w,γ, α, β |v)∝p(v |w,γ, α, β)p(w,γ, α, β)
=p(v |w, α, β)p(w |γ)p(γ)p(α)p(β) (40)

Note that since v is conditionally independent of γ when
w is given, we have p(v |w,γ, α, β) = p(v |w, α, β). We
can estimate w,γ, α, β using an algorithm such as a Markov
chain Monte Carlo or a variational Bayesian analysis [86].
However, in [69], the authors first estimate α, β,γ with the
in-exact block majorization-minimization algorithm. Using
the estimated β and γ, the channel h is obtained as follows:

From (37), we see that wn given the variance γn−1 is
a Gaussian random variable with mean 0. So, if γn has a
large value, wn is around 0 and we regard wn as 0. If γn
is not large, wn has a non-zero value. Thus, from γ we
can obtain the support of w denoted by Ω. We express the
K-dimensional vector whose components consist of w in Ω
as wΩ. Next, we represent the matrix deleting the columns
except Ω from Φ(β) as ΦΩ(β). Then, from (31), we have

v = ΦΩ(β)wΩ + n. (41)

Similarly, we represent the matrix deleting the columns ex-
cept Ω from A(β) as AΩ(β). We see from (27) that

h = AΩ(β)wΩ, (42)

holds.
If the estimation of α, β,γ is accurate,ΦΩ(β) is aT ×K

matrix. Since the channel is sparse, K is so small that we
have T > K . Thus, from (41), we can obtain

wΩ = ΦΩ(β)+v, (43)

where ΦΩ(β)+ denotes the Moore-Penrose generalized in-
verse matrix of ΦΩ(β). Substituting (43) into (42), the
downlink channel is estimated as

he = AΩ(β)ΦΩ(β)+v. (44)

Here, we show an example of the downlink channel
estimation performance. We define the normalized mean
square error (NMSE) as
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Fig. 6 NMSE of dowlink channel estimation versus the number of train-
ing pilot symbols. (a) SNR = 0 dB; (b) SNR = 10 dB. Reprinted from [69]
with permission (©2018 IEEE).

1
Mc

Mc∑
m=1

‖he
m − hm‖

2
2

‖hm‖
2
2

, (45)

where he
m is the estimated value of hm at the mth Monte

Carlo trial, and Mc is the number of trials. Figure 6 shows
NMSE versus number of training pilot symbols T for the
ULA with M = 150 antennas and for Mc = 200.

The graph legends are as follows:

Off-Grid Proposed method stated above
Uplink-Aided Improved version of the proposed method

using both of uplink and downlink signals

The others below ignore the off-grid gaps.

SBL h is estimated using the standard SBL [85]
DFT h is estimated using the `1-norm minimization [18],

[19] with a DFT basis
Overcomplete DFT h is estimated using the `1-norm min-

imization [18], [19] with the matrix A in (24)
Dictionary Learning h is estimated using the method pro-

posed in [87] with the matrix A defined in (24)

The number of grid points N is 200 for all except for the DFT
method. Refer to [69] for the other simulation parameters.

From Fig. 6, we see that as the number of training pilot
symbols increases, the channel estimation performance tends
to be better. The off-grid technique outperforms the methods
that ignore the off-grid gaps. Although the performance of
the off-grid technique is worse than that of the uplink-aided
one, the difference is very small when the number of the
training pilot symbols is 70 or more. Since the BS has 150
antennas, conventional channel estimation techniques such
as least squares need 150 or more pilot symbols. From this,
we can see that the SBL-based off-grid estimation technique
can reduce the training pilot symbols. However, the training

overhead is still large, and there is room for improvement.

5. Conclusions

We reviewed sparsemodeling in wireless techniques. Begin-
ningwith the basics of array signal processing, we introduced
DOA estimation algorithms based on compressed sensing.
After that, we considered two MIMO CSI acquisitions using
the DOA estimation. One is channel prediction in time-
varying environments. It was shown that the degradation
of MIMO transmission performance is small. The other is
downlink SBL-based channel estimation in an FDDmassive
MIMO system. The estimation technique can decrease the
number of training pilot symbols. Note that SBL can be
applied also to other radio research fields such as wireless
sensor networks [88], [89].

On the other hand, terahertz (THz)-band communica-
tion is envisioned as one of the key wireless technologies in
6G systems. Since the wavelength is extremely short, we
can integrate a very large number of antennas in very small
footprints to increase the communication distance, which
enables ultra-massive MIMO communications [90], [91].
In ultra-massive MIMO systems, CSI acquisition or beam
selection may be a challenging issue. Also, the Doppler fre-
quency becomes high in THz bands. Consequently, channels
rapidly change. The sparse modeling is envisaged to play an
important role in these situations.

At the end of this paper, we state a problem of a sparse
modeling technique in wireless engineering. According to
propagation measurements, there are a few clusters in envi-
ronments, but each cluster may scatter a number of subpaths
[92]. This phenomenon may violate the condition for the
sparse signal recovery. How we avoid the problem is a criti-
cal question in this research field.
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