
1296
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.11 NOVEMBER 2020

LETTER
Practical Card-Based Protocol for Three-Input Majority

Kenji YASUNAGA†a), Member

SUMMARY We present a card-based protocol for computing a three-
input majority using six cards. The protocol essentially consists of perform-
ing a simple XOR protocol two times. Compared to the existing protocols,
our protocol does not require private operations other than choosing cards.
key words: card-based protocol, majority function

1. Introduction

Card-based protocols provide securemultiparty computation
using cards. A five-card protocol for computing AND (log-
ical conjunction) was first proposed by den Boer [1]. The
protocol is simple and easy to understand, and thus is useful
for pedagogical purposes.

Mizuki and Sone [2] proposed a practical four-card pro-
tocol for the two-input XOR function. Although the protocol
itself is simple, theXOR functionmay not be impressive for a
general audience who are unfamiliar with computer science.
Thus, practical protocols for computing familiar functions
are beneficial.

In this work, we present a six-card protocol for the
three-input majority function. Since the majority decision
is widely used in our daily life, the protocol is appealing
to a general audience. Our protocol essentially consists of
sequential executions of the XOR protocol of [2] two times.

There exist several card-based protocols for the three-
input majority. Nishida et al. [4] proposed an eight-card
protocol using random bisection cuts. Nakai et al. [3]
present a four-card protocol by introducing private opera-
tions. Then, by further incorporating private operations,
Watanabe et al. [5] constructed a three-card protocol. Com-
pared to the existing protocols, our protocol does not require
private operations other than choosing cards. Note that op-
erations of privately choosing cards are necessary for all
card-based protocols to receive each player’s input, although
the initial input is not usually considered private operations.
See Sect. 3 for the detailed comparison. Since our protocol
does not require complicated private operations, people who
experienced den Boer’s AND protocol can play it smoothly.

Manuscript received March 6, 2020.
Manuscript revised April 14, 2020.
Manuscript publicized May 14, 2020.
†The author is with the Graduate School of Information Science

and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: yasunaga@ist.osaka-u.ac.jp
DOI: 10.1587/transfun.2020EAL2025

2. Two-Input XOR Protocol of [2]

We review the four-card protocol for computing the two-
input XOR function proposed by [2]. There are two types
of cards ♣ and ♥ with the same backs ? . Two inputs
a, b ∈ {0, 1} are represented using the two-card encoding

♣ ♥ = 0 and ♥ ♣ = 1.

1. Arrange two inputs a, b ∈ {0, 1} as

? ?

a

? ?

b

.

2. Swap the second and the third cards:

?
←−−−→
? ? ? .

3. Randomly swap the two left and two right cards:
[

? ? ��� ? ?
]
.

4. Swap the second and the third cards:

?
←−−−→
? ? ? .

5. Face the two leftmost cards. Then we have either

♣ ♥ ? ?

a⊕b

or ♥ ♣ ? ?

a⊕b

.

For the latter case, swap the third and the forth cards.
Then, we obtain a ⊕ b in the committed form.

We describe the correctness of this protocol. We de-
note by (A0, A1) and (B0, B1) the card representations of a
and b, respectively, where a, b ∈ {0, 1} and A0, A1, B0, B1 ∈{
♣ , ♥

}
. At Step 1, we have (A0, A1, B0, B1), which is re-

arranged to (A0, B0, A1, B1) by Step 2. After Step 3, we have
(Ar, Br, A1⊕r, B1⊕r ) for random r ∈ {0, 1}. By Step 4, it
will become (Ar, A1⊕r, Br, B1⊕r ). At this point, the left two
cards represent a ⊕ r , and the right two b⊕ r . Also, we have
the relation that a ⊕ b is b ⊕ r if a ⊕ r = 0, and is b ⊕ r
otherwise. Hence, the protocol correctly works.

For secrecy, the players obtain the information only
in Step 5, in which (Ar, A1⊕r ) are faced. They reveal no
information on input a or b as long as r ∈ {0, 1} is random.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers



LETTER
1297

3. Three-Input Majority Protocol

First, we provide another way of describing the correctness
of the XOR protocol in the previous section, which is a key
observation for constructing our protocol. For a ∈ {0, 1} and
B,C ∈

{
♣ , ♥

}
, define the function

choosea (B,C) =



B if a = 0
C if a = 1

.

Let (A0, A1, B0, B1) be the arrangement in Step 1 of the XOR
protocol, where A0, A1, B0, B1 ∈

{
♣ , ♥

}
, and the pairs

(A0, A1) and (B0, B1) represent a ∈ {0, 1} and b ∈ {0, 1},
respectively. We demonstrate that the protocol implicitly
implements the computation of choosea (B0, B1), where a ∈
{0, 1} is encoded with (A0, A1). Let (Ar, A1⊕r, Br, B1⊕r ) be
the arrangement after Step 4, where r ∈ {0, 1} is a random
bit. When Ar = ♣ , there are two cases, (a, r) = (0, 0) and
(a, r) = (1, 1). It is not difficult to see that in both cases
choosea (B0, B1) = Br . When Ar = ♥ , there are also two
cases, (a, r) = (0, 1) and (a, r) = (1, 0). In both cases,
choosea (B0, B1) = B1⊕r . Thus we have that

choosea (B0, B1) =



Br if Ar = ♣

B1⊕r if Ar = ♥
.

Namely, given the arrangement (Ar, A1⊕r, Br, B1⊕r ) after
Step 4, we can implement choosea (B0, B1) by choosing Br

if Ar = ♣ , and B1⊕r if Ar = ♥ . Since conditions Ar = ♣

and Ar = ♥ are equivalent to a ⊕ r = 0 and a ⊕ r = 1,
respectively, it holds that

choosea (B0, B1) =



B0 if a = 0
B1 if a = 1

. (1)

The actual output of the protocol is (Br, B1⊕r ) if Ar = ♣ ,
and is (B1⊕r, Br ) if Ar = ♥ . This means that the output is
b ⊕ r if a ⊕ r = 0, and is b ⊕ r ⊕ 1 if a ⊕ r = 1, implying
that the protocol outputs a ⊕ b.

Next, we describe our three-input majority protocol.
For a, b, c ∈ {0, 1}, the majority function is defined to be

majority(a, b, c) =



1 if a + b + c ≥ 2
0 otherwise

.

We have the useful fact that

majority(a, b, c) =



a if a ⊕ b = 0
c if a ⊕ b = 1

.

It follows from (1) that majority(a, b, c) can be im-
plemented by arranging (X0, X1, A,C) and performing
choosea⊕b (A,C), where (X0, X1) is the two-card encoding
of a ⊕ b, and A,C ∈

{
♣ , ♥

}
are the one-card encoding

♣ = 0 and ♥ = 1 for a and c, respectively.

Hence, we can implement the three-input majority by
performing the XOR protocol twice. The first one is for
computing the committed form of a ⊕ b, and the second one
is for implementing choosea⊕b (A,C). Before performing
the second XOR protocol, we need to privately choose cards
A and C for the one-card encoding of a and c.

We give a formal description.

1. Arrange two inputs a, b ∈ {0, 1} as

? ?

a

? ?

b

using the encoding of ♣ ♥ = 0 and ♥ ♣ = 1.
2. Swap the second and the third cards:

?
←−−−→
? ? ? .

3. Randomly swap the two left and the two right cards:
[

? ? ��� ? ?
]
.

4. Swap the second and the third cards:

?
←−−−→
? ? ? .

5. Face the two leftmost cards. If they are ♣ ♥ , leave
the two rightmost card, and if they are ♥ ♣ , do the
same after swapping the third and the fourth cards:

♣ ♥ ? ?

a⊕b

→ ? ?

a⊕b

,

♥ ♣
←−−−→
? ?

a⊕b

→ ♥ ♣ ? ?

a⊕b

→ ? ?

a⊕b

.

6. Arrange two inputs a, c ∈ {0, 1} as

? ?

a⊕b

?

a

?

c

using the one-card encoding of ♣ = 0 and ♥ = 1.
7. Swap the second and the third cards:

?
←−−−→
? ? ? .

8. Randomly swap the two left and the two right cards:
[

? ? ��� ? ?
]
.

9. Swap the second and the third cards:

?
←−−−→
? ? ? .

10. Face the leftmost card. If it is ♣ , the third card is the
one-card encoding of majority(a, b, c), and otherwise,
the fourth card is:

♣ ? ? ? or ♥ ? ? ? .

majority(a,b,c) majority(a,b,c)



1298
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.11 NOVEMBER 2020

Table 1 Three-input majority protocols.
References # Priv. Ops. # Cards Desk Space Private Operations

Nishida et al. [4] 0 8 6 cards –
Nakai et al. [3] 2 4 2 cards Choose and arrange cards

Watanabe et al. [5] 4 3 3 cards Choose, arrange, and swap cards
Protocol 1 1 6 4 cards Choose cards
Protocol 2 0 8 6 cards –

Correctness follows from the discussion above. Regard-
ing secrecy, we claim that each player learns no information
on the other players’ inputs by assuming that all the players
follow the protocol. In our protocol, the players obtain the
information on cards only in Steps 5 and 10, both of which
correspond to Step 5 of the XOR protocol. Thus, as long
as swapping cards randomly in Steps 3 and 8, each player
obtains no information on the other players’ inputs.

For efficient implementation, our protocol requires pri-
vate operations in Step 6. Namely, the two cards for a and c
should be prepared privately. Although the cards for c can
be prepared at the first step, we need those of a in Step 6
as well as Step 1. Note that the other steps except for the
first one can be done publicly. Thus, our protocol can be
performed with six cards, three ♣ ’s and three ♥ ’s.

We can avoid private operations by using the copy pro-
tocol for a. That is, after arranging the input cards, two
copies of a are generated, and each one is used in Step 1 and
Step 6. The copy protocol can be simply implemented by the
XOR protocol in which b is set to be 0 (cf. [2]). To generate
two copies, we prepare two duplicate cards for b = 0 and
perform the XOR protocol in which the duplicate cards for b
are treated as one card. Although this procedure needs four
additional cards, we can reuse two cards as input cards for
c after generating two copies of a. Thus, the resulting pro-
tocol needs eight cards in total. Interestingly, this majority
protocol consists of three XOR protocols.

We compare our protocols with existing work in Ta-
ble 1. In comparison, we do not consider the initial placing
of input cards as private operations. More specifically, each
player is allowed to place his input cards without duplication.
Note that in [5] the initial placing was counted as private op-
erations. The desk space is a necessary space for playing
the protocol, and we do not assume that all the input cards
are on the desk at the beginning of the protocol. Protocol
1 is our three-input majority protocol, and Protocol 2 is the
modified one in which the private action is replaced with the
copy protocol. Compared to the protocol of [4], Protocol 1
reduces the number of cards by adding simple private oper-
ations and requires only four-card desk space. The private

action in Protocol 1 is just choosing a card corresponding
to the input value. This private operation is quite limited
compared to other three-input majority protocols [3], [5].
Although Protocol 2 has the same parameters as that of [4]
in the table, our protocol has a modular structure. Namely,
it is easier to understand the meanings of each procedure.
Protocol 2 first generates two copies of a, then compute
a ⊕ b, and finally compute majority(a, b, c) by implement-
ing choosea⊕b (A,C), where each of the three procedures is
performed by the XOR protocol of [2].

Acknowledgments

This work was supported in part by JSPS Grant-in-Aid for
Scientific Research Numbers 16H01705 and 17H01695.

References

[1] B. den Boer, “More efficient match-making and satisfiability: The Five
Card Trick,” Advances in Cryptology - EUROCRYPT’89, Proceed-
ings, J. Quisquater and J. Vandewalle, eds., Workshop on the Theory
and Application of of Cryptographic Techniques, Lecture Notes in
Computer Science, vol.434, pp.208–217, Houthalen, Belgium, April
1989.

[2] T. Mizuki and H. Sone, “Six-card secure AND and four-card se-
cure XOR,” Frontiers in Algorithmics, Proceedings, X. Deng, J.E.
Hopcroft, and J. Xue, ed., Third International Workshop, FAW 2009,
Lecture Notes in Computer Science, vol.5598, pp.358–369, Hefei,
China, Springer, June 2009.

[3] T. Nakai, S. Shirouchi, M. Iwamoto, and K. Ohta, “Four cards are
sufficient for a card-based three-input voting protocol utilizing private
permutations,” Information Theoretic Security - 10th International
Conference, ICITS 2017, Proceedings, J. Shikata, ed., Lecture Notes
in Computer Science, vol.10681, pp.153–165, Hong Kong, China,
Springer, Nov.–Dec. 2017.

[4] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Securely computing
three-input functions with eight cards,” IEICE Trans. Fundamentals,
vol.E98-A, no.6, pp.1145–1152, June 2015.

[5] Y.Watanabe, Y. Kuroki, S. Suzuki, Y. Koga, M. Iwamoto, andK. Ohta,
“Card-based majority voting protocols with three inputs using three
cards,” International Symposium on Information Theory and Its Ap-
plications, ISITA 2018, pp.218–222, Singapore, IEEE, Oct. 2018.

http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/3-540-46885-4
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324
http://dx.doi.org/10.23919/isita.2018.8664324

