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Expectation Propagation Decoding for Sparse Superposition Codes

Hiroki MAYUMI†, Nonmember and Keigo TAKEUCHI†a), Member

SUMMARY Expectation propagation (EP) decoding is proposed for
sparse superposition coding in orthogonal frequency division multiplexing
(OFDM) systems. When a randomized discrete Fourier transform (DFT)
dictionary matrix is used, the EP decoding has the same complexity as
approximate message-passing (AMP) decoding, which is a low-complexity
and powerful decoding algorithm for the additive white Gaussian noise
(AWGN) channel. Numerical simulations show that the EP decoding
achieves comparable performance toAMPdecoding for theAWGNchannel.
For OFDM systems, on the other hand, the EP decoding is much superior
to the AMP decoding while the AMP decoding has an error-floor in high
signal-to-noise ratio regime.
key words: sparse superposition codes, orthogonal frequency division
multiplexing (OFDM), discrete Fourier transform (DFT) dictionary, ap-
proximate message-passing, expectation propagation

1. Introduction

Sparse superposition (SS) codes [1]–[3] are an error-
correcting code achieving the Shannon capacity of the ad-
ditive white Gaussian noise (AWGN) channel. A codeword
of an SS code is generated as the multiplication of a dense
dictionary matrix by a sparse information vector. Thus, the
codes are called SS codes.

Approximatemessage-passing (AMP) decoding [4], [5]
is a low-complexity and capacity-achieving algorithm for
SS codes with zero-mean independent and identically dis-
tributed (i.i.d.) dictionary matrices. Numerical simulations
in [4] showed that, when a randomized Hadamard dictionary
matrix is used instead, AMP achieves good performance
comparable to the case of zero-mean i.i.d. Gaussian matri-
ces. Hadamard dictionary matrices allow us to implement
low-complexity encoding and decoding of SS codes.

A limitation of AMP is that it fails to converge when the
dictionary matrix is ill-conditioned [6]. This convergence
issue is practically important since fading in wireless com-
munication systems [7] might convert the dictionary matrix
into an ill-conditioned effective dictionary matrix. The pur-
pose of this letter is to propose a novel decoding algorithm
that converges in fading channels.

As an important example of fading channels, we con-
sider orthogonal frequency division multiplexing (OFDM).
When SS coding is performed across OFDM subcarriers,
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the effective dictionary matrix is the product of the original
dictionarymatrix and a diagonalmatrix that consists of chan-
nel gains in frequency domain. Fading makes the diagonal
matrix ill-conditioned.

We extend expectation propagation (EP) [8] in com-
pressed sensing to the decoding issue of SS codes. EP
can be regarded as a Bayes-optimal version of orthogonal
AMP [9] or equivalently vector AMP [10], which was orig-
inally proposed in [11]. The main advantage of EP is the
Bayes-optimality for all unitarily invariant matrices [8], [10],
including ill-conditioned effective dictionary matrices. Nu-
merical simulations in this letter show that the proposed EP
decoder has good convergence properties for ill-conditioned
effective dictionary matrices, where AMP without damping
fails to converge.

2. System Model

2.1 OFDM

We consider OFDM transmission of block length Nb [7]. A
complex codeword of length N > Nb is sent over K = N/Nb
OFDM blocks. For simplicity, we assume that N is divisible
by Nb. The frequency-domain received vector yk ∈ CNb in
OFDM block k ∈ {0, . . . , K − 1} is given by

yk = Λk ck + wk, wk ∈ CN (0, N0INb ). (1)

In (1), ck ∈ CNb is part of a codeword c ∈ CN in
frequency domain, i.e. c = (cT

0, . . . , c
T
K−1)T. The vectors

{wk } are independent AWGN vectors with variance N0. The
nth diagonal element λk,n of the complex diagonal matrix
Λk = diag(λk,0, . . . , λk,Nb−1) represents the channel gain of
subcarrier n ∈ {0, . . . , Nb − 1} in OFDM block k. Assuming
the use of cyclic prefix longer than the delay spread of the
fading channels, we have

λk,n =

Nb−1∑
p=0

hk,pe−2πjpn/Nb, (2)

where hk,p ∈ C denotes the time-domain channel gain of the
pth resolvable path in OFDM block k.

2.2 SS Coding

We consider a complex SS code with length N , L sec-
tions, and section size M . The codeword c = Dβ ∈ CN
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is generated as the multiplication of a complex dictio-
nary matrix D ∈ CN×ML by an information vector β =
(βT[0], . . . , βT[L − 1])T. We assume the uniform power
allocation and write the average power as P > 0. Let em
denote the mth column of the M×M identity matrix. The in-
formation vector β[l] ∈ CM in section l is a 1-sparse vector√

PMem, in which the message m is sampled from the index
set {0, . . . , M − 1} uniformly and randomly. Since we have
M different codewords per section, the transmission rate per
complex channel use is defined as

R =
L
N

log2 M . (3)

We use a randomized discrete Fourier transform (DFT)
dictionary matrix D obtained by selecting N different rows
from the rows of an ML × ML DFT matrix uniformly and
randomly. The norm of each row is normalized to 1. Since
E[ββH] = PIML holds, this normalization implies the aver-
age power constraint

1
N
Eβ

[
‖c‖2

]
=

1
N

Tr
(
DE

[
ββH

]
DH

)
= P. (4)

The DFT dictionary matrix allows us to implement an
efficient SS encoder. When the fast Fourier transform is used,
the computational complexity in encoding isO(ML log ML)
since N is smaller than ML in general.

3. Expectation Propagation

Let y = (yT
0, . . . , y

T
K−1)T and w = (wT

0, . . . , w
T
K−1)T in (1).

To propose EP decoding, we rewrite the SS-coded OFDM
system (1) as

y = Aβ + w, A = ΛD, (5)

with Λ = diag(Λ0, . . . ,ΛK−1). The purpose of the decoder
is to estimate the information vector β from the knowledge
about the received vector y and the effective dictionary ma-
trix A.

As derived in Appendix, the proposed EP decoder con-
sists of twomodules—called modules A and B. Suppose that
the extrinsic mean βB→A,t ∈ C

ML and variance vB→A,t > 0
of the information vector β have been passed frommodule B
to module A. The module A uses the linear minimum-mean
square error (LMMSE) filter to compute the extrinsic mes-
sages βA→B,t ∈ C

ML and variance vA→B,t > 0.

βA→B,t = βB→A,t + γtA
HΞ−1

t (y − AβB→A,t ), (6)
vA→B,t = γt − vB→A,t, (7)

with

Ξt = N0IN + vB→A,tAA
H, (8)

γ−1
t =

1
ML

Tr
(
Ξ−1
t AAH

)−1
. (9)

In the initial iteration, βB→A,0 = 0 and vB→A,0 = P are used.

Remark 1: Module A requires the matrix inversion Ξ−1
t in

(6). While the singular-value decomposition (SVD) of A
allows us to circumvent this high-complexity matrix inver-
sion [10], the SVD itself needs high complexity in general.
Fortunately, this complexity issue does not occur in OFDM
systems because the SVD A = ΛD is given explicitly. �

Module B uses βA→B,t = (βT
A→B,t [0], . . . , βT

A→B,t [L −
1])T ∈ CML and vA→B,t to compute the posterior mean
βB,t+1 = (βT

B,t+1[0], . . . , βT
B,t+1[L − 1])T ∈ RML and vari-

ance v t+1
B > 0. Consider the virtual AWGN channel for

section l

βA→B,t [l] = β[l] + zt [l], zt [l] ∼ CN (0, vA→B,t IM ).
(10)

The posterior mean and variance are given by

βB,t+1[l] = E
[
β[l]|βA→B,t [l]

]
, (11)

vB,t+1 =
1

LM

L−1∑
l=0
E

[
‖β[l] − βB,t+1[l]‖2��� βA→B,t [l]

]
.

(12)

Since β[l] follows the uniform distribution on the discrete set
{
√

PMe0, . . . ,
√

PMeM−1}, we have the explicit formulas,

βB,t+1,m =

√
PMe2

√
PM<[βA→B, t,m]/vA→B, t∑M−1

m′=0 e2
√
PM<[βA→B, t,m′ ]/vA→B, t

, (13)

vB,t+1 = P −
1

LM

L−1∑
l=0
‖βB,t+1[l]‖2. (14)

In (13) and (14), βA→B,t,m and βB,t+1,m denote the mth ele-
ments of βA→B,t and βB,t+1, respectively. The notation<[z]
means the real part of a complex number z ∈ C.

Estimation of the information vector β[l] is based on
the hard decision of βB,t+1[l]. To improve the decoding per-
formance, module B feeds the extrinsic messages βB→A,t+1
and vB→A,t+1 back to module A,

βB→A,t+1 = vB→A,t+1

(
βB,t+1

vB,t+1
−
βA→B,t

vA→B,t

)
, (15)

1
vB→A,t+1

=
1

vB,t+1
−

1
vA→B,t

. (16)

The EP decoder may have a bad convergence prop-
erty for finite-sized systems. To improve the convergence
property, we replace the messages βB→A,t+1 and vB→A,t+1
with the damped messages θβB→A,t+1 + (1 − θ)βB→A,t and
θvB→A,t+1 + (1 − θ)vB→A,t for damping factor θ ∈ [0, 1],
respectively.

The proposedEPdecodingwithT iterations is presented
in Algorithm 1. The computational complexity of the EP de-
coding is dominated by the updates in module A. For a DFT
dictionary matrix, they can be computed in O(ML log ML)
time. Thus, the proposed EP decoding has the same com-
plexity per iteration as AMP decoding [4], [5].
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Algorithm 1 EP Decoding
Require: Received vector y and the effective dictionary matrix A.
1: Let βB→A,0 = 0 and vB→A,0 = P.
2: for t = 0, . . . , T − 1 do
3: Compute γt given in (9).
4: Compute βA→B, t and vA→B, t given in (6) and (7).
5: Compute βB, t+1 and vB, t+1 given in (13) and (14).
6: Compute βB→A, t+1 and vB→A, t+1 given in (15) and (16).
7: Update βB→A, t+1 ← θβB→A, t+1 + (1 − θ)βB→A, t .
8: Update vB→A, t+1 ← θvB→A, t+1 + (1 − θ)vB→A, t .
9: end for
10: Output hard decision of βB, t+1.

4. Numerical Simulation

The EP decoding is compared to conventional AMP decod-
ing [4], [5] in terms of section error rate (SER).We simulated
dampedAMPdecodingwith two damping factors θA ∈ [0, 1]
and θB ∈ [0, 1] shown in Algorithm 2. The average power
Eb per information bit is defined as Eb = P/R, with the rate
R given in (3).

We first compare the EP decoding with the AMP de-
coding for artificial fading channels. Let λn = [Λ]n,n denote
the nth diagonal element of Λ in (5). For condition num-
ber κ = λ0/λN−1 ∈ [1,∞), we assume λn = dλn−1 for
d = κ−(N−1)−1 and N−1 ∑N−1

n=0 λ2
0 = 1. In particular, κ = 1

implies the AWGN channel λn = 1.
Figure 1 shows the SERs of the EP and AMP decoding

for the artificial fading channels. The two algorithms are
comparable to each other for the AWGN channel κ = 1. The
AMP decoding has poor performance when the condition
number is larger than 2. On the other hand, the EP decoding
has comparable SER to the AWGN channel κ = 1 when κ is
below 3. These results imply that the EP decoding is robust
against ill-conditioned fading channels.

Algorithm 2 AMP Decoding
Require: Received vector y and the effective dictionary matrix A.
1: Let βB,0 = 0, vB,0 = P, βA,−1 = 0, vA,−1 = P, and z−1 = 0.
2: for t = 0, . . . , T − 1 do
3: Compute z t = y − AβB, t + vB, t z t−1/vA, t−1.
4: Compute βA, t = NβB, t/(ML) + AHz t .
5: Compute vA, t = N0 + vB, t .
6: Update βA, t ← θAβA, t + (1 − θA)βA, t−1.
7: Update vA, t ← θAvA, t + (1 − θA)vA, t−1.
8: Compute βB, t+1 and vB, t+1 given in (13) and (14).
9: Update βB, t+1 ← θBβB, t+1 + (1 − θB)βB, t .
10: Update vB, t+1 ← θBvB, t+1 + (1 − θB)vB, t .
11: end for
12: Output hard decision of βB, t+1.

We next compare the EP decoding with the AMP de-
coding in OFDM systems. We assume independent Rayleigh
fading hk,p ∼ CN (0, σ2

p) in (2) with the exponential power
decay σ2

p = Ce−0.1p , in which C is the normalization con-
stant to impose

∑Nb−1
p=0 σ2

p = 1. The average condition num-
ber of this fading channel is very large, e.g. approximately

Fig. 1 SER versus the condition number κ for the artificial fading chan-
nels. L = 256, M = 16, N = 512, Eb/N0 = 4 dB, 20 iterations, θ = 0.9
in the EP decoding, θA = 1 and θB = 0.9 in the AMP decoding.

Fig. 2 SER versus Eb/N0 for L = 256, M = 16, and N = 512. For
OFDM systems with block length Nb = 64, 50 iterations, θ = 0.8 in the
EP decoding, and θA = θB = 0.5 in the AMP decoding were used. For the
AWGN channel, 20 iterations, θ = 0.9, θA = 1, and θB = 0.9 were used.

100 for N = 512 and Nb = 64.
Figure 2 shows the SERs of the EP and AMP decoding

for both OFDM and AWGN channels. For the AWGN chan-
nel, the EP decoding is comparable to the AMP decoding
for all signal-to-noise ratios (SNRs). For OFDM systems,
the EP decoding is much superior to the AMP decoding
while the AMP decoding has an error-floor in the high SNR
regime. The poor performance of the AMP decoding is due
to ill-conditioned effective dictionary matrices. The EP de-
coding has a good convergence property even for such an
ill-conditioned case.
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Appendix: Derivation of EP Decoding

We follow [8] to derive the EP decoding. The purpose
of EP is to compute the marginal posterior distribution
p(β[l]|y, A) approximately. The marginal posterior distri-
bution is approximated via a tractable distribution

qA(β) ∝ p(y |A, β)
L−1∏
l=0

qB→A(β[l]), (A· 1)

with

qB→A(β[l]) ∝ exp
(
−
‖β[l] − βB→A[l]‖2

vB→A

)
, (A· 2)

where f (x) ∝ g(x) means that there is an x-independent
constant C > 0 such that f (x) = Cg(x) holds. Let
βB→A = (βB→A[0]T, . . . , βB→A[L − 1]T)T and βA =

(βA[0]T, . . . , βA[L − 1]T)T. Following [8], we can evalu-
ate the marginalization of (A· 1) over {β[l ′] : l ′ , l} as

qA(β[l]) ∝ exp
(
−
‖β[l] − βA[l]‖2

vA

)
, (A· 3)

with

βA = βB→A + vB→AA
HΞ−1(y − AβB→A), (A· 4)

vA = vB→A − γ
−1(vB→A)v2

B→A, (A· 5)
Ξ = N0IN + vB→AAA

H, (A· 6)

γ−1(v ) =
1

LM
Tr

(
Ξ−1AAH

)
. (A· 7)

The main difference between conventional [8] and pro-
posed EP is in the update rule of qB→A. We define the
extrinsic distribution of β[l] as

qA→B(β[l]) ∝
qA(β[l])

qB→A(β[l])
. (A· 8)

We write the mean and variance of β[l] with respect to
qA→B(β[l])p(β[l]) as

βB[l] =
∑
β[l] β[l]qA→B(β[l])p(β[l])∑
β[l] qA→B(β[l])p(β[l])

, (A· 9)

vB[l] =
1
M

∑
β[l] ‖β[l]‖2qA→B(β[l])p(β[l])∑

β[l] qA→B(β[l])p(β[l])

−
1
M
‖βB[l]‖2. (A· 10)

Let qnew
B→A(β[l]) denote an updated message of qB→A(β[l])

given by

qnew
B→A(β[l]) ∝ exp *

,
−
‖β[l] − βnew

B→A[l]‖2

vnew
B→A

+
-
. (A· 11)

Then, the message qB→A(β[l]) is updated so as to satisfy the
moment matching conditions

βB[l] =
∑
β[l] β[l]qA→B(β[l])qnew

B→A(β[l])∑
β[l] qA→B(β[l])qnew

B→A(β[l])
, (A· 12)

M
L−1∑
l=0

vB[l]=
L−1∑
l=0

∑
β[l] ‖β[l]‖2qA→B(β[l])qnew

B→A(β[l])∑
β[l] qA→B(β[l])qnew

B→A(β[l])

−

L−1∑
l=0
‖βB[l]‖2. (A· 13)

The remaining derivation is similar to in [8], so that
we omit it. The extrinsic distribution qA→B in conventional
EP [8] was defined element-wisely since i.i.d. signals were
assumed. On the other hand, (A· 8) has been defined for
each section because β[l] has dependent elements. Here is
the main difference in the derivations of conventional and
proposed EP algorithms.
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