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PAPER
Compressed Sensing Framework Applying Independent
Component Analysis after Undersampling for Reconstructing
Electroencephalogram Signals∗

Daisuke KANEMOTO†a), Member, Shun KATSUMATA††, Masao AIHARA†††, Nonmembers,
and Makoto OHKI††††, Member

SUMMARY This paper proposes a novel compressed sensing (CS)
framework for reconstructing electroencephalogram (EEG) signals. A fea-
ture of this framework is the application of independent component analysis
(ICA) to remove the interference from artifacts after undersampling in a
data processing unit. Therefore, we can remove the ICA processing block
from the sensing unit. In this framework, we used a random undersampling
measurement matrix to suppress the Gaussian. The developed framework,
in which the discrete cosine transform basis and orthogonal matching pur-
suit were used, was evaluated using raw EEG signals with a pseudo-model
of an eye-blink artifact. The normalized mean square error (NMSE) and
correlation coefficient (CC), obtained as the average of 2,000 results, were
compared to quantitatively demonstrate the effectiveness of the proposed
framework. The evaluation results of the NMSE and CC showed that the
proposed framework could remove the interference from the artifacts under
a high compression ratio.
key words: EEG, compressed sensing, independent component analysis,
random undersampling, artifact

1. Introduction

Electroencephalogram (EEG) signals are important bio-
metric signals used to reveal signs of brain inflammation,
epilepsy [1], sleep disorders, and Alzheimer’s disease [2].
Long-term wireless telemonitoring of EEG signals is re-
quired for accurately tracing brain activity. In general EEG
wireless monitoring systems, sensors in the sensing unit are
placed on the scalp, and EEG signals are transmitted wire-
lessly to a data processing unit, such as a workstation or a
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PC, for analysis. The data exchange in wireless commu-
nication requires large power consumption. Therefore, the
energy efficiency of the sensing unit is important because its
battery life is limited. Thus, a low-power sensing technique
is required.

The compressed sensing (CS) theory, which is an at-
tractive method for signal acquisition and compression [3],
can enable the realization of a low-power sensing technique.
This theory suggests that signals can be recovered from fewer
measurements than required in the conventional Nyquist
sampling technique, if the signal is sparse in some transform
domains. However, if interferences from artifacts (from eye
blinking, muscle activity, etc.) occur during EEG monitor-
ing, the compressed signals become less sparse. Particularly,
impulse noise strongly affects the quality of signal recovery
[4].

On the other hand, independent component analysis
(ICA) [5] has proved to be an effective algorithm for re-
moving artifacts [6]–[8]. In some other studies, ICA was
also performed to effectively separate only the desired infor-
mation from the measured EEG signals before compressing
the signals in a sensing unit [9]–[11]. Thus, performing
ICA to improve sparsity before applying compression can
be also considered. However, to perform ICA before un-
dersampling, a micro-processing unit (MPU) that performs
calculations must be installed in the sensing unit. This how-
ever this results in an increase in the power dissipation of
the sensing unit owing to the additional implementation of
the MPU. Therefore, it is not efficient to use ICA process-
ing before undersampling for removing artifacts. Hence,
we developed a new framework to remove artifacts from the
compressed signals outside the sensing unit. The proposed
framework does not require additional MPUs in the sensing
unit to perform ICA.

This paper is organized as follows. Section 2 briefly de-
scribes the CS theory and ICA. Section 3 presents the details
of the new framework. Section 4 presents the calculation
results obtained with this proposed framework. In Sect. 5,
we discuss the difference in reconstruction accuracy between
two frameworks: ICA after compression (proposed frame-
work) and ICA before compression. Section 6 presents the
conclusions of the study. This paper is based on international
conference proceedings [12].

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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2. CS Theory and ICA for EEG Signals

2.1 CS Theory for EEG Signals

The CS theory is utilized to solve the problem of obtaining
a signal vector x ∈ RN of size N , which is k -sparse in some
basis matrix Ψ ∈ RN×P . k-sparse means that only k (<< P)
elements of the coefficient vector s ∈ RP , used to show that
x =Ψ s, are nonzero. Using CS, we can obtain a compressed
signal y =Φ x, whereΦ is the M × N measurement matrix.
The compressed signal vector y ∈ RM can be written as

y = Φx = ΦΨs = Θs. (1)

Here, y is a known vector, and Φ and Ψ are known
matrices. Θ = Φ Ψ is called the sensing matrix. The rela-
tionship between y and s is shown in Fig. 1 using an example
with M=5, P=20. The color depth indicates the numeric size
of each element. White elements indicate zeros. The vector
s is sparse and there are many zero elements. The length of
y is much smaller than the length of s. Therefore, we can
understand from Fig. 1 that Eq. (1) is underdetermined. The
most original approach for solving this problem is to find
the sparsest vector. A solution is given by the following l0
minimization problem:

min| |s| |0 subject to y = Θs. (2)

It is well known that the l0 minimization problem is NP-
hard [13], and it cannot be used for practical applications.
Therefore, other reconstruction algorithms (e.g. basis pursuit
(BP) [14], orthogonal matching pursuit (OMP) [15], and
block sparse Bayesian learning (BSBL) [16]) arewidely used
for solving CS problems. In general, there is a trade-off
between the reconstruction time and accuracy. For example,
it was reported that BP is better than OMP in terms of the
reconstruction accuracy. However, the reconstruction time of
BP tends to be longer owing to calculation complexities [17].
It was reported that BSBL is a powerful reconstruction tool
for compressed EEG signals [16]. However, reconstruction
using BSBL is more time consuming than that using OMP.

Determining the basis for EEG signal is also important
to realize the sparsest vector. In some studies, discrete cosine
transform (DCT) basis [16], Gabor basis [18], and wavelet

Fig. 1 Relationship between y and s.

basis [19]were used asΨ in the reconstruction of compressed
EEG signals. However, EEG signals are typically affected
by artifacts. Therefore, it can become difficult to reconstruct
the compressed signals clearly, because the measurement
signals become less sparse in the above bases. Especially,
it was reported that impulse noise affects the reconstruction
of compressed data [4]. Thus, a new technique to recover
signals from noisy measurements in CS system applications
is desired.

The measurement matrix must be designed considering
the hardware components and compatibility with the chosen
basis. It is well known that a Gaussian matrix can be used
as a classical measurement matrixΦ (e.g., [9]). As an alter-
native, the random sampling matrix, which is realized using
a low-rate random undersampling analog-to-digital (A/D)
converter, was developed [20].

The design of a data acquisition system in which CS
is applied, requires specific consideration of the reconstruc-
tion algorithm, basis, and measurement matrix that should
be selected. For example, reconstruction algorithms have a
trade-off relationship between the reconstruction time and re-
construction accuracy. We also have to find a suitable sensing
matrix, which can transform to the sparsest vector. There-
fore, selecting the appropriate reconstruction algorithm, ba-
sis, and measurement matrix depends on the application and
type of the target signal. In this study, taking EEG mea-
surement application as an example, we used OMP as the
reconstruction algorithm and DCT as the basis to evaluate
our proposed framework. The measurement matrix will be
discussed later in this paper.

2.2 ICA for EEG Signals

From the ICA model, the measured L-channel EEG sig-
nals D=[d1(t),· · · ,dL−1(t),dL (t)]T may be considered as
a linear combination of L unknown underlying sources E
=[e1(t),· · · ,eL−1(t),eL (t)]T, with

D = HE, (3)
where

H =



h11 · · · h1L
...

. . .
...

h(L−1)1 · · · h(L−1)L
hL1 · · · hLL



, (4)

Fig. 2 Linear mixture model.
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Fig. 3 EEG measurement frameworks. (a) ICA before compression (b) ICA after compression (pro-
posed framework) ©2018 IEEE.

is the unknown mixing matrix (Fig. 2). The goal of ICA is to
estimate E from the given D. We can calculate the estimated
sources by obtaining the unmixing matrix Ŵ, where Ŵ =

H−1. In some EEG studies, ICA is used to remove artifacts
[6]–[8]. However, in general, ICA relies on the assumption
thatE is not Gaussian because Ŵ becomes unidentifiable [5].
Thus, it is difficult to separate the data, which are compressed
using a Gaussian measurement matrix.

3. Proposed Framework

Figure 3 shows the existing framework (ICA before com-
pression) and our proposed EEG measurement framework
(ICA after compression) [12]. These frameworks are pri-
marily composed of two parts: ICA processing part and CS
part. Figure 3(a) shows the existing framework in which
the desired information can be separated from the measured
signals effectively before compression to reduce the amount
of data [9]–[11]. However, a power consumption problem
occurs if we add digital processing in the sensing unit such as
that in ICA. Therefore, we developed a fundamentally new
framework to solve this problem (Fig. 3(b)). In this frame-
work, additional power-consuming processing components
are not required in the sensing unit, owing to the application
of ICA in the data processing unit. The details of both units
in our proposed framework are given below.

3.1 Sensing Unit in Our Proposed Framework

Figure 4 shows the details of the sensing unit used in L-
channel EEG measurements. In actual EEG measurements,
artifacts are present in the measured signals. Here, xCh-i
and aCh-i indicate the measured pure EEG signals and arti-
facts in i-th channel, respectively. The length of each signal
is presented as N. Initially, these signals are appropriately
processed in an analog circuit block. Subsequently, L ran-
dom sampling A/D converters perform undersampling of the
signals, xCh-i + aCh-i, to achieve M data from N data. The

Fig. 4 Sensing unit in our framework. ©2018 IEEE.

measurement matrix is presented at the top of Fig. 4. The
random sampling technique introduced in [20] is used to
compress the measured EEG signal in the sensing unit; this
is to avoid the problem in which ICA is difficult to apply
for separating signals following a Gaussian distribution [5].
In actual A/D converters, the input signals are quantized.
Thus, we have to determine the appropriate resolution for
A/D converters. However, in this study, resolution was not
considered, and we used the A/D converters as samplers to
explain the principle of our proposed framework. In each
row of the M × N measurement matrix in the A/D converter,
only one element is “1” and the others are all “0.” The
compressed signals, ẋCh-i + ȧCh-i, are transferred to the data
processing unit through a wireless transmitter.
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Fig. 5 Data processing unit in our framework. ©2018 IEEE.

3.2 Data Processing Unit in Our Proposed Framework

Figure 5 shows the block diagram of the data processing unit.
The compressed data, ẋCh-i + ȧCh-i, are received through a
wireless receiver. Subsequently, ICA is performed in the
ICA block to generate L components from c1 to cL, and
the unmixing matrix Ŵ. Next, the component representing
an artifact is revealed in the artifact component detection
block. We assumed that the i-th component indicated the
artifact. Next, all data of the i-th component are reduced to
0 in the artifact component elimination block. Finally, the
estimated EEG signal of each channel from x̂Ch-1 to x̂Ch-L
can be achieved using the compressed signals from ̂̇xCh-1 to
̂̇xCh-L in the CS reconstruction block.

4. Evaluation

We evaluated our framework using the measured EEG sig-
nals. The measured raw EEG signals, which were recorded
at 200Hz in 16 channels (L=16) at a hospital, were used as
the input EEG signals for the measurement frameworks. The
time corresponding to one epochwas 3 s. The evaluationwas
performed using MATLAB software. The model encom-
passed the EEG signal acquisition in the sensing unit to data
reconstruction in the data processing unit. To focus on the
verification of our framework operation, the analog circuit
adopted an ideal model in all verification results. Eye-blink
artifacts are the most common artifacts that easily interfere
with EEGmeasurements. Therefore, we generated a pseudo-
model of eye-blink artifacts to evaluate the extent to which
these artifacts were eliminated in our proposed framework.

Several shapes of eye-blink artifact in EEG signals have
been reported and the shapes differ by subject [21]. There-
fore, we used a simple model of an impulse and triangular
shaped eye-blink artifact (e.g. [22]) in this paper. It has also
been reported that the period and magnitude of an eye-blink
artifact depend on the subject. For example, it was reported
that the distortion of the EEG caused by an eye-blink lasts
longer than 100ms [21]. The range is approximately between
50 µV and 250 µV of the magnitude, as shown in [22]. In
some papers, the received magnitude of the eye-blink arti-
facts near the eye electrodes is larger than that at the other

Fig. 6 EEG signals (Original with artifact, only CS, and proposed frame-
work). As an example, k = 20 was used. ©2018 IEEE.

parts. Further, it is well known that eye-blink artifacts de-
crease rapidly with an increase in distance from the eyes (e.g.
[23]).

Based on the above information and our EEG measure-
ment experience, a pseudo-model of the eye-blink artifact
was created and used for evaluation. The maximum volt-
age of the pseudo-model of the eye-blink artifact was set as
150 µV in the electrodes FP1 and FP2. The peaks of the
artifacts in F3, F4, F7, and F8 correspond to 75 µV. In the
other electrodes (C3, C4, P3, P4, T3, T4, T5, T6, O1, and
O2), artifacts with a voltage of 15 µVwere added to the mea-
sured EEG signals. In this evaluation, we used the principal
component analysis (PCA)–ICA algorithm [24] in the ICA
block. OMP was used in the reconstruction block, in which
the sparse parameter k was set at 20 as an example. The
DCT basis was used as Ψ.

Figure 6 shows the examples of the original signal with
the pseudo-model of the eye-blink artifacts and the recon-
structed signal by using the proposed framework at FP1.
Figure 6 also shows the results obtained using only CS. The
compression ratio (CR = N/M) is 4 during the evaluation
using only CS and the proposed framework. A pseudo-
model artifact was inserted from 0.5 s to 0.65 s in the original
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Fig. 7 EEG signals (zoomed-in view of Fig. 6) ©2018 IEEE.

Fig. 8 NMSE with various k values at FP1 and F3.

data. Using our framework, the artifact could be removed
effectively when compared with that using only CS. Fig-
ure 7 shows the zoomed-in view of Fig. 6 from 1.0 s to 1.8 s.
These results indicate successful reconstruction of the EEG
waveform using our proposed framework.

To evaluate the performance of the proposed frame-
work, we used two different performance indices. One is the
normalized mean square error (NMSE) that normalizes the
average of the square of the difference between the estimated
and original values. It was calculated as follows:

NMSE =
‖x − x̂‖22
‖x‖22

, (5)

where x is the original EEG signal and x̂ is the reconstructed
EEG signal. ‖ · ‖2 denotes the Euclidean norm. Another
performance index is the correlation coefficient (CC), which
measures the similarity between two waveforms. It was
calculated as

Fig. 9 CC with various k values at FP1 and F3.

Fig. 10 NMSE with various CRs at FP1.

CC =
Sxx̂

SxSx̂
, (6)

where Sxx̂ is the covariance between x and x̂, and Sx and Sx̂
are the standard deviations of x and x̂, respectively. We eval-
uated the NMSE and CC at CR=4 with various values of k
ranging from 10 to 50. Figure 8 shows the calculated NMSE
values at FP1 and P3. We prepared 10 types of measure-
ment matrices in which the positions of “1” were different.
Therefore, we calculated the NMSE values by averaging the
results 2,000 times (= 200 epochs × 10 times simulation
results with 10 types of measurement matrices). In these
results, we ignored the data from 0.5 s to 0.65 s, in which
the results obtained using only CS were strongly affected by
the artifacts; we did so to perform a fair comparison between
the results obtained using the proposed framework and those
obtained with only CS. We observed that the NMSE val-
ues obtained using the proposed framework were lower than
those obtained using only CS for any value of k. For exam-
ple, at k = 20 shown in Fig. 8, the NMSE obtained using
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only CS is approximately 0.88 although the NMSE obtained
using the proposed framework is below 0.48 at FP1. Fig-
ure 9 shows the CC evaluation results at FP1 and P3. These
values are also the averages of 2,000 results. With CR=4, we
could achieve higher-quality reconstructed signals with any
k value in comparison with that possible using only CS. Fig-
ure 10 shows the relationship between theNMSE and various
CR with k = 20 at FP1. The result was obtained through
2,000-times averaging. Overall, as CR increases, the NMSE
increases. We can observe that the NMSE obtained using
the proposed framework is smaller than that obtained using
only CS at any CR. Thus, based on the above evaluations, we
concluded that our framework could remove the interference
from artifacts under a high CR.

5. Discussion

In the discussion presented up to Sect. 4, it was mentioned
that the proposed framework is capable of signal reconstruc-
tion owing to the suppression of the influence of artifacts,
even if the MPU is not installed in the sensing unit. In this
section, we discuss the differences in the reconstruction ac-
curacy between the two frameworks: ICA after compression
(proposed framework) and ICAbefore compression (e.g. [9]–
[11]). The most important difference in both frameworks is
where the ICA is operated. In ICA before compression,
the artifact component can be separated from uncompressed
measurement EEG signals (i.e., from xCh-i + aCh-i to xCh-i and
aCh-i). This is a typical method that applies ICA to EEG sig-
nals, and there are many papers which show artifact separa-
tion successfully(e.g. [6]). On the other hand, in the proposed
framework, ICA is applied to compressedmeasurement EEG
signals (i.e., ẋCh-i + ȧCh-i = Φ(xCh-i + aCh-i)). Therefore, the
reconstruction accuracy of the proposed framework depends
on whether the ICA can separate compressed measurement
EEG signals for independent components correctly. Based
on the above discussion, we note that the measurement ma-
trix is particularly important.

To separate independent components using ICA, the
components obtained by decomposition should be statisti-
cally independent and non-Gaussian [5]. When the random
undersampling matrix is used as the measurement matrix,
the original data are only thinned out, and the independence
of the original data is not affected. In addition, as explained
in Sect. 3.1, avoiding a Gaussian distribution of independent
components can be also realized using random undersam-
pling matrix as the measurement matrix, which is different
from the Gaussian measurement matrix. From the above,
we found that the compressed measurement EEG signals
and artifacts can be separated in the proposed framework,
theoretically.

Next, the difference between the existing ICA before
compression framework, in which MPUs are required in the
sensing unit, and the proposed framework was evaluated
using CC. The evaluation was performed under the same
conditions as described in Sect. 4 (i.e., using OMP as the
reconstruction algorithm, PCA–ICA as the ICA algorithm,

Fig. 11 CC evaluation results by using OMP, PCA–ICA at FP1 (proposed
framework (ICA after compression), ICA before compression framework,
and only CS.

and averaging the results 2,000 times). Figure 11 shows
the evaluation results with the proposed framework (ICA af-
ter compression), ICA before compression framework, and
only CS at FP1. From Fig. 11, it can be seen that up to CR =
3, a reconstruction accuracy of the proposed framework as
high as ICA before compression framework can be achieved.
When CR = 4 or more, there are slight differences in the re-
construction accuracy; however, it is clear that the proposed
framework can recover with a higher accuracy than only CS,
although the proposed framework does not need MPUs to
operate ICA in the sensing unit. If a higher reconstruction
accuracy is desired, then an additional signal processing can
be accepted in the data processing unit; for example, apply-
ing an additional method for removing artifacts efficiently
[25] is also one solution.

6. Conclusion

We developed a new framework for reconstructing EEG sig-
nals affected by artifacts. The sensing unit in our framework
does not require ICA to suppress the artifacts, and the ICA
block can be moved to the data processing unit. Therefore,
we can remove the additional digital processing functions
in the sensing unit. In this framework, we used the ran-
dom undersampling measurement matrix in CS to perform
ICA for suppressing the Gaussian. The proposed framework
was evaluated on MATLAB using 3-s 16-channel raw EEG
signals with a pseudo-model of the eye-blink artifact. In
the evaluation, a combination of OMP as the reconstruc-
tion algorithm, DCT basis, and the PCA–ICA algorithm was
used. The NMSE and CC values were compared to quantita-
tively evaluate the effectiveness of our proposed framework.
For example, the NMSE obtained using only CS was ap-
proximately 0.88 although that obtained using the proposed
framework was below 0.48 with CR=4 at FP1. The evalu-
ation results showed that the framework could remove the
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interference from artifacts under a high CR without using
MPUs in the sensing unit.
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