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PAPER
Analysis and Design of Aggregate Demand Response Systems Based
on Controllability

Kazuhiro SATO†a) and Shun-ichi AZUMA††b), Members

SUMMARY We address analysis and design problems of aggregate
demand response systems composed of various consumers based on con-
trollability to facilitate to design automated demand response machines that
are installed into consumers to automatically respond to electricity price
changes. To this end, we introduce a controllability index that expresses
the worst-case error between the expected total electricity consumption and
the electricity supply when the best electricity price is chosen. The analysis
problem using the index considers how to maximize the controllability of
the whole consumer group when the consumption characteristic of each
consumer is not fixed. In contrast, the design problem considers the whole
consumer group when the consumption characteristics of a part of the group
are fixed. By solving the analysis problem, we first clarify how the con-
trollability, average consumption characteristics of all consumers, and the
number of selectable electricity prices are related. In particular, the min-
imum value of the controllability index is determined by the number of
selectable electricity prices. Next, we prove that the design problem can
be solved by a simple linear optimization. Numerical experiments demon-
strate that our results are able to increase the controllability of the overall
consumer group.
key words: aggregate demand response, controllability, real-time pricing

1. Introduction

Real-time pricing (RTP) in smart grids is a mechanism that
controls the total electricity consumption by changing the
electricity price frequently to reduce the high peaks of total
electricity consumption [1]–[7]. RTP systems are usually
implemented as feedback systems composed of electricity
suppliers, an electricity price decision maker, and a large
number of consumers composed of various residential loads,
as illustrated in Fig. 1. The electricity price is decided by
comparing the total electricity consumption with the elec-
tricity supply. The major challenges in RTP are how to
determine the electricity prices [8]–[11] and the stability of
the feedback system [12]–[14].

To implement RTP, in addition to the above tasks, an
important issue is controllability such as electricity price
elasticity used in [15]–[22] of a given consumer group, not
each consumer. This is because even if there are some con-
sumers with high controllability, a group of all consumers
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Fig. 1 Real-time pricing system.

may have low controllability (e.g., most consumers do not
pay attention to electricity price changes except for few con-
sumers). That is, if the controllability of a consumer group
is low, RTP cannot control the total electricity consumption.

Such controllability can be adjusted by using automated
demand response (ADR)machines that are installed into con-
sumers composed of various residential loads to automati-
cally respond to electricity price changes [23]–[29]. How-
ever, the existing controllability concept used in [15]–[22] is
not adequate to provide a design principle of ADRmachines
for maximizing the controllability, although it is useful to
construct a mathematical model of consumers and to design
electricity prices. That is, it is desired to introduce another
controllability concept which facilitates to design ADR ma-
chines. To the best of our knowledge, only [30], [31] provide
such controllability concept. However, these studies assume
that each consumer’s consumption is in an on or off state.
Hence, we cannot use the controllability indices proposed in
[30], [31] for more general consumers.

For this reason, we introduce a novel controllability in-
dex that is suitable for a consumer group composed of such
general consumers, and consider a maximization of control-
lability of a consumer group, not each consumer. To this
end, we formulate two problems using the index for maxi-
mizing the controllability. The first problem considers how
to maximize the controllability of the whole consumer group
when the consumption characteristic of each consumer is not
fixed. In contrast, the second problem considers the whole
consumer group when the consumption characteristics of a
part of the group are fixed. Solutions to the second problem
will provide the design principles for ADR machines.

The contributions of this paper are summarized as fol-
lows: By solving the first problem, we clarify how the
controllability, average consumption characteristics of con-
sumers, and the number of selectable electricity prices are
related. In particular, we show that the minimum value
of the controllability index is determined by the number of
selectable electricity prices in the system. We also prove
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that the second problem can be solved using a simple lin-
ear optimization. Furthermore, we demonstrate that as the
number of consumers with non-fixed consumption charac-
teristics increases, we can increase the controllability of the
whole consumer group.

The remainder of this paper is organized as follows.
Section 2 defines an aggregate demand response system and
the controllability index of the system. Moreover, we formu-
late analysis and design problems for system controllability
maximization. Section 3.1 provides a solution to the analysis
problem. In Sect. 3.2, we show that the design problem can
be transformed into a simple linear optimization problem.
Section 4 demonstrates that our results increase the control-
lability of the whole group. The conclusion is presented in
Sect. 5.

Notation: The set of real numbers is denoted by R.
The symbols 0n ∈ Rn and 1n ∈ Rn are column vectors of
all zeros and ones, respectively. For any real number a, |a |
denotes the absolute value of a. The symbols E(A|B) and
V (A|B) are the expectation and variance of A assuming B,
respectively.

2. Problem Formulations

This section introduces a mathematical model of consumers
and a novel controllability concept of an aggregate demand
response system composed of consumers. Moreover, in this
section, we formulate analysis and design problems.

2.1 Consumer Model

We consider an aggregate demand response system com-
posed of N consumers, as illustrated in Fig. 2. This system
corresponds to that of the consumer group of the RTP system
illustrated in Fig. 1. Each consumer is modeled based on the
following perspectives.
1. Electricity consumption of each consumer has a time

varying pattern. This pattern can be obtained through
statistic studies. Thus, it is sufficient to consider a
consumer model at an important time for performing
RTP. Here, the important time means the time for total
electricity consumption to be a high peak.

2. Electricity consumption of each consumer can be nor-
malized by the maximum consumption among all con-
sumers. Thus, it is sufficient to consider the case that
electricity consumption of each consumer is in [0, 1].

3. Electricity consumption of each consumer is a random
variable, because it is different at an important time
for RTP in different days. The random variables are
independent from each other, because an electric usage
of each consumer does not depend on those of other
consumers.

4. Although the average of electricity consumption of each
consumer under a fixed electricity price is known, the
probability distribution is assumed to be unknown. This
is because the identification of the probability distribu-
tion is more difficult than that of the average.

Fig. 2 Aggregate demand response system.

5. Each consumer’s electricity price elasticity is different.

We can find consumer models in [30]–[32] based on 2),
3), and 5), although a probability distribution of each elec-
tricity consumption is known, that is, 4) is not satisfied in
[30]–[32]. In fact, electricity consumption of each consumer
in [30]–[32] is a random variable and takes 0 or 1. The value
is probabilistically determined by an electricity price elastic-
ity which is different among different consumers. Moreover,
[30], [31] modeled consumers based on 1), while [32] did
not. That is, the following consumer model in this paper
is more realistic than those used in [30]–[32] in senses of
possible values of electricity consumption and the setting
without assuming the exact identification of a probability
distribution of individual electricity consumption.

In Fig. 2, the input is electricity price u ∈

{u1, u2, . . . , um} at the important time for performing RTP,
where m is a fixed positive number, and the output is the
individual electricity consumption xi that takes a value in
[0, 1] from the perspective 2) at the important time, where
u1, u2, . . . , um are selectable electricity prices such that

0 < um < um−1 < · · · < u1 < ∞. (1)

From the perspective 3), individual electricity consumption
xi is a random variable and x1, x2, . . . , xN are independent.
The total electricity consumption of N consumers at the
important time is given by

y := x1 + x2 + · · · + xN ∈ [0, N]. (2)

The relation between xi and u is given by

E(xi |u = u j ) = x̄i j, (3)

where x̄i j ( j = 1, 2, . . . ,m) denotes the consumption behav-
ior of consumer i that is assumed to be known based on the
perspective 4), and satisfy

x̄i1 ≤ x̄i2 ≤ · · · ≤ x̄im (4)

that is consistent with the consumer buying behavior subject
to (1); that is, if electricity price u is higher, the individ-
ual levels of electricity consumption xi (i = 1, 2, . . . , N )
are lower. Moreover, for a fixed j ∈ {1, 2, . . . ,m}, x̄i j is
different for each i ∈ {1, 2, . . . , N }, in general. This cor-
responds to the perspective 5). Because x̄i j is a character-
istic of consumer i, we call x̄i j ( j = 1, 2, . . . ,m) the con-
sumption characteristics of consumer i, and the vector x̄ :=
( x̄11, x̄21, . . . , x̄N1, x̄12, x̄22, . . . , x̄N2, . . . , x̄1m, x̄2m, . . . , x̄Nm) ∈
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Fig. 3 Example of a probability density function of y such that even if
|E (y |u = u′) − r | = 0 holds, |y − r | is large.

Fig. 4 Probability density function of y when the number of consumers
N is sufficiently large.

[0, 1]Nm the collective consumption characteristic.

2.2 Controllability Index

The aim of RTP is to adjust the total electricity consump-
tion, not individual electricity consumption of each con-
sumer. From this perspective, we introduce the following
controllability index:

C( x̄) := max
r ∈[0,N ]

min
u′∈{u1,...,um }

|E(y |u = u′) − r |
N

. (5)

This index represents the maximum difference between the
expected total electricity consumption y and reference r
when the best u is chosen. From this definition, it follows
that if C( x̄) is smaller (larger), the consumer group has a
higher (lower) controllability. Note that controllability index
(5) is different from those in [30], [31] which defined by
using probability distributions of electricity consumption of
consumers.

One might consider that even if |E(y |u = u′) − r | is
small, the actual total electricity consumption y may be
different from reference r . This is because small |E(y |u =
u′) − r | does not mean that y ≈ r is true, e.g., in the case of
Fig. 3. However, it is not true if N is sufficiently large. In fact,
Theorem 3 in Appendix B guarantees that the probability
distribution of the random variable y under u = u′ can
be approximated as a Gaussian distribution with expectation
E(y |u = u′), as shown in Fig. 4. Thus, if |E(y |u = u′)−r | =
0 holds, | y − r | is likely to be small. For this reason, C( x̄) is
a reasonable index of the controllability.

The following example illustrates controllability index
C( x̄) in a concrete situation.

Example 1: Consider a consumer group where N =

Fig. 5 Probability density functions of y when E (y |u = u1) = 7, 000,
E (y |u = u2) = 8, 000, and E (y |u = u3) = 9, 000.

Fig. 6 Probability density functions of y when E (y |u = u1) = 2, 000,
E (y |u = u2) = 7, 000, and E (y |u = u3) = 8, 000.

10, 000 and m = 3, and assume that the probability den-
sity functions of y with respect to u1, u2, and u3 are given
as shown in Fig. 5. Then, we obtain C( x̄) = 0.7, because
minu′∈{u1,u2,u3 }

|E (y |u=u′)−r |
10,000 takes the maximum value 0.7

when r = 0, as shown in Fig. 5. In contrast, when the prob-
ability density functions of y are given as shown in Fig. 6,
we have C( x̄) = 0.25, because minu′∈{u1,u2,u3 }

|E (y |u=u′)−r |
10,000

takes the maximum value 0.25 when r = 4, 500, as shown in
Fig. 6. �

2.3 Analysis and Design Problems

It is desirable for controllability index C( x̄) to be small (i.e.,
for the controllability of a consumer group to be high), if
we implement RTP. This is because if the controllability is
high, we can reduce the high peak of total electricity con-
sumption by changing the electricity price. To characterize
such consumer groups, we consider the following analysis
problem.

Problem 1: Find a collective consumption characteristic
x̄ ∈ [0, 1]Nm that minimizes controllability index C( x̄).

In Problem 1, none of the consumption characteristics x̄i j are
fixed. In this particular model, all consumers are treated as
an electric device equippedwith an ADRmachine [23]–[29].
That is, we can freely set the consumption characteristics of
all consumers. However, in a practical situation, there are
electric devices such as refrigerators with fixed consumption
characteristics.

For this reason, we also consider the following design
problem.
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Problem 2: Given N − n consumers (N > n) with
the fixed consumption characteristics x̄i j (i = n +
1, n + 2, . . . , N, j = 1, 2, . . . ,m), design x̄i j (i =
1, 2, . . . , n, j = 1, 2, . . . ,m) of n consumers minimiz-
ing controllability index C( x̄).

Remark 1: Problems 1 and 2 can be formulated as linear
programming problems directly using (5). However, we
cannot solve the problems in a practical time if the number
of consumers N is considerably large. Thus, in the next
section, we simplify C( x̄) in (5) for solving Problems 1 and
2 in the cases that N is considerably large.

3. Solution to Problems 1 and 2

3.1 Solution to Problem 1

This subsection derives the solution to Problem 1 using the
consumer group characteristic.

We first characterize controllability index C( x̄). It fol-
lows from (2) and (3) that

E(y |u = u j ) = E(
N∑
i=1

xi |u = u j ) =
N∑
i=1

x̄i j . (6)

Furthermore, from (4), (6), and x̄i j ∈ [0, 1], we have that

0 ≤ E(y |u = u1) ≤ · · · ≤ E(y |u = um) ≤ N . (7)

We define




d0( x̄) := E(y |u = u1),
dm( x̄) := N − E(y |u = um),
dk ( x̄) := E (y |u=uk+1)−E (y |u=uk )

2 ,

(8)

where k = 1, 2, . . . ,m − 1, such that

d0( x̄) + 2d1( x̄) + · · · + 2dm−1( x̄) + dm( x̄) = N, (9)

as illustrated in Fig. 7. Here, d0( x̄), d1( x̄), . . . , dm( x̄) are
nonnegative for any x̄ ∈ [0, 1]Nm, because (7) holds. Using
the functions in (8), the following lemma is obtained.

Lemma 1: (i) For C( x̄) in (5),

C( x̄) =
1
N

max
k∈{0,1,...,m}

dk ( x̄). (10)

(ii) For every x̄ ∈ [0, 1]Nm,

C( x̄∗) ≤ C( x̄) (11)

Fig. 7 Illustration of (8).

holds (i.e., x̄∗ is a solution to Problem 1) if and only if

d0( x̄∗) = d1( x̄∗) = · · · = dm( x̄∗) =
1

2m
N . (12)

Proof : First, we prove (i). Let

ȳj := E(y |u = u j ). (13)

From (5) and (13), minu′∈{u1,u2,...,um } |E(y |u = u′) − r | =
minj∈{1,2,...,m} | ȳj − r | holds, and thus C( x̄) is rewritten as

C( x̄) = max
r ∈[0,N ]

min
j∈{1,2,...,m}

| ȳj − r |
N

. (14)

Furthermore, it follows from (7) and (13) that

0 ≤
ȳ1 + ȳ2

2
≤
ȳ2 + ȳ3

2
≤ · · · ≤

ȳm−1 + ȳm
2

≤ N,

and we thus have

[0, N] = S1 ∪ S2 ∪ · · · ∪ Sm (15)

for

S1 := [0,
ȳ1 + ȳ2

2
], Sm := [

ȳm−1 + ȳm
2

, N], (16)

Sk := [
ȳk−1 + ȳk

2
,
ȳk + ȳk+1

2
] (k = 2, 3, . . . ,m − 1).

Hence, (14), (15), (16), and (A· 1) in Appendix A yield that

C( x̄) =
1
N

max
k∈{1,...,m}

(
max
r ∈Sk

min
j∈{1,...,m}

| ȳj − r |
)
. (17)

Because

max
r ∈Sk

min
j∈{1,2,...,m}

| ȳj − r | = max
r ∈Sk

| ȳk − r | (18)

(which is illustrated in Fig. 8), the right-hand side of (17) is
equivalent to

1
N

max
k∈{1,2,...,m}

(
max
r ∈Sk

| ȳk − r |
)
. (19)

Using (13), (16), and (A· 2) in Appendix A, for each k ∈
{1, 2, . . . ,m}, max

r ∈Sk

| ȳk − r | in (19) can be transformed into

max
r ∈Sk

| ȳk − r | = max
i∈{k−1,k }

di ( x̄), (20)

where dk ( x̄) is defined as (8). From (17), (19), and (20), we
obtain that

C( x̄) =
1
N

max
k∈{1,2,...,m}

(
max

i∈{k−1,k }
di ( x̄)

)
=

1
N

max
k∈{0,1,...,m}

dk ( x̄).

Thus, C( x̄) is given by (10).
Next, we prove (ii). Suppose that (11) holds for all

x̄ ∈ [0, 1]Nm. Then,
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Fig. 8 Illustration of (18).

C( x̄∗) ≤
1

2m
(21)

because x̄i j =
2j−1
2m (i = 1, 2, . . . , N, j = 1, 2, . . . ,m) yields

C( x̄) = 1
2m . From (10) and (21), maxk∈{0,1,...,m} dk ( x̄∗) ≤

N
2m , and thus

dk ( x̄∗) ≤
N

2m
(k = 0, 1, . . . ,m). (22)

It follows from (9) and (22) that (12) holds. Conversely,
suppose that (12) holds and x̄ minimizesC( x̄). If there exists
i ∈ {0, 1, . . . ,m} such that di ( x̄) ≤ di ( x̄∗) = d0( x̄∗), (9) and
(iii) in Appendix A imply that there exists j ∈ {0, 1, . . . ,m}
satisfying j , i such that d j ( x̄) ≥ d j ( x̄∗) = d0( x̄∗). Hence,
(10) yields C( x̄) ≥ C( x̄∗). However, because x̄ minimizes
C( x̄), i.e., C( x̄) ≤ C( x̄∗), we obtain that

C( x̄) = C( x̄∗), (23)

which means that (11) holds for all x̄ ∈ [0, 1]Nm. �

Statement (i) of Lemma 1 means that C( x̄) is char-
acterized by the (half of) distances between two adjacent
points in 0, E(y |u = u1), E(y |u = u2), . . . , E(y |u = um),
and N , as shown in Fig. 7. Statement (ii) means that the
consumer group has the highest controllability if and only
if the distances are equal. For example, Fig. 9 illustrates the
probability density functions of y when (12) holds under
m = 4. Then, C( x̄) takes the minimum value 1

8 . This is
because if (12) does not hold, C( x̄) becomes larger than 1

8
as with the case shown in Fig. 10.

Next, we express the solution to Problem 1 using av-
erage consumption characteristics. It follows from (8) that
(12) can be transformed into

E(y |u = u j ) =
2 j − 1

2m
N ( j = 1, 2, . . . ,m). (24)

Substituting (6) into (24), we have that

1
N

N∑
i=1

x̄i j =
2 j − 1

2m
( j = 1, 2, . . . ,m). (25)

Thus, Lemma 1 and (25) imply the following theorem.

Theorem 1: (i) A collective consumption characteristic x̄
minimizes controllability index C( x̄) if and only if (25)
holds.
(ii) The minimum value of C( x̄) is given by 1

2m . �

Theorem 1 clarifies how the controllability, average
consumption characteristic of all consumers, and number

Fig. 9 Probability density functions of y when (12) holds under m = 4.

Fig. 10 Probability density functions of y when (12) does not hold under
m = 4.

of electricity prices are related. In fact, (i) means that the
consumer group with the maximum controllability can be
characterized using the average consumption characteristic
of all consumers. Furthermore, (ii) shows that the minimum
value of C( x̄) is determined by the number of selectable
electricity prices.

3.2 Solution to Problem 2

This subsection shows that Problem 2 can be solved using
a simple linear optimization problem. Such solutions are
not trivial, because Theorem 1 implies that if there exists
j ∈ {1, 2, . . . ,m} such that

N∑
i=n+1

x̄i j >
2 j − 1

2m
N, (26)

then there exists no collective consumption characteristic x̄
satisfyingC( x̄) = 1

2m . To solve Problem 2 even if (26) holds,
we first transform it into the following linear optimization
problem:

minimize f (X̄, t) := t (27)
subject to AX̄ + B ≤ t1m+1,

EX̄ ≤ 0n(m−1), 0nm ≤ X̄ ≤ 1nm,

where the symbol ≤ denotes elementwise inequal-
ity, X̄ :=

(
x̄T1 x̄T2 · · · x̄Tm

)T
∈ Rnm, x̄ j :=(

x̄1j x̄2j · · · x̄nj
)T
∈ Rn ( j = 1, 2, . . . ,m), and
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Table 1 First example of average consumption characteristics of N − n consumers with fixed con-
sumption characteristics.

j 1 2 3 4 5 6 7 8 9 10
1

N−n

∑N
i=n+1 x̄i j 0.13 0.25 0.32 0.45 0.54 0.65 0.77 0.85 0.92 0.95

Table 2 Second example of average consumption characteristics of N − n consumers with fixed
consumption characteristics.

j 1 2 3 4 5 6 7 8 9 10
1

N−n

∑N
i=n+1 x̄i j 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.93 0.94 0.97

A :=

*.........
,

1Tn
−

1Tn
2

1Tn
2
. . .

. . .

−
1Tn
2

1Tn
2
−1Tn

+/////////
-

∈ R(m+1)×nm,

B :=

*..........
,

∑N
k=n+1 x̄k1∑N

k=n+1 (x̄k2−x̄k1)
2
...∑N

k=n+1 (x̄km−x̄k (m−1) )
2

N −
∑N

k=n+1 x̄km

+//////////
-

∈ Rm+1,

E :=
*.....
,

In −In
In −In

. . .
. . .

In −In

+/////
-

∈ Rn(m−1)×nm.

The proof that Problem 2 is equivalent to problem (27)
is given in Appendix C. Note that it follows from (A· 10) in
Appendix C that

C( x̄) =
t
N
. (28)

Because problem (27) is a linear optimization problem,
it can be solved using standard solvers such as the MATLAB
linprog command. However, if n is large, it becomes difficult
to numerically solve problem (27), because the number of
the optimization variables (X̄, t) of problem (27) is equal to
nm + 1.

To solve Problem 2 with large n, we consider the fol-
lowing linear optimization problem:

minimize g(Z, t) := t (29)
subject to ÃZ + B ≤ t1m+1,

ẼZ ≤ 0m−1, 0m ≤ Z ≤ n1m,

where Ã and Ẽ correspond to A and E in the case of n = 1,
respectively, and Z :=

(
Z1 Z2 · · · Zm

)T
∈ Rm. Note

that the number of optimization variables (Z, t) of problem
(29) is equal to m+1. Thus, we can solve problem (29) more
efficiently than problem (27).

The optimal value of problem (29) is less than or equal
to that of problem (27). In fact, if (X̄, t) is a globally optimal
solution to problem (27), then (Z, t) with Z j =

∑n
i=1 x̄i j

satisfies the constraint condition of problem (29). We thus
obtain the following theorem.
Theorem 2: Let (Z, t) be a globally optimal solution to
problem (29). Then, x̄i j (i = 1, 2, . . . , n, j = 1, 2, . . . ,m)
satisfying




∑n
i=1 x̄i j = Z j,

0 ≤ x̄i1 ≤ x̄i2 ≤ · · · ≤ x̄im ≤ 1
(30)

is a globally optimal solution to Problem 2, and (28) holds.
Proof : Because (Z, t) satisfies the constraint of problem
(29), (X̄, t) satisfies that of problem (27). Furthermore,
because the optimal value of problem (29) is less than or
equal to that of problem (27), (X̄, t) is a globally optimal
solution to problem (27). �

From Theorem 2, we can easily obtain a globally opti-
mal solution to Problem 2 by solving problem (29). In fact,
if (Z, t) is a globally optimal solution to problem (29), then

x̄1j = x̄2j = · · · = x̄nj =
1
n

Z j ( j = 1, 2, . . . ,m) (31)

implies that x̄i j (i = 1, 2, . . . , n, j = 1, 2, . . . ,m) satisfies
(30). This facilitates to design ADR machines for maxi-
mizing the controllability subject to the existences of fixed
consumption characteristics.

4. Numerical Experiments

This section demonstrates that as the number of consumers
n with non-fixed consumption characteristics increases, we
can increase the controllability of thewhole consumer group.
That is, we show that as n increases, we can decrease con-
trollability index C( x̄) by appropriately designing x̄. This is
because Problem 2 is equivalent to (A· 9), which means that
C( x̄) is able to be lower for larger n, in Appendix C.

To this end, we suppose that the numbers of consumers
in the consumer group and electricity prices are 106 and
10, respectively, i.e., N = 106 and m = 10. Furthermore,
we assume that Tables 1 and 2 illustrate two examples of
the average consumption characteristics of N − n consumers
with fixed consumption characteristics. Note that Theorem 1
implies that C( x̄) ≥ 1

2m = 0.05 for any x̄ ∈ [0, 1]Nm.
The top and bottom of Fig. 11 show the relationship

between n and C( x̄) for the average consumption charac-
teristics of N − n consumers listed in Tables 1 and 2, re-
spectively. Here, we adopted a solution to Problem 2 as x̄i j
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Fig. 11 Relationship between n and C (x̄) for the average consumption
characteristics of N − n consumers listed in Tables 1 (top) and 2 (bottom).

(i = 1, 2, . . . , n, j = 1, 2, . . . ,m), and obtained the solution by
solving linear optimization problem (29), as stated in Theo-
rem 2. According to Fig. 11, as n increases, C( x̄) decreases.
The difference between the top and bottom of Fig. 11 is the
minimum n at which the consumer groups have maximum
controllability. This comes from the difference in the av-
erage consumption characteristic of N − n consumers with
the fixed consumption characteristics, as shown in Tables 1
and 2. That is, when the controllability of consumers with
fixed consumption characteristics is low, more consumers
with non-fixed consumption characteristics are required to
achieve high controllability.

5. Conclusion

We presented two controllability maximization problems of
aggregate demand response systems, one in which all con-
sumers had variable consumption characteristics and one in
which the consumption characteristics of some consumers
was fixed. The problems were formulated using the control-
lability index. Formulating the first problem enabled us to
clarify how the controllability, average consumption char-
acteristics of all consumers, and the number of selectable
electricity prices are related. Moreover, we proved that so-
lutions to the second problem are given by solving a simple
linear optimization problem. Furthermore, we demonstrated
through numerical experiments that our results are able to
increase the controllability of the whole consumer group.
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Appendix A: Mathematical Formulas

We present three formulas to prove Lemma 1.
(i) Let X be a closed set and f : X → R be a map. If
X1, X2, . . . , Xn partition X , i.e., X = X1∪X2∪· · ·∪Xn, then

max
x∈X

f (x) = max
i∈{1,2,...,n}

(
max
x∈Xi

f (x)
)
. (A· 1)

(ii) Let a1, a2, a3 ∈ R be numbers satisfying a1 ≤ a2 ≤ a3.
Then, we obtain that

max
x∈[a1,a3]

|a2 − x | = max
i∈{1,2}

αi (A· 2)

for α1 := a2 − a1 and α2 := a3 − a2.
(iii) Let a, b, c ≥ 0 satisfy a + b = c. If 0 ≤ a′ ≤ a, there
exists b′ ≥ b such that a′ + b′ = c.

Appendix B: Approximation of y Using a Gaussian
Distribution

This appendix explains that if the number of consumers N
is sufficiently large, the generalized central limit theorem
implies that a probability distribution of y for u = u′ can
be approximated by a Gaussian distribution with expectation
E(y |u = u′).

A sequence of random variables {Xi } is said to converge
in distribution to a random variable X if limn→∞ Fn(x) =
F (x) for any x ∈ R at which F is continuous, where Fn and
F are the distribution functions of random variables Xn and
X , respectively. The following proposition is known as the
generalized central limit theorem [33].

Proposition 1: Let {Xi } be a sequence of independent ran-
dom variables with E(Xi) = µi and V (Xi) = σ2

i . Let

An := µ1 + µ2 + · · · + µn and Bn :=
√
σ2

1 + σ
2
2 + · · · + σ

2
n.

If

lim
n→∞

1
B2
n

n∑
i=1

E( |Xi − µi |
2 · 1{ |Xi−µi | ≥εBn }) = 0 (A· 3)

for any ε > 0, then X1+X2+· · ·+Xn−An

Bn
converges in distribution

to the standardGaussian randomvariable, where 1{ · } denotes
the indicator function. �

Note that Proposition 1 guarantees that if (A· 3) (called the
Lindeberg condition) is satisfied, normalized sums of in-
dependent random variables converge in distribution to the
standard Gaussian random variable without needing the as-
sumption that the random variables are identical.

The following condition is a sufficient condition for
(A· 3) to hold [33]: There exists δ > 0 such that

lim
n→∞

1
B2+δ
n

n∑
i=1

E(|Xi − µi |
2+δ ) = 0. (A· 4)

In fact, because |Xi − µi | ≥ εBn yields �� Xi−µi
εBn

��δ ≥ 1, for any
ε > 0,

1
B2
n

n∑
i=1

E
(
|Xi − µi |

2 · 1{ |Xi−µi | ≥εBn }

)
≤

1
B2
n

n∑
i=1

E
(

���
Xi − µi
εBn

���
δ
· |Xi − µi |

2 · 1{ |Xi−µi | ≥εBn }

)

≤
1

εδB2+δ
n

n∑
i=1

E
(
|Xi − µi |

2+δ
)
.

Hence, if (A· 4) holds, (A· 3) also holds. Here, (A· 4) is
called the Lyapunov condition.

Using Proposition 1, we can show that if the number of
consumers N is sufficiently large, the probability distribution
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of total electricity consumption y for u = u′ is close to a
Gaussian distribution with expectation E(y |u = u′).

Theorem 3: If

lim
N→∞

V (y |u = u j ) = ∞, (A· 5)

then y−E (y |u=u j )
√
V (y |u=u j )

converges in distribution to the standard
Gaussian random variable.

Proof : To prove this claim, we use Lyapunov condition
(A· 4). Let BN j :=

√∑N
i=1 V (xi |u = u j ), where V (xi |u =

u j ) = E(|xi − E(xi |u = u j ) |2) = E( |xi − x̄i j |2). Since
xi ∈ [0, 1], we have |xi − x̄i j | ≤ 1 for j = 1, 2, . . . ,m, and
thus

N∑
i=1

E(|xi − x̄i j |3)

B3
N j

≤

N∑
i=1

E(|xi − x̄i j |2)

B3
N j

≤
1

BN j
.

(A· 6)

Because y is defined by (2) and the random variables
x1, x2, . . . , xN are independent,

V (y |u = u j ) =
N∑
i=1

V (xi |u = u j ) = B2
N j . (A· 7)

Thus, (A· 5) holds if and only if limN→∞ BN j = ∞. Hence,
(A· 6) implies that if limN→∞ V (y |u = u j ) = ∞, then
limN→∞

1
B3

N j

∑N
i=1 E( |xi− x̄i j |3) = 0. Therefore, (A· 4) with

δ = 1 holds, and thus (A· 3) also holds. Hence, Proposition
1 implies this theorem. �

If there exists a positive constant K such that

V (xi |u = u j ) ≥ K (A· 8)

for any i ∈ {1, 2, . . . , N } and any j ∈ {1, 2, . . . ,m}, then
(A· 7) yields V (y |u = u j ) ≥ K N . Hence, if (A· 8) holds
for any i ∈ {1, 2, . . . , N } and any j ∈ {1, 2, . . . ,m}, (A· 5)
also holds. In practice, we can consider that (A· 8) holds
for any i ∈ {1, 2, . . . , N } and any j ∈ {1, 2, . . . ,m}. Thus,
if N is sufficiently large, V (y |u = u j ) is also sufficiently
large. Hence, Theorem 3 guarantees that if N is sufficiently
large, the probability distribution of y for u = u′ is close to
a Gaussian distribution with expectation E(y |u = u′).

Appendix C: Proof of that Problem 2 is Equivalent to
Linear Optimization Problem (27)

Problem 2 can be described as follows:

minimize C( x̄) (A· 9)
subject to 0 ≤ x̄i1 ≤ · · · ≤ x̄im ≤ 1 (i = 1, . . . , n).

It follows from (6) and (8) that

n∑
i=1

x̄i1 +
N∑

k=n+1
x̄k1 = d0( x̄),

n∑
i=1

( x̄i( j+1) − x̄i j ) +
N∑

k=n+1
( x̄k ( j+1) − x̄k j ) = 2d j ( x̄),

−

n∑
i=1

x̄im + N −
N∑

k=n+1
x̄km = dm( x̄).

for j = 1, 2, . . . ,m−1. This is equivalent to AX̄+B = D with
D :=

(
d0( x̄) d1( x̄) · · · dm( x̄)

)T
. Defining ak and bk

as the k + 1-th rows of matrices A and B, respectively, (10)
implies that

C( x̄) =
1
N

max
k∈{0,1,...,m}

(ak X̄ + bk ). (A· 10)

Thus, problem (A· 9) is equivalent to the piecewise-linear
minimization problem

minimize max
k∈{0,1,...,m}

(ak X̄ + bk ) (A· 11)

subject to 0 ≤ x̄i1 ≤ · · · ≤ x̄im ≤ 1 (i = 1, . . . , n).

By direct calculation, optimization problem (A· 11) can be
transformed into (27) [34].
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