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Uniformly Ultimate Boundedness Control with Decentralized
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SUMMARY Event-triggered control is a method that the control input
is updated only when a certain condition is satisfied (i.e., an event occurs).
In this paper, event-triggered control over a sensor network is studied based
on the notion of uniformly ultimate boundedness. Since sensors are located
in a distributed way, we consider multiple event-triggering conditions. In
uniformly ultimate boundedness, it is guaranteed that if the state reaches
a certain set containing the origin, the state stays within this set. Using
this notion, the occurrence of events in the neighborhood of the origin is
inhibited. First, the simultaneous design problem of a controller and event-
triggering conditions is formulated. Next, this problem is reduced to an
LMI (linear matrix inequality) optimization problem. Finally, the proposed
method is demonstrated by a numerical example.
key words: cyber-physical systems, event-triggered control, LMI, uni-
formly ultimate boundedness

1. Introduction

Control of cyber-physical systems (CPSs) and networked
control systems (NCSs) in which plants, actuators, sensors,
and controllers are connected through communication net-
works is one of the fundamental problems in control theory.
In CPSs and NCSs, event-triggered control is one of the im-
portant control methods [5]–[8], [10], [18]. Event-triggered
control is a method that the control input is updated only
when a certain condition is satisfied. One of the typical
event-triggering conditions is to evaluate the difference be-
tween the measured state and the state that was recently sent
to the controller. The control input is updated only when
this difference is greater than a given threshold. By appro-
priately choosing it, we can consider the trade-off between
the control performance and the communication load.

In the case where sensors are located in a distributed
way (i.e., sensor networks), event-triggered control in which
event-triggering conditions are decentralized has been stud-
ied (see, e.g., [3], [6], [7], [11]–[13], [15]). The event-
triggering condition is assigned to each sensor. If at least
one of event-triggering conditions is satisfied, then all mea-
surements are aggregated in the controller, and the control
input is updated.

In event-triggered control, there is a possibility that un-
necessary updates of the control input occur. Especially,
such updates frequently occur in the neighborhood of the
origin. To avoid such updates, several methods have been
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studied so far [3], [4], [11]. In [3], event-triggering condi-
tions have been improved. In [4], dynamic triggering mech-
anisms have been proposed. In [11], the parameters in the
event-triggering condition are updated on-line.

In this paper, we study event-triggered control of
discrete-time linear systems under decentralized event-
triggering conditions. Here, event-triggering conditions in
[3] are utilized. Control performance in this paper is based
on the notion of uniformly ultimate boundedness. In uni-
formly ultimate boundedness, it is guaranteed that if the
state reaches a certain set containing the origin, the state
stays within this set. Comparing between it and asymptotic
stability, the former is a weaker performance index, and it
is expected that the number of communications is reduced.
In event-triggered control, uniformly ultimate boundedness
has been utilized in [14], [17], [18]. In these existing meth-
ods, decentralized event-triggering conditions have not been
focused. In [3], decentralized event-triggering conditions
have been studied using practical stability, which is closely
related to uniformly ultimate boundedness. However, de-
sign of controllers has not been focused. Thus, there are still
important problems in design of event-triggered control over
a sensor network using uniformly ultimate boundedness.

First, the design problem of event-triggered control
over a sensor network is formulated. In the problem setting,
only sensors are distributed, and the controller are central-
ized. Furthermore, we calculate not only the state-feedback
gain but also both decentralized event-triggering conditions
and the ellipsoid used in uniformly ultimate boundedness.
Next, a solution method is proposed. The design problem
is reduced to a BMI (bilinear matrix inequality) feasibil-
ity problem. This BMI becomes an LMI (linear matrix in-
equality) by fixing two scalars. Hence, this problem can be
solved by using the grid search method. Finally, the pro-
posed method is demonstrated by a numerical example.

The conference paper [9] is a preliminary version of
this paper. In [9], design of decentralized event-triggering
conditions was shortly explained, but a numerical example
was not presented. In this paper, design of decentralized
event-triggering conditions is directly included in Theorem
1. A numerical example is also presented. Furthermore, in
Theorem 1 of this paper, the BMI condition is derived in a
simpler form.

Notation: Let R denote the set of real numbers. Let
I and 0 denote the identity matrix with the appropriate
size and the zeros matrix with the appropriate size, respec-
tively. Let M � 0 (M � 0) denote that the matrix M
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is positive-definite (positive-semidefinite). For the scalar
a ∈ R, let dae denote the ceiling function of a. Let 1n
denote the n-dimensional vector whose elements are all
one. For the vector x = [x1 x2 · · · xn]> and the in-
dex set I = {i1, i2, . . . , im} ⊆ {1, 2, . . . , n}, define [xi]i∈I :=
[xi1 xi2 · · · xim ]>. For the vector x, let ‖x‖ denote the Eu-
clidean norm of x. For the vector x, let xi denote the i-th
element of x. For the matrix M, let M> denote the transpose
matrix of M. For the matrix M, let tr(M) denote the trace of
M. For scalars a1, a2, . . . , an, let diag(a1, a2, . . . , an) denote
the diagonal matrix. For the matrix P � 0 and a scalar γ,
the ellipsoid E(P, γ) := {x ∈ Rn | x>Px ≤ γ} is defined. The

symmetric matrix
[
A B>

B C

]
is denoted by

[
A ∗

B C

]
.

2. Problem Formulation

As a plant, consider the following discrete-time linear sys-
tem:

x(k + 1) = Ax(k) + Bu(k), (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input, A ∈ Rn×n and B ∈ Rn×m are given matrices, and
k ∈ {0, 1, 2, . . . } is the discrete time. We suppose that the
number of sensors is n (the number of states), and the sen-
sor i ∈ {1, 2, . . . , n} measures the i-th element of the state.
That is, we consider a state-feedback controller. In several
cases, this setting may not be appropriate, and only some
elements of the state are measured. We can then utilize a
state-feedback controller by combining it with a state ob-
server (see, e.g., [6], [19] for the case of event-triggered con-
trol). Hence, a design method of state-feedback controllers
is useful also in design of general feedback controllers.

For the system (1), consider the following state-
feedback event-triggered controller:

u(k) = Kx̂(k), (2)

where x̂(k) is the state that is managed in the controller, and
is defined by

x̂(k) :=

x(k) if u(k) is updated,
x̂(k − 1) if u(k) is not updated.

(3)

The event-triggering condition for the sensor i ∈ {1, 2, . . . , n}
is given by

(x̂i(k − 1) − xi(k))2 > aix2
i (k) + bi, (4)

where ai > 0 and bi > 0 are scalar parameters which are not
given. Here, we define the following diagonal matrices:

Σa := diag(a1, a2, . . . , an),
Σb := diag(b1, b2, . . . , bn).

The control input is updated only when the condition (4)
is satisfied (i.e., the event occurs). In [11], the assumption
Σn

i=1bi = 0 is imposed (i.e., bi < 0 is allowed). In this pa-
per, this assumption is not imposed. In the case of bi = 0,

even if x̂i(k − 1) and xi(k) are sufficiently small, (4) may be
frequently satisfied. In other words, unnecessary updates of
the control input occur in the neighborhood of the origin.
From bi > 0, this technical issue will be overcome. In addi-
tion, from (2), (3), and (4), we see that the controller is cen-
tralized, and only the event-triggering condition is decen-
tralized. We suppose that the controller aggregates all the
state when the event occurs (such a control method is called
a synchronous control method). We can consider the case
where the controller collects only elements of the state that
the event occurs (such a control method is called an asyn-
chronous control method). In the discrete-time setting, the
control performance of synchronous control methods is bet-
ter than that of asynchronous control methods. Hence, we
consider a synchronous control method. In [9], we have con-
sidered both synchronous and asynchronous control meth-
ods.

Using (4), x̂(k) of (3) can be rewritten as

x̂(k) :=

x(k) if (4) holds for some i,
x̂(k − 1) otherwise.

(5)

That is, if the triggering condition for at least one sensor is
satisfied, then the controller aggregate all states. From (5),
the following relation is always satisfied:

(x̂i(k) − xi(k))2 ≤ aix2
i (k) + bi, i ∈ {1, 2, . . . , n}. (6)

Next, the notion of uniformly ultimate boundedness is
defined as follows [1].

Definition 1: The closed-loop system consisting of the
plant (1) and the controller (2), (5) is said to be uniformly
ultimately bounded (UUB) in a convex and compact set S
containing the origin in its interior, if for every initial con-
dition x(0) = x0, there exists T (x0) such that for k ≥ T (x0)
and T (x0) ∈ {0, 1, 2, . . . }, the condition x(k) ∈ S holds.

Comparing the notion of asymptotic stability with the
notion of uniformly ultimate boundedness, the later is a
weaker control specification. However, communications
can be reduced in the neighborhood of the origin. In this
sense, it is appropriate to apply the notion of uniformly ulti-
mate boundedness to event-triggered control. Furthermore,
to achieve faster convergence to S, we consider switching
the gain K as follows:

K =

K1 if x̂(k) < E(P, 1),
K2 otherwise.

(7)

In addition, we also consider switching the matrices Σa and
Σb (i.e., the parameters ai, bi in (4)) as follows:

Σa (Σb) =

Σ1
a (Σ1

b) if x̂(k) < E(P, 1),
Σ2

a (Σ2
b) otherwise.

(8)

Under the above preparations, the design problem of
synchronous decentralized event-triggered control is given
as follows.
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Problem 1: For the system (1), find a state-feedback event-
triggered controller (2), (5), (7), (8), diagonal matrices
Σa,Σb, and a matrix P such that the closed-loop system is
UUB in a certain ellipsoid E(P, 1).

In the above problem formulation, we can design not
only the controller but also both the parameters in the event-
triggering condition and the set S in Definition 1. It is de-
sirable that the volume of E(P, 1) is small. In this sense, it
is desirable to add the objective function. See Sect. 3 for
further details.

Remark 1: To switch the gain K and the parameters in (4),
the controller must decide if the state is included in the ellip-
soid E(P, 1). Then, it is necessary to add a new event based
on the projection of E(P, 1) to xi. The outline of the proce-
dure to switch the gain K and the parameters in (4) at time k
is given as follows.

Step 1: If the state xi(k) is included in the projection of
E(P, 1) to xi(k), then the sensor i sends the measured value
to the controller.
Step 2: If the controller aggregated all states, then it deter-
mines if x(k) is included in the ellipsoid E(P, 1). If x(k) is
included in E(P, 1), then the gain K and the parameters in
(4) are switched. Otherwise, these are not switched.

Since a new event is added, the number of communi-
cations increases. However, (6) is still satisfied. Hence, this
event is not discussed hereafter.

Remark 2: For simplicity of discussion, each element
of the state is assigned to each individual sensor. Each
sensor may measure multiple elements of the state. In
this case, we suppose that the sensor j ∈ {1, 2, . . . , p}
measures [xi(k)]i∈I j , I j ⊆ {1, 2, . . . , n}, where ∪p

j=1I j =

{1, 2, . . . , n} and ∩p
j=1I j = ∅ hold. Then, instead of (4),

the event-triggering condition is given by ‖[x̂i(k − 1)]i∈I j −

[xi(k)]i∈I j‖
2 > a j‖[xi(k)]i∈I j‖

2 + b j. The proposed solution
method in the next section can also be applied to this case
by minor modifications.

3. Solution Method

In this section, we propose a solution method for Problem 1.
As a preparation, the error variable is defined by

e(k) := x̂(k) − x(k).

From this definition, (6) is replaced with

e2
i (k) ≤ aix2

i (k) + bi. (9)

From u(k) = Ki x̂(k), i = 1, 2 and x̂(k) = x(k) + e(k), the
closed-loop system is given by

x(k + 1) = Φix(k) + BKe(k), (10)

where Φi = A + BKi, i = 1, 2.
In the solution method for Problem 1, we consider two

cases, i.e., (i) x(k) < E(P, 1) and (ii) x(k) ∈ E(P, 1).
First, consider the case of x(k) < E(P, 1). We introduce

the following quadratic Lyapunov function:

V(k) = x>(k)Px(k), (11)

where P = P> ∈ Rn×n is a positive-definite matrix. Here,
consider designing a controller satisfying

V(k + 1) − V(k) < −βV(k), (12)

where β ∈ [0, 1) is a given parameter.
Then, we can obtain the following lemma.

Lemma 1: (12) holds if the following condition holds:

P1 −

 n∑
i=1

τiP2,i + τn+1P3

 � 0, (13)

where P1 and P3 are given by

P1 =

β̄P − Φ>1 PΦ1 ∗ ∗

−K>1 B>PΦ1 −K>1 B>PBK1 ∗

0 0 0

 ,
P3 =

P ∗ ∗

0 0 ∗

0 0 −1

 ,
P2,i is given by

P2,1 = diag(a1, 0, 0, . . . , 0, 0︸         ︷︷         ︸
n−1

,−1, 0, 0, . . . , 0, 0︸         ︷︷         ︸
n−1

, b1),

P2,2 = diag(0, a2, 0, . . . , 0, 0︸      ︷︷      ︸
n−2

, 0,−1, 0, . . . , 0, 0︸      ︷︷      ︸
n−2

, b2),

...

P2,n = diag(0, 0, 0, . . . , 0︸         ︷︷         ︸
n−1

, an, 0, 0, 0, . . . , 0︸         ︷︷         ︸
n−1

,−1, bn),

β̄ := 1 − β, and τ1, τ2, . . . , τn+1 > 0 are design parameters.

Proof : Substituting (10) and (11) into (12), we can obtain

(Φx(k) + BK1e(k))>P(Φx(k) + BK1e(k))
−x>(k)Px(k) < −βx>(k)Px(k),

which can be rewritten asx(k)
e(k)

1


>

P1

x(k)
e(k)

1

 > 0. (14)

(9) can be rewritten asx(k)
e(k)

1


>

P2,i

x(k)
e(k)

1

 ≥ 0, i ∈ {1, 2, . . . , n}. (15)

The condition x(k) < E(P, 1) can be rewritten as
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x(k)
e(k)

1


>

P3

x(k)
e(k)

1

 > 0. (16)

Finally, we can obtain (13) by applying the S-procedure [2]
to (14), (15), and (16). �

Next, consider the case of x(k) ∈ E(P, 1). In this case,
if x(k) ∈ E(P, 1) holds, then x(k + 1) ∈ E(P, 1) must hold.
From this fact, we can obtain the following lemma.

Lemma 2: x(k) ∈ E(P, 1) and x(k + 1) ∈ E(P, 1) hold if the
following condition holds:

P4 −

 n∑
i=1

κiP2,i + κn+1P5

 � 0, (17)

where

P4 =

 −Φ>2 PΦ2 ∗ ∗

−K>2 B>PΦ2 −K>2 B>PBK2 ∗

0 0 1

 ,
P5 = −P3,

and κ1, κ2, . . . , κn+1 > 0 are design parameters.

Proof : The condition x(k + 1) ∈ E(P, 1) can be rewritten
as x(k)

e(k)
1


>

P4

x(k)
e(k)

1

 ≥ 0 (18)

The condition x(k) ∈ E(P, 1) can be rewritten asx(k)
e(k)

1


>

P5

x(k)
e(k)

1

 > 0 (19)

Finally, we can obtain (17) by applying S-procedure to (15),
(18), and (19). �

Here, we define the following diagonal matrices:

Y1 := diag(1/τ1, 1/τ2, . . . , 1/τn),
Y2 := diag(1/κ1, 1/κ2, . . . , 1/κn).

From Lemma 1, Lemma 2, and the result in [17], we can
obtain the following theorem as the main result.

Theorem 1: Problem 1 is reduced to the following BMI
feasibility problem.

Problem 2:

find τn+1 > 0, κn+1 > 0, S � 0, Y1 � 0, Y2 � 0, W1, W2,
Z1

a � 0, Z1
b � 0, Z2

a � 0, Z2
b � 0

subject to

(β̄ − τn+1)S ∗ ∗ ∗ ∗ ∗

0 2S − Y1 ∗ ∗ ∗ ∗

0 0 τn+1 ∗ ∗ ∗

AS + BW1 BW1 0 S ∗ ∗

S 0 0 0 Z1
a ∗

0 0 1n 0 0 Z1
b


� 0, (20)



κn+1S ∗ ∗ ∗ ∗ ∗

0 2S − Y2 ∗ ∗ ∗ ∗

0 0 1 − κn+1 ∗ ∗ ∗

AS + BW2 BW2 0 S ∗ ∗

S 0 0 0 Z2
a ∗

0 0 1n 0 0 Z2
b


� 0,

(21)

where τn+1 ∈ [0, β̄), and κn+1 ∈ [0, 1). The matrices
S ,Y1,Y2 ∈ R

n×n is positive-definite, W1,W2 ∈ R
n×n are un-

constrained, and Z1
a ,Z

1
b ,Z

2
a ,Z

2
b ∈ R

n×n are positive-definite.

Using the solution for Problem 2, the state-feedback
gains K1, K2, the diagonal matrices Σ1

a, Σ1
b, Σ2

a, Σ2
b, and the

matrix P in (11) are obtained as

K1 = W1S −1, K2 = W2S −1,

Σ1
a = Y1(Z1

a )−1, Σ1
b = Y1(Z1

b )−1,

Σ2
a = Y2(Z2

a )−1, Σ2
b = Y2(Z2

b )−1,

P = S −1,

respectively.

Proof : First, consider deriving (20) from (13). The condi-
tion (13) can be rewritten as

Θ1 − Θ>2 Θ−1
3 Θ2 � 0, (22)

where

Θ1 =

(β̄ − τn+1)P ∗ ∗

0 X1 ∗

0 0 τn+1

 ,
Θ2 =

Φ1 BK1 0
I 0 0
0 0 1n

 ,
Θ3 =

P ∗ ∗

0 Σ1
aX1 ∗

0 0 Σ1
bX1

 .
By applying the Schur complement [2] to (22), we can ob-
tain

(β̄ − τn+1)P ∗ ∗ ∗ ∗ ∗

0 X1 ∗ ∗ ∗ ∗

0 0 τn+1 ∗ ∗ ∗

Φ1 BK1 0 P−1 ∗ ∗

I 0 0 0 (Σ1
aX1)−1 ∗

0 0 1n 0 0 (Σ1
bX1)−1


� 0,

where X1 = diag(τ1, τ2, . . . , τn). Pre-/post-multiplying by
block-diag(P−1, P−1, I, I, I, I), we can obtain



(β̄ − τn+1)P−1 ∗ ∗ ∗ ∗ ∗

0 P−1X1P−1 ∗ ∗ ∗ ∗

0 0 τn+1 ∗ ∗ ∗

(A + BK1)P−1 BK1P−1 0 P−1 ∗ ∗

P−1 0 0 0 (Σ1
aX1)−1 ∗

0 0 1n 0 0 (Σ1
bX1)−1


� 0.

(23)
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From P � 0 and X1 � 0, the following relation holds (see,
e.g., [17]):

(P−1 − X−1
1 )X1(P−1 − X−1

1 ) � 0,

which can be rewritten as

P−1X1P−1 − (2P−1 − X−1
1 ) � 0.

Thus, we can obtain (20) by applying this relation to (23)
and defining S := P−1, W1 := K1S , Y1 := X−1

1 , Z1
a :=

(Σ1
a)−1Y1, and Z1

b := (Σ1
b)−1Y1.

Next, consider deriving (21) from (17). By applying
the Schur complement to (17), we can obtain

κn+1P ∗ ∗ ∗ ∗ ∗

0 X2 ∗ ∗ ∗ ∗

0 0 1 − κn+1 ∗ ∗ ∗

Φ BK2 0 P−1 ∗ ∗

I 0 0 0 (Σ2
aX2)−1 ∗

0 0 1n 0 0 (Σ2
bX2)−1


� 0,

where X2 = diag(κ1, κ2, . . . , κn). Pre-/post-multiplying by
block-diag(P−1, P−1, I, I, I, I), we can obtain



κn+1P−1 ∗ ∗ ∗ ∗ ∗

0 P−1X2P−1 ∗ ∗ ∗ ∗

0 0 1 − κn+1 ∗ ∗ ∗

(A + BK2)P−1 BK2P−1 0 P−1 ∗ ∗

P−1 0 0 0 (Σ2
aX2)−1 ∗

0 0 1n 0 0 (Σ2
bX2)−1


� 0.

(24)

From P � 0 and X2 � 0, we can obtain P−1X2P−1 − (2P−1 −

X−1
2 ) � 0. Thus, we can obtain (21) by applying it to (24)

and defining W2 := K2S , Y2 := X−1
2 , Z2

a := (Σ2
a)−1Y2, and

Z2
b := (Σ2

b)−1Y2.
Finally, consider T (x0) in Definition 1. From (12), we

can obtain V(k) < β̄kV(0). Then, from β̄kV(0) = 1, T (x0)
can be obtained as T (x0) = d−logx>0 Px0/logβ̄e. �

In (20), τn+1S is bilinear with respect to decision vari-
ables. Similarly, in (21), κn+1S is also bilinear with respect
to decision variables. Then, the BMI conditions (20) and
(21) become the LMI conditions by fixing the scalars τn+1
and κn+1. Furthermore, τn+1 and κn+1 must be chosen from
the intervals [0, β̄) and [0, 1), respectively. Hence, using the
grid search method, Problem 2 can be solved.

It is desirable that the volume of the ellipsoid E(P, 1) is
small. Then, it is appropriate to add an objective function to
Problem 2. For example, it is expected that the volume of the
ellipsoid E(P, 1) becomes small by minimization of tr(S ). In
this case, Problem 2 with fixed τn+1 and κn+1 becomes the
LMI optimization problem.

Remark 3: If both the difference between Σ1
a and Σ2

a and
the difference between Σ1

b and Σ2
b are sufficiently small, then

the switching law (8) is not required. In this case, Σa (Σb)
can be generated by comparing between each element of Σ1

a
(Σ1

b) and that of Σ2
a (Σ2

b) and choosing a smaller element.

Remark 4: In the notion of uniformly ultimate bounded-
ness, the transient response is not considered. One of the
methods to consider it is to combine the proposed method
with the linear quadratic regulator (LQR). The design prob-
lem of event-triggered LQR is reduced to an LMI optimiza-
tion problem [13], [16]. Hence, we will be able to combine
two methods. Details are future work.

4. Numerical Example

We present a numerical example. As a plant, consider the
following discrete-time linear system:

x(k + 1) =

[
1.1 0.6
0 0.9

]
x(k) +

[
0.9
−1

]
u(k).

When we solve Problem 2, we also consider minimization
of tr(S ).

First, we present the computation result. By solving
Problem 2, we can obtain

τ3 = 0.5, κ3 = 0.08,

S =

[
16.4114 −11.9145
−11.9145 9.3910

]
,

Y1 =

[
0.8591 0

0 0.7761

]
, Y2 =

[
0.9247 0

0 0.8072

]
,

W1 =
[
−8.3551 7.3581

]
,

W2 =
[
−8.7117 7.7853

]
,

Z1
a =

[
550.4661 0

0 521.7361

]
,

Z1
b =

[
427.7691 0

0 427.7691

]
,

Z2
a =

[
852.9398 0

0 686.7578

]
,

Z2
b =

[
427.2944 0

0 427.2944

]
.

From these matrices, we can obtain

Σ1
a =

[
0.0016 0

0 0.0015

]
, Σ1

b =

[
0.0020 0

0 0.0018

]
,

Σ2
a =

[
0.0011 0

0 0.0012

]
, Σ2

b =

[
0.0022 0

0 0.0019

]
.

From observation of these matrices, the switching law in
(8) is not utilized (see Remark 3). Then, Σa and Σb can be
obtained as

Σa =

[
0.0011 0

0 0.0012

]
, Σb =

[
0.0020 0

0 0.0018

]
,

respectively. the state-feedback gains K1,K2 and the matrix
P in the ellipsoid E(P, 1) can be obtained as

K1 =
[
0.7568 1.7438

]
, K2 =

[
0.8999 1.9707

]
,
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Fig. 1 Time response of the state.

Fig. 2 State trajectory.

P =

[
0.7721 0.9795
0.9795 1.3492

]
,

respectively.
Next, we present the state trajectory and the time re-

sponses of the state, the control input, and the number of
communications, where the initial state is given by x(0) =

[10 30]>. Figure 1 shows the time response of the state.
Figure 2 shows the state trajectory. From these figures, we
see that the state converges to the neighborhood of the ori-
gin. After time 15, the state stays within the ellipsoid. Fig-
ure 3 shows the time response of the control input. Figure 4
shows the number of communications. Here, we focus on
only communications for collecting the measured states. In
this example, the maximum number of communications at
each time is 3. That is, (i) the sensor 1 (2)→ the controller,
(ii) the controller → the sensor 2 (1), and (iii) the sensor 2
(1) → the controller. From these two figures, we see that
the number of communications is inhibited in the neighbor-
hood of the origin. We remark that in the method proposed
in [13], communications occur at each time in the neighbor-
hood of the origin.

5. Conclusion

In this paper, we studied event-triggered control of discrete-
time linear systems in which sensors are located in a dis-
tributed way. By the proposed method, unnecessary com-
munications in the neighborhood of the origin can be ex-
cluded. The design problem of event-triggered control is
reduced to an LMI optimization problem.

In event-triggered control studied in this paper, sensors

Fig. 3 Time response of the control input.

Fig. 4 The number of communications.

are distributed, but the controller is centralized. An exten-
sion of the proposed method to decentralized controllers is
one of the future efforts. In this paper, we presented only the
small example, but it is also important to apply the proposed
method to more practical and large-scale systems such as air
conditioning systems and power networks. Since the LMI
optimization problem is solved offline, it is expected that
the online computation time does not become longer. Fur-
ther details on implementations are one of the future efforts.
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