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Performance Analysis of the Interval Algorithm for Random
Number Generation in the Case of Markov Coin Tossing∗
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SUMMARY In this paper we analyze the interval algorithm for random
number generation proposed by Han and Hoshi in the case of Markov coin
tossing. Using the expression of real numbers on the interval [0,1), we first
establish an explicit representation of the interval algorithm with the repre-
sentation of real numbers on the interval [0,1) based one number systems.
Next, using the expression of the interval algorithm, we give a rigorous
analysis of the interval algorithm. We discuss the difference between the
expected number of the coin tosses in the interval algorithm and their up-
per bound derived by Han and Hoshi and show that it can be characterized
explicitly with the established expression of the interval algorithm.
key words: random number generation, interval algorithm, Markov coin
tossing, number systems, performance analysis

1. Introduction

Simulation problems of generating random sequences from
a prescribed information source by using a random sequence
from a given information source are called the random num-
ber generation. In the random number generation random
sequences from a prescribed information sources are called
the target random sequences which we wish to produce and
the random sequence from given information sources are
called the coin random sequences that the target random se-
quences are made from.

There have been several works on the random number
generation in the field of computer science and information
theory. Some interesting relations between random number
generation and information theory have been found in the
papers of Elias [1] and Knuth and Yao [2].

Han and Hoshi [3] studied a variable-to-fixed random
number generation problem. They studied the method of
generating target random sequences of fixed length from
a prescribed information source by using coin random se-
quences of variable length from a given information source.
They proposed a simple algorithm called the interval algo-
rithm and obtained results for its performance analysis.

When coin random sequences are from a stationary
memoryless source, Han and Hoshi [3] established an up-
per bound of the average length of coin random sequences
necessary to create target random sequences. The derived
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bound is characterized with a fraction of two entropies of
given and prescribed sources and is shown to be asymptot-
ically optimal for large length of output sequences. They
further studied an extended case, where coin random se-
quences are from a stationary Markov information source.
We hereafter call the stationary Markov information sources
which outputs coin random sequences the Markov coin toss-
ing. Han and Hoshi [3] also investigated a random number
generation problem of generating a prescribed target random
process using a given coin random process. Watanabe and
Han [4] investigated this random generation problem by the
information spectrum approach [5].

In [6], the author studied the performance analysis of
the interval algorithm for random number generation pro-
posed by Han and Hoshi [3]. Using representation of real
numbers, the author refined Han and Hoshi’s performance
analysis of the interval algorithm. In the above work the au-
thor treated the problem that we wish to generate a target
random variable by using a coin random sequence from a
stationary memoryless source.

In this paper we analyze the interval algorithm for ran-
dom number generation proposed by Han and Hoshi [3] in
the case of Markov coin tossing. We extend the method
developded by the author [6] to this case, deriving several
explicit results.

As a theoretical extension we have an importance on
the study of the random number generation problem in the
case of Markov coin tossing. We also have a practical im-
portance on this study. From a practical point of view infor-
mation resources which output coin random sequence must
be easily accessible and available. On the other hand, in-
formation resources in the real world that we can easily ac-
cess to utilize include several data such as text data, digi-
tally processed audio, image or video data. Most of them
have memory and are mathematically modeled by Markov
information sources. Hence, considering applications of the
random number generation in practical situations such that
we only have a few choices of information resources avail-
able as generators of coin random sequences, we inevitably
face to the study of the random number generation in the
case of Markov coin tossing.

In this paper we derive explicit results on the perfor-
mance analysis of the interval algorithm for random number
generation using an expression of real numbers in the unit
interval [0,1). On the expression of real numbers in the unit
interval, we establish a kind of generalized number system
based on the stochastic structure of the coin random pro-
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cess. Using the above representation of real numbers on the
interval, we find an explicit expression of the interval algo-
rithm. We further present a rigorous analysis of the interval
algorithm using the expression of the algorithm.

We discuss the difference between the expected num-
ber of the coin tosses in the interval algorithm and their up-
per bound derived by Han and Hoshi and show that it can
be characterized explicitly with the established expression
of the interval algorithm.

An explicit representation of the interval algorithm de-
veloped by the author [6] can be extended to the case of
Markov coin tossing. However, this case yields some spe-
cific difficulty in the performance analysis of the interval
algorithm. To state this difficulty we define a map ϕ repre-
senting the interval algorithm. We further define a random
variable S which generates the target random variable X by
ϕ, that is, ϕ(S ) = X. Precise definitions of those quantities
will be stated in Sects. 2 and 4. Performance of the inter-
val algorithm is measured by an expected number of coin
tossing denoted by L̄. In the case where coin random se-
quences are from a stationary memoryless source we have
H(S ) = L̄H, where H is the entropy rate of the descrete
memoryless source. In this case the performance analy-
sis for the interval algorithm is reduced to an evaluation of
H(S ). However, as stated in [3], this equality does not hold
in general in the case of Markov coin tossing. In this paper
we present a class of stationary Markov information sources
having a symmetrical property on their stochastic matrices.
We prove that for Markov information sources belonging to
this class the above equality holds. For Markov informa-
tion sources not belonging to this class, another method of
evaluating L̄ will be necessary.

The results of this paper were presented in part at [7],
where several arguments are omitted because of page con-
straint. Furthermore, it contains a mistake. In this paper
we provide those arguments and give a complete proof of
our main result on the performance analysis of interval al-
gorithm. We also fix the above mistake in [7].

2. Interval Algorithm for Random Number Genera-
tion

Let X be random variables taking values in a finite set X :=
{0, 1, · · · ,N − 1}. Let pX := {pX(x)}x∈X be a probability
distribution of X. Let {Yt}

∞
t=1 be a stationary Markov source.

For each t = 1, 2, · · · , Yt takes values in a finite set Y :=
{0, 1, · · · ,M − 1}. The stationary Markov source {Yt}

∞
t=1 is

specified with the M × M stochastic matrix denoted by P =

[Pi j], where

Pi j = Pr{Yt+1 = j|Yt = i}, for t = 1, 2, · · · .

We also write Pi j, (i, j)×Y2 as Pi j = pY ( j|i). Let Y∗ denote
the set of all finite sequence emitted from the above infor-
mation source. We write a string from information source
as ym

l := yl yl+1 · · · ym ∈ Y
∗. If l > m, the string ym

l means
null string denoted by λ. When l = 1, we frequently omit
the suffix 1 of ym

1 and write ym = y1y2 · · · ym. Let pY (ym
l )

denote the probability of ym
l . Since the information source

is a stationary Markov source, we have

pY (ym
l ) = pY (yl)Pylyl+1 · · · Pym−1ym .

Here {pY (a)}a∈Y is a stationary distribution computed from
P. The probability of the null string λ assumes to be one.

In this paper we deal with the variable to fixed ran-
dom number generation problem of generating target ran-
dom variable X by using the coin random sequence Y1
Y2 · · · Yi · · · from a stationary Markov information sources
{Yt}

∞
t=1. A formal definition of the variable to fixed ran-

dom number generation problem is the following. Repeated
tosses of the coin random variable Y produces random se-
quence Y1,Y2, · · · from a Markov source. The coin toss ter-
minates at some finite time L to generate a random variable
X with a prescribed distribution pX . L is a random vari-
able specified in terms of a deterministic two valued func-
tion such that f (Y i) = ‘Continue’ for 1 ≤ i ≤ L − 1 and
f (YL) =‘Stop’. The output X is expressed as X = ψ(YL)
with some deterministic function ψ.

For the given generating algorithm ( f , ψ) of random
number generation let Sx, x ∈ X be a set of all input strings
yl ∈ Y∗ that generate x. It is obvious that Sx, x ∈ X are
disjoint. Set

S :=
∑
x∈X

Sx ,

where we have used the notation ‘
∑

’ for the sum of disjoint
sets instead of ‘∪’. Hereafter, to distinguish the sum of dis-
joint sets from the union of sets, we use the notation ‘+’ or
‘
∑

’ for the sum of disjoint sets.
In the above random number generation problem Han

and Hoshi [3] proposed a simple algorithm called interval
algorithm and evaluated its performance. Let I = [0, 1).
Define the cumulative probabilities for pY by

cY (0) := 0,

cY (y) :=
∑
i<y

pY (i), 1 ≤ y ≤ M − 1.

Using these probabilities, define the decomposition of I by

IY (y) := [cY (y), cY (y) + pY (y)).

For pX , we use the same notations and definitions as those
for pY . For given y1 ∈ Y, define the cumulative probabilities
for pY (·|y1) = {pY (y2|y1)}y2∈Y

by

cY (0|y1) := 0,

cY (y2|y1) :=
∑
i<y2

pY (i|y1), 1 ≤ y2 ≤ M − 1.

For k = 1, 2, · · · , and any string yk = y1y2 · · · yk ∈ Y
k, de-

fine the semi-open interval IY (yk) := [LY (yk), UY (yk)) by the
following recursions:

LY (y1) = cY (y1),
UY (y1) = cY (y1) + pY (y1)
LY (yi) = LY (yi−1) + pY (yi−1)cY (yi|yi−1),
UY (yi) = LY (yi) + pY (yi), for 2 ≤ i ≤ k.

 (1)
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The procedure of computing upper and lower end points of
the interval corresponding to a given sequence is equivalent
to the encoding algorithm in the arithmetic coding. On inter-
vals generated by the above recursion we have the following
property.

Property 1: For any n ≥ 2, any an ∈ Yn, we have that
for any 1 ≤ m ≤ n − 1,

[LY (am), LY (an)) =

n∑
k=m+1

∑
y<ak

IY (ak−1y), (2)

[UY (an),UY (am)) =

n∑
k=m+1

∑
y>ak

IY (ak−1y). (3)

Proof of Property 1 is given in Appendix. This property
will be a basis of a key important result, which yields an
explicit representation of the interval algorithm. We derive
this key result in the next section.

Interval algorithm by Han and Hoshi [3] can be stated
in the following.
Interval Algorithm (Han and Hoshi [3]):

1) Set i = k = 1, y0 = λ.
2) Given yi−1, generate a letter yi ∈ Y according to the

transition probability pY (yi|yi−1) of the coin random
variable. Here for i = 1, the quantity pY (y1|y0) =

pY (y1|λ) = pY (y1) is the stationary probability of the
coin random variable.

3) Compute IY (yi) = [LY (yi),UY (yi)) according to the re-
cursion (1).

4) If IY (yi) ⊆ IX(x) for some x ∈ X, then output x as the
value of target random variable X and stop the algo-
rithm.

5) Set i = k + 1 and go to 2).

In the above interval algorithm the target random vari-
able X can exactly be produced.

3. An Explicit Representation of the Interval Algo-
rithm

In this section we give two expressions of real numbers in
the interval I = [0, 1) on the number system. There is some
complementary relation between the above two expressions.
Using those expressions we give an explicit form of the in-
terval algorithm.

3.1 Representation of Real Numbers

For z ∈ [0, 1), define the sequence {ai}
∞
i=1 ∈ Y

∗ such that

z ∈ IY (ai), i = 1, 2, · · · .

It can easily be verified that using a1, a2, · · · , z can be ex-
pressed in the following manner:

z=
∑
k≥1

pY (ak−1)
∑
a<ak

pY (a|ak−1)

=
∑
k≥1

pY (ak−1)cY (ak |ak−1).

Here we assume that a0 = λ for k = 1. The same rule of
notation will be used in the subsequent arguments. We call
the above expression the pY -ary representation of the real
number z and write as

z = 0.a1a2a3 · · · . (4)

In the above expression, if we wish to express z with the sum
of the number having the expression

0.a1a2a3 · · · at00 · · ·

and the other remaining term, we write

z = 0.a1a2 · · · at + 0.0a1 0a2 · · · 0at at+1 · · · , (5)

where the second term is defined by

0.0a1 0a2 · · · 0at at+1 · · · :=
∑

k≥t+1

pY (ak−1)cY (ak |ak−1).

Next, for z ∈ [0, 1), set z̄ = 1 − z. Using the sequence {ai}i≥1
appearing in the pY -ary representation of the real number z,
z̄ has an expression

z̄ =
∑
k≥1

pY (ak−1)
∑
a>ak

pY (a|ak−1).

Then, adopting the notation

cY (ā|ak−1) :=
∑
i>a

pY (i|ak−1) ,

we obtain the following expression

z̄ =
∑
k≥1

pY (ak−1)cY (āk |ak−1).

We call the above expression the pY -ary co-
representation of the real number z and write as

z̄ = 0.ā1ā2ā3 · · · . (6)

Let z(n) denote the real number which is obtained by round-
ing off z to n-digits in the pY -ary representation, that is,

z(n) := 0.a1a2 · · · an.

Similarly, let z̄(n) denote the real number which is obtained
by rounding off z̄ to n-digits in the pY -ary co-representation,
that is,

z̄(n) := 0.ā1ā2 · · · ān.

It can easily be verified that the pY -ary representation and
the pY -ary co-representation of the real number z satisfy
the following.

Property 2:

a) For any i, z ∈ IY (ai).
b) cY (ai|ai−1) + cY (āi|ai−1) = 1 − pY (ai|ai−1).
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c) For z = 0.a1a2 · · · an · · · ∈ [0, 1), we have

z(n) + z̄(n) = 1 − pY (an).

From Properties 1 and 2, we have the following lemma.

Lemma 1: We assume that z has the following pY -ary ex-
pression:

z = 0.a1a2 · · · an · · · ∈ [0, 1).

Then for any m ≥ 1, we have the following:

[LY (am), z) =
∑

k≥m+1

∑
y<ak

IY (ak−1y), (7)

[z,UY (am)) =
∑

k≥m+1

∑
y>ak

IY (ak−1y). (8)

Proof: By Property 1, we have

[LY (am), z(n)) = [LY (am), LY (an))

=

n∑
k=m+1

∑
y<ak

IY (ak−1y), (9)

[z(n) + pY (an),UY (am)) = [UY (an),UY (am))

=

n∑
k=m+1

∑
y>ak

IY (ak−1y). (10)

Note that

lim
n→∞

z(n) = lim
n→∞

(z(n) + pY (an)) = z.

Hence by letting n→ ∞ in (9) and (10), we have

[LY (am), z) =
∑

k≥m+1

∑
y<ak

IY (ak−1y),

[z,UY (am)) =
∑

k≥m+1

∑
y>ak

IY (ak−1y),

completing the proof. �
Lemma 1 plays an important role in deriving an ex-

plicit representation of the interval algorithm. The detail of
derivation is stated in Sect. 5.

Kanaya [8], Oohama et al. [9] point out that the pY -
ary representation has a close connection with the arithmetic
coding and the Markov shift. In the following we explain
this connection. LetA be a set of y2 ∈ Y2 such that pY (y2) >
0. Note that∑

y2∈A

IY (y2) = I,
∑
y∈Y

IY (y) = I.

Define τY : I → I and φY : I → Y by

τY (z) = (pY (y1|y2))−1
(
z − LY (y2)

)
+ LY (y1),

for y2 ∈ A and z ∈ IY (y2),
φY (z) = y, for y ∈ Y and z ∈ IY (y).

The map τY is called the Markov shift in the terminology

Fig. 1 The maps τY and φY for P given by (11). The quantities c1 =

4/35, c2 = 23/35, and c3 = 59/75 satisfies τ2
Y (ci) = ci, i = 1, 2, 3.

of ergodic theory since it can be regarded as a shift on the
Markov process specified with P. As an example of (τY , φY ),
we consider the case where M = |Y| = 3 and

P =

0 0.5 0.5
0.25 0.5 0.25
0.25 0.25 0.5

 . (11)

In this example A = Y2 − {(0, 0)}. The stationary distri-
bution is (pY (0), pY (1), pY (2)) = (0.2, 0.4, 0.4). The maps
τY and φY for P given by (11) are shown in Fig. 1. Let
z ∈ [0, 1) be an initial value. We consider the sequence
φY (z)φY (τY (z)) · · · φY (τk−1

Y (z)) generated by the initial value
z, the map τY and the quantizer φY . Then, we have the fol-
lowing property.

Property 3 (Kanaya [8], Oohama et al. [9]):

a) IY (a1a2 · · · ak) is equal to the set of initial values z gen-
erating φY (z)φY (τY (z)) · · · φY (τk−1

Y (z)) = a1a2 · · · ak.
b) The sequence {φY (τk−1

Y (z))}∞k=0 coincides with the pY -
ary representation of z.

c) The procedure of producing sequence using iteration of
τY and quantization by φY is equivalent to the decoding
process in the arithmetic coding.

The followings are two examples of pY -ary representa-
tions of z ∈ I.

Example 1: We consider the example where P is given by
(11). The map τY is shown in Fig. 1. In this figure the quan-
tities c1 = 4/35, c2 = 23/35, and c3 = 59/75 satisfies
τ2

Y (ci) = ci, i = 1, 2, 3. The line segments Li, i = 1, 2 are
related to the computation of ci, i = 1, 2. Those are explic-
itly given by

L1 :τY (z) = 4z + 0.2 for z ∈ [0, 0.2),
L2 :τY (z) = 2z − 1.2 for z ∈ [0.6, 0.7).

The line segments Li, i = 3, 4 are related to the computation
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of c3. Those are explicitly given by

L3 :τY (z) = 4z − 1.4 for z ∈ [0.5, 0.6),
L4 :τY (z) = 4z − 2.6 for z ∈ [0.7, 0.8).

It can be seen from Fig. 1 that we have

φY (c1) = 0, φY (τY (c1)) = 2,
φY (c2) = 2, φY (τY (c2)) = 0,
φY (c3) = 2, φY (τY (c3)) = 1.

 (12)

Then by (12) and Property 3 parts a) and b), the pY -ary rep-
resentations of ci, i = 1, 2, 3 are

c1 = 0.02020202 · · · , c2 = 0.20202020 · · · ,
c3 = 0.21212121 · · · .

Example 2: We consider the case where M = |Y| = 3 and

P =

0.25 0.25 0.5
0.25 0.5 0.25
0.25 0.25 0.5

 . (13)

In this example A = Y2. The stationary distribution is
(pY (0), pY (1), pY (2)) = (1/4, 1/3, 5/12). The maps τY and
φY for P given by (13) are shown in Fig. 2. In this figure the
quantities c′1 = 1/7, c′2 = 7/9 satisfies τ2

Y (c′i) = c′i , i = 1, 2.
In Fig. 2, the line segments Li, i = 1, 2 are related to the
computation of c′1. Those are explicitly given by

L1 :τY (z) = (10/3)z + 1/6 for z ∈ [1/8, 1/4),
L2 :τY (z) = (12/5)z − 7/5 for z ∈ [7/12, 11/16).

The line segments Li, i = 3, 4 are related to the computation
of c′2. Those are explicitly given by

L3 :τY (z) = 5z − 23/12 for z ∈ [1/2, 7/12),

Fig. 2 The maps τY and φY for P given by (13). The quantities c′1 = 1/7,
c′2 = 7/9 satisfy τ2

Y (c′i ) = c′i , i = 1, 2.

L4 :τY (z) = (16/5)z − 39/20 for z ∈ [11/16, 19/24),

It can be seen from Fig. 2 that we have

φY (c′1) = 0, φY (τY (c′1)) = 2,
φY (c′2) = 2, φY (τY (c′2)) = 1.

}
(14)

Then by (14) and Property 3 parts a) and b), the pY -ary rep-
resentations of c′i , i = 1, 2 are

c′1 = 0.02020202 · · · , c′2 = 0.21212121 · · · .

3.2 An Explicit Representation of the Interval Algorithm

In this subsection, we give an explicit form of the interval
algorithm by using the pY -ary representation and pY -ary co-
representation of the real number in the interval I = [0, 1).
It can easily be seen from the definition of the interval al-
gorithm the interval IX(x) = [LX(x), UX(x)) corresponding
to the target random number x ∈ X has a form of a disjoint
sum of the intervals IY (·). In our previous work we obtained
an explicit form of the disjoint sum in the case where the
source {Yt}

∞
t=1 representing coin tossings is a discrete mem-

oryless source. In the present case where {Yt}
∞
t=1 is a station-

ary Markov source the same result holds. This result is as
follows.

Theorem 1: For x ∈ X, let IX(x) = [LX(x),UX(x)) be an
interval corresponding to the target random variable X tak-
ing values in X. Suppose that lower and upper endpoints
LX(x) and UX(x) have the following pY -ary representation
and pY -ary co-representations:

LX(x)=0.a1a2 · · · , LX(x) = 0.ā1ā2 · · · ,

UX(x)=0.b1b2 · · · .

For each x ∈ X, there exists an integer t = t(x) such that rep-
resentations of LX(x) and UX(x) have first different values at
the t-th place at their pY -ary representations. Then, we have

pX(x) = pY (at−1)
[ ∑

at<a<bt

pY (a|at−1)

+
∑

k≥t+1

{
pY (ak−1

t |at−1)cY (āk |ak−1)

+pY (bk−1
t |at−1)cY (bk |bk−1)

} ]
, (15)

where∑
at<a<bt

pY (a|at−1) = 0

when bt = at + 1. Furthermore, we have the following de-
scription of IX(x) with the disjoint sum of intervals corre-
sponding to the target random sequences in the interval al-
gorithm:

IX(x) =
∑

at<y<bt

IY (at−1y)
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Fig. 3 Upward and downward sequences of intervals.

+
∑

k≥t+1

∑
y>ak

IY (ak−1y) +
∑
y<bk

IY (bk−1y)

 . (16)

Proof of the equality (15) in Theorem 1 is quite parallel
with that of the similar equality with respect to pX(x), x ∈ X
in [6]. For the equality (16) in Theorem 1, we give a simple
and rigorous proof of this equality without depending on the
equality (15). Lemma 1 is a key result for the proof. This
lemma together with some simple observations on the pY -
representations of two endpoints LX(x) and UX(x) of IX(x),
x ∈ X yields (16). The detail of the proof of Theorem 1 is
given in Sect. 5.

It can be seen from the above presentation that the in-
terval

∑
at<y<bt

IY (at−1y) is in the middle of the interval IX(x)
and that the sequence of intervals {

∑
y>ak+1

IY (aky)}k≥t en-
tirely covers the lower part of the interval IX(x). Those in-
tervals are called downward sequences in Han and Hoshi
[3]. We also know that the sequence of intervals {

∑
y<bk

IY (bk−1y) }k≥t+1 in the third term in the right member of the
above equation entirely covers the upper part of IX(x). This
sequence of the intervals are called upward sequence in Han
and Hoshi [3]. The result of Theorem 1 can be regarded
as giving an explicit form of upward/downward sequences
of intervals in the interval algorithm. Those sequences of
intervals is shown in Fig. 3.

Based on the expression of pX(x), x ∈ X in Theorem 1,
set

Dt,x :=
{
yt : yt−1 = at−1, at < yt < bt

}
. (17)

Furthermore, for l ≥ t + 1, set

Dl,x :=
{
yl : yl−1 = al−1, al < yl

}
, (18)

Ul,x :=
{
yl : yt−1 = at−1, yl−1

t = bl−1
t , yl < bl

}
. (19)

Then, we have the following.

S =
∑
x∈X

Dt,x +
∑
l≥t+1

Dl,x +
∑
l≥t+1

Ul,x

 . (20)

For x ∈ X, define

Dx := Dt,x +
∑
l≥t+1

Dl,x, Ux :=
∑
l≥t+1

Ul,x.

It is obvious thatSx = Dx+Ux, x ∈ X. In the remaining part
of this section we present two examples of random number
generation. For each example, we compute Sx,Dx, andUx
for x ∈ X.

Example 3: We consider the case where M = 3, N = 4.
The target random variable X has the following distribution:

pX = (pX(0), pX(1), pX(2), pX(3))
= (4/35, 19/35, 68/525, /16/75).

We assume that the stationary Markov process {Yt}t=1 spec-
ified with (11) in Example 1 generates coin random se-
quences. The pY -array representation for this example is
discussed in Example 1. In the random number generation
problem treated here the choice of pX is closely related to
the periodic point of the map τY defining the Markov shift.
In fact, we have LX(1) = 4/35 = c1, LX(2) = 23/35 = c2,
LX(3) = 59/75 = c3, where ci, i = 1, 2, 3 are the same quan-
tity as those in Example 1. Those are the periodic points
of τY satisfying τ2

Y (ci) = ci, i = 1, 2, 3. Using the pY -array
representations of ci, i = 1, 2, 3 in Example 1, we have

LX(1) = 0.02020202 · · · , LX(2) = 0.20202020 · · · ,
LX(3) = 0.21212121 · · · .

Applying the formula (16) on IX(x), x ∈ X in Theorem 1 to
the present example, we have the following:

IX(0) =
∑
k≥0

∑
y<2

IY (0[20]ky),

IX(1) = IY (1) +
∑
k≥1

∑
y>0

IY ([02]ky)

+
∑
k≥1

∑
y<2

IY ([20]ky),

IX(2) =
∑
k≥0

∑
y>0

IY (2[02]ky)

+
∑
k≥1

∑
y<2

IY (2[12]k1y) + IY (2[12]k+10)

 ,
IX(3) =

∑
k≥0

IY (2[12]k2).

Hence the sets Sx,Dx, andUx for x = 0, 1, 2, 3 are

S0 = U0 =
{
0[20]k0, 0[20]k1

}
k≥0

,

S1 = D1 +U1,D1 = {1} +
{
[02]k1, [02]k2

}
k≥1

,

U1 =
{
[20]k0, [20]k1

}
k≥1

,

S2 = D2 +U2,D2 =
{
2[02]k1, 2[02]k2

}
k≥1

,

U2 =
{
2[12]k10, 2[12]k11, 2[12]k+10

}
k≥0

,
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S3 = D3 =
{
2[12]k2

}
k≥0

.

Example 4: We consider the case where M = 3, N = 3.
The target random variable X has the following distribution:

pX = (pX(0), pX(1), pX(2)) = (1/7, 40/63, 2/9).

We assume that the stationary Markov process {Yt}t=1 spec-
ified with (13) in Example 2 generates coin random se-
quences. The pY -array representation for this example is
discussed in Example 2. In the random number generation
problem treated here the choice of pX is closely related to
the periodic point of the map τY defining the Markov shift.
In fact, we have LX(1) = 1/7 = c′1, LX(2) = 7/9 = c′2,
where c′i , i = 1, 2 are the same quantity as those in Example
2. Those are the periodic points of τY satisfying τ2

Y (c′i) = c′i ,
i = 1, 2. Using the pY -array representations of c′i , i = 1, 2 in
Example 2, we have

LX(1) = 0.02020202 · · · , LX(2) = 0.21212121 · · · .

Applying the formula (16) on IX(x), x ∈ X in Theorem 1 to
the present example, we have the following:

IX(0) =
∑
k≥0

∑
y<2

IY (0[20]ky),

IX(1) = IY (1) +
∑
k≥1

∑
y>0

IY ([02]ky)

+
∑
k≥0

IY (2[12]k0) +
∑
y<2

IY ([21]k+1y)

 ,
IX(2) =

∑
k≥0

IY (2[12]k2).

Hence the sets Sx,Dx, andUx for x = 0, 1, 2 are

S0 = U0 =
{
0[20]k0, 0[20]k1

}
k≥0

,

S1 = D1 +U1,D1 = {1} +
{
[02]k1, [02]k2

}
k≥1

,

U1 =
{
2[12]k0, [21]k+10, [21]k+11

}
k≥0

,

S2 = D2 =
{
2[12]k2

}
k≥0

.

4. Performance Analysis of the Interval Algorithm

In this section we present a rigorous performance analysis
of the interval algorithm using the expression of the interval
algorithm we gave in the previous section.

4.1 Some Preliminaries

We define several quantities necessary for describing our re-
sult on the performance analysis of the interval algorithm.
Let S ∈ S be a random variable with the distribution

Pr
{
S = yl ∈ S

}
= pY (y1)pY (y2|y1) · · · pY (yl|yl−1).

For yl ∈ S define the map ϕ : S → X such that

ϕ(yl) := x if yl ∈ Dl,x or yl ∈ Ul,x . (21)

Define ϕ1 : S → {0, 1} by

ϕ1(yl) :=
{

0 if yl ∈ Dl,x
1 if yl ∈ Ul,x .

(22)

Set V := ϕ1(S ). Furthermore, define the map ϕ2 : S → Y2

by ϕ2(yl) = (yl−1, yl). Set W := ϕ2(S ). For each (a′, a)
∈ Y × (Y − {0}), consider the set of integers l that satisfy
yl+1 ∈ Dl+1,x and (yl, yl+1) = (a′, a). Let l1,a′,a, l2,a′,a, · · · be
its elements arranged in the increasing order. By definition
it is obvious that

t − 1 ≤ l1,a′,a < l2,a′,a < · · · < lk,a′,a < lk+1,a′,a < · · · .

Similarly, for each (b′, b) ∈ Y × (Y − {M − 1}), consider
the set of integers l satisfying yl+1 ∈ Ul+1,x and (yl, yl+1) =

(b′, b). Let l̃1,b′,b, l̃2,b′,b, · · · be its elements arranged in the
increasing order. By definition it is obvious that

t ≤ l̃1,b′,b < l̃2,b′,b < · · · < l̃k,b′,b < l̃k+1,b′,b < · · · .

Let

pS |VWX(ylk,a′ ,a+1|0, a′, a, x), k = 1, 2, · · · ,

denote conditional probabilities of S = ylk,a′ ,a+1 for given
V = 0,W = (a′, a), and X = x. Let pS |VWX(·|0, a′, a, x)
denote the probability distribution which consists of those
probabilities. Similarly, let

pS |VWX(yl̃k,b′ ,b+1|1, b′, b, x), k = 1, 2, · · · ,

denote conditional probabilities of S = yl̃k,b′ ,b+1 for given
V = 1,W = (b′, b), and X = x. Let pS |VWX(·|1, b′, b, x)
denote the probability distribution which consists of those
probabilities. In the remaining part of this subsection we
compute the above two probability distributions, which will
be useful for later arguments on the performance analysis of
the interval algorithm. By the expression of pX(x) using the
coin random sequences we obtain

Pr
{
S = ylk,a′ ,a+1,V = 0,W = (a′, a), X = x

}
= Pr

{
Y t−1 = at−1,Y lk,a′ ,a+1

t = alk,a′ ,a
t a

}
= pY (alk,a′ ,a

t a|at−1)pY (at−1)
(a)
= pY (alk,a′ ,a

t a|at−1)pY (at−1), (23)

where if l1,a′,a = t − 1, we define al1,a′ ,a
t = λ. Step (a) fol-

lows from the Markov property of coin random sequences.
Similarly, we obtain

Pr
{
S = yl̃k,b′ ,b+1,V = 1,W = (b′, b), X = x

}
= pY (bl̃k,b′ ,b

t b|at−1)pY (at−1). (24)

Set
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η0(a′, a, x|at−1) :=
∑
k≥1

pY (alk,a′ ,a
t a|at−1), (25)

η1(b′, b, x|at−1) :=
∑
k≥1

pY (bl̃k,b′ ,b
t b|at−1). (26)

From (23) and (25), we have

Pr
{
V = 0,W = (a′, a), X = x

}
=

∑
k≥1

1

× Pr
{
S = ylk,a′ ,a+1,V = 0,W = (a′, a), X = x

}
=

∑
k≥1

pY (alk,a′ ,a
t a|at−1)pY (at−1)

= η0(a′, a, x|at−1)pY (at−1). (27)

Similarly, from (24), and (26), we have

Pr
{
V = 1,W = (b′, b), X = x

}
= η1(b′, b, x|at−1)pY (at−1). (28)

From (23) and (24), we have

pS |VWX(ylk,a′ ,a+1|0, a′, a, x)

= Pr
{
S = ylk,a′ ,a+1

∣∣∣ V = 0,W = (a′, a), X = x
}

=
pY (alk,a′ ,a

t a|at−1)
η0(a′, a, x|at−1)

. (29)

Similarly, from (24) and (28), we have

pS |VWX(yl̃k,b′ ,b+1|1, b′, b, x)

=
pY (bl̃k,b′ ,b

t b|at−1)
η1(b′, b, x|at−1)

. (30)

Define two probability distributions on positive integers by

p(0)
Y (·|a′, a, x, at−1)

:=
(
pY (alk,a′ ,a

t a|at−1)/η0(a′, a, x|at−1)
)

k=1,2,···
,

p(1)
Y (·|b′, b, x, at−1)

:=
(
pY (bl̃k,b′ ,b

t b|at−1)/η1(b′, b, x|at−1)
)

k=1,2,···
.

Then we have

pS |VWX(·|0, a′, a, x) = p(0)
Y (·|a′, a, x, at−1), (31)

pS |VWX(·|1, b′, b, x) = p(1)
Y (·|b′, b, x, at−1). (32)

4.2 Performance Evaluation of the Interval Algorithm

In this subsection we state our main result on the perfor-
mance analysis of the interval algorithm. In the follow-
ing arguments, H(·) designates the entropy of a probability
distribution or a random variable and D(·||·) designates the
Kullback-Leibler divergence between two probability distri-
butions.

For each i ∈ Y, let Y2(i) be a random variable with the

distribution {Pi j}
M−1
j=0 . Entropy rate of {Y t}

∞
t=1 is the follow-

ing:

H(Y2|Y1) =

M−1∑
i=0

pY (i)
M−1∑
j=0

Pi j[− log Pi j]

=

M−1∑
i=0

pY (i)H(Y2(i)).

Define

Hmin(Y2(·)) := min
0≤i≤M−1

H(Y2(i)), (33)

Hmax(Y2(·)) := max
0≤i≤M−1

H(Y2(i)). (34)

Then we have

Hmin(Y2(·)) ≤ H(Y2|Y1) ≤ Hmax(Y2(·)).

Here we have a certain nontrivial class of information
sources where the above two bounds Hmin(Y2(·)) and
Hmax(Y2(·)) match. For given Y1 = y1 ∈ Y, we define a
probability distribution Qy1 by

Qy1 := pY (·|y1) = {Py1y2 }y2∈Y

Let S (Y) denote the representation of the symmetric group
of permutations of Y by the |Y| × |Y| permutation matrix.
We consider the following condition.

Condition: We call that the stochastic matrix P satisfies
a symmetrical property if for any y1, y

′
1 ∈ Y, there exists

Π ∈ S (Y) such that Qy′1
= Qy1Π.

Then we have the following.

Lemma 2: If the stochastic matrix P of the stationary
Markov information source {Yt}t=1,2,··· satisfies a symmetri-
cal property, we have

Hmin(Y2(·)) = H(Y2|Y1) = Hmax(Y2(·)).

Proof: Let imin ∈ Y be the symbol i such that it at-
tains Hmin(Y2(·)) defined by (33). Similarly, let imax ∈ Y be
the symbol i such that it attains Hmax(Y2(·)) defined by (34).
Since P satisfies a symmetrical property, we have that

Qimin = QimaxΠ for some Π ∈ S (Y). (35)

Then we have the following chain of equalities:

Hmin(Y2(·)) = H(Qimin )
(a)
= H(QimaxΠ)

(b)
= H(Qimax )

= Hmax(Y2(·)).

Step (a) follows from (35). Step (b) follows from that the en-
tropy is invariant under the permutation on the components
of the probability vector Qimax . �

In the following we show three examples of P with a
symmetrical property.

Example 5: We consider the case where M = 3. Set
θi := P0i, i = 0, 1, 2. The following three stochastic ma-
trices Pi, i = 1, 2, 3 are examples of P having a symmetrical
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property.

P1 =

 θ0 θ1 θ2
θ0 θ1 θ2
θ0 θ1 θ2

 , P2 =

 θ0 θ1 θ2
θ1 θ2 θ0
θ2 θ0 θ1

 , P3 =

 θ0 θ1 θ2
θ0 θ2 θ1
θ0 θ1 θ2

 .
The above three examples have some specific properties.
When P = P1, the source becomes the stationary memo-
ryless source specified with pY = (pY (0), pY (1), pY (2)) =

(θ0, θ1, θ2). P2 is a doubly stochastic matrix. When we
choose θ0 = θ1 = 0.25, θ2 = 0.50 in P3, P = P3 coincides
with the stochastic matrix in Example 2.

The efficiency of the interval algorithm is measured by
the average number of coin tosses necessary to obtain the
target random variable. We denote it by L̄. According to
Han and Hoshi [3], we have the following:

Lemma 3 (Han and Hoshi [3]):

L̄Hmin(Y2(·)) ≤ H(S ) ≤ L̄Hmax(Y2(·)).

Specifically, if the stochastic matrix P of the stationary
Markov information source {Yt}t=1,2,··· satisfies a symmetri-
cal property, we have L̄H(Y2|Y1) = H(S ).

From this lemma we can see that an evaluation of L̄ is
reduced to an estimation of upper bound of H(S ). On the
upper bound of this quantity, we have the following lemma.

Lemma 4:

H(S ) ≤ H(X) + log{2M(M − 1)} + ζ, (36)

where ζ := H(S |VWX). For the quantity ζ, we have

ζ =

N−1∑
x=0

pY (at(x)−1)

M−1∑
a′=0

M−2∑
a=0

η0(a′, a, x|at−1)

× H
(
p(0)

Y (·|a′, a, x, at−1)
)

+

M−1∑
b′=0

M−1∑
b=1

η1(b′, b, x|at−1)

× H
(
p(1)

Y (·|b′, b, x, at−1)
)}
. (37)

Proof: We first prove (36). We have the following:

H(S ) = H(ϕ(S )ϕ1(S )ϕ2(S )S ) = H(XVWS )
= H(X) + H(VW |X) + H(S |VWX)
≤ H(X) + log{2M(M − 1)} + H(S |VWX),

where the last inequality follows from that V is a binary ran-
dom variable and that W takes values in Y × (Y − {M − 1})
if V = 1 and takes values in Y × (Y − {0}) if V = 0. From
(27), (28), (31), and (32), we have (37). �

Han and Hoshi [3] used several complicated arguments
to derive the upper bound of H(S |VWX). Their result is the
following.
Theorem A(Han and Hoshi[3]):

H(X)
Hmax(Y2(·))

≤ L̄ ≤
H(X)

Hmin(Y2(·))
+

log{2M(M − 1)}
Hmin(Y2(·))

+
h(pmax)

(1 − pmax)Hmin(Y2(·))
, (38)

where

pmax := max
(y1,y2)∈Y2

Py1y2

and h(·) is the binary entropy function.
Define the geometrical distribution p∗ with parameter

pmax by

p∗ :=
(
pmax

k−1(1 − pmax)
)

k=1,2,···

Our main result on the performance analysis of the interval
algorithm is the following.

Theorem 2:

H(X)
Hmax(Y2(·))

≤ L̄ ≤
H(X)

Hmin(Y2(·))
+

log{2M(M − 1)}
Hmin(Y2(·))

+
h(pmax)

(1 − pmax)Hmin(Y2(·))
−

∆

Hmin(Y2(·))
, (39)

where ∆ is a nonnegative number defined by

∆ =

N−1∑
x=0

pY (at(x)−1)

M−1∑
a′=0

M−1∑
a=1

η0(a′, a, x|at−1)

× D
(

p(0)
Y (·|a′, a, x, at−1)

∣∣∣∣∣∣ p∗
)

+

M−1∑
b′=0

M−2∑
b=0

η1(b′, b, x|at−1)

× D
(

p(1)
Y (·|b′, b, x, at−1)

∣∣∣∣∣∣ p∗
)}
. (40)

Specifically, if the stochastic matrix P of the stationary
Markov information source {Yt}t=1,2,··· satisfies a symmetri-
cal property, we have

H(X)
H(Y2|Y1)

≤ L̄ ≤
H(X)

H(Y2|Y1)
+

log{2M(M − 1)}
H(Y2|Y1)

+
h(pmax)

(1 − pmax)H(Y2|Y1)
−

∆

H(Y2|Y1)
. (41)

Proof of Theorem 2 is given in the next section. Let the
upper bound of L̄ by Han and Hoshi [3] in (38) be denoted
by L̄HH. Then our upper bound of L̄ in Theorem 2 is

L̄ ≤ L̄HH −
∆

Hmin(Y2(·))
. (42)

Note that ∆ is nonnegative and may almost always be pos-
itive. Hence our upper bound improves L̄HH. The bound
(42) is equivalent to L̄HH − L̄ ≥ ∆/Hmin(Y2(·)), implying that
the quantity ∆/Hmin(Y2(·)) serves as a lower bound on the
deviation of L̄HH from the true value of L̄.
Remark: In [7], the author made a mistake in the derivation
of the upper bound of L̄. Hence the upper bound of L̄ given
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by (8) in [7] is incorrect. This upper bound should be re-
placed by that of L̄ given by (39) in this paper. The formula
of ∆ given by (9) in [7] is also not appropriate. This formula
should be replated by that of ∆ given by (40) in this paper.

5. Proofs of Theorems 1 and 2

In this section we prove Theorems 1 and 2. We first prove
Theorem 1. We next present Lemma 5 necessary for the
proof of Theorem 2. Using Lemmas 3-5, we show Theorem
2. Proofs of Lemma 5 and Theorem 2 are quite simple and
elementary.

Proof of Theorem 1: We first prove the equality (15).
Using UX(x) and LX(x), the probability pX(x) of x ∈ X for
the target random variable X can be expressed in the follow-
ing manner:

pX(x) = UX(x) − LX(x) = UX(x) + LX(x) − 1
= 0.b1b2 · · · + 0.ā1ā2 · · · − 1 .

Based on the above expression, set

θ(n)
X (x) :=

n∑
k=1

{
pY (bk−1)cY (bk |bk−1)

+pY (ak−1)cY (āk |ak−1)
}
− 1.

The quantity θ(n)
X (x) can also be written as

θ(n)
X (x) = 0.b1b2 · · · bn + 0.ā1ā2 · · · ān − 1 .

It is obvious that {θ(n)
X (x)}∞n=1 is a monotone increasing se-

quence and satisfies

lim
n→+∞

θ(n)
X (x) = pX(x) .

Since LX(x) and UX(x) first differs at the t-th place of their
representations , we have ai = bi for i = 1, 2, · · · , t − 1 and
bt ≥ at + 1. Then we have the following:

θ(t−1)
X (x) = 0.a1a2 · · · at−1 + 0.ā1ā2 · · · āt−1 − 1

= {1 − pY (a1a2 · · · at−1)} − 1 = −pY (at−1) < 0,

θ(t)
X (x) = 0.a1a2 · · · at−1bt + 0.ā1ā2 · · · āt−1āt − 1
= 0.a1a2 · · · at−1 + 0.ā1ā2 · · · āt−1 − 1

+ 0.0a1 0a2 · · · 0at−1 bt + 0.0ā1 0ā2 · · · 0āt−1 āt

= pY (at−1){cY (bt |at−1) + cY (āt |at−1)} − pY (at−1)

= pY (at−1){cY (bt |at−1) + cY (āt |at−1) − 1}

= pY (at−1)
∑

at<a<bt

pY (a|at−1) ≥ 0.

Hence we obtain

pX(x) = θ(t)
X (x) +0.0ā1 0ā2 · · · 0āt−1 0āt āt+1āt+2 · · ·

+0.0a1 0a2 · · · 0at−1 0bt bt+1bt+2 · · ·

= pY (at−1)
[ ∑

at<a<bt

pY (a|at−1)

Fig. 4 Relations between IY (at−1), IY (at), IY (bt), and IX(x).

+
∑

k≥t+1

pY (ak−1
t |at−1)cY (āk |ak−1)

+
∑

k≥t+1

pY (bk−1
t |at−1)cY (bk |bk−1)

]
.

We next prove the equality (16). We first observe that under
the assumption on the pY -array representations of LX(x) and
UX(x), we have the following:

IX(x) ⊆ IY (at−1), (43)

at−1 = bt−1, at < bt,

LX(x) ∈ IY (at),UX(x) ∈ IY (bt).

}
(44)

The four intervals IY (at−1), IY (at), IY (bt), and IX(x) satis-
fying (43) and (44), are shown in Fig. 4. On the form of
IX(x), x ∈ X created by the interval algorithm, we have the
following chain of equalities:

IX(x)
(a)
= IX(x) ∩ IY (at−1) =

∑
y∈Y

IX(x) ∩ IY (at−1y)

(b)
=

∑
at<y<bt

IY (at−1y)

+ [LX(x),U(at)) + [L(bt),UX(x))
(c)
=

∑
at<y<bt

IY (at−1y)

+
∑

k≥t+1

∑
y>ak

IY (ak−1y) +
∑
y<bk

IY (bk−1y)

 . (45)

Step (a) follows from (43). Step (b) follows from (44). Step
(c) follows from Lemma 1. �

Lemma 5: For η0(a′, a, x|at−1) and η1(b′, b, x|at−1) previ-
ously defined, set

ξ0 :=
∑
k≥1

kpY (alk,a′ ,a
t a|at−1),

ξ1 :=
∑
k≥1

kpY (bl̃k,b′ ,b
t b|at−1).

Then, we have

ξ0 ≤
η0(a′, a, x|at−1)

1 − pmax
, ξ1 ≤

η1(b′, b, x|at−1)
1 − pmax

.
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Proof of Lemma 5: It suffices to prove the first inequal-
ity. Multiplying pmax to both sides of the equation of defi-
nition of ξ0, we have

ξ0 =
∑
k≥1

kpY (alk,a′ ,a
t a|at−1), (46)

pmaxξ0 =
∑
k≥1

pmaxkpY (alk,a′ ,a
t a|at−1)

(a)
=

∑
k≥1

kpmax pY (alk,a′ ,a
t |at−1)pY (a|a′)

(b)
≥

∑
k≥1

kpY (alk+1,a′ ,a
t |at−1)pY (a|a′)

(c)
=

∑
k≥1

kpY (alk+1,a′ ,a
t a|at−1)

=
∑
k≥2

(k − 1)pY (alk,a′ ,a
t a|at−1). (47)

Steps (a) and (c) follow from the definition of li,a′,a, i =

1, 2, · · · , and the Markov property of the coin random se-
quences. Step (b) follows from

pmax pY (alk,a′ ,a
t |at−1)

≥ pY (alk+1,a′ ,a

lk,a′ ,a+1|alk,a′ ,a )pY (alk,a′ ,a
t |at−1)

= pY (alk+1,a′ ,a
t |at−1)

for k ≥ 1. Reducing both sides of (47) from (46), we obtain

(1 − pmax)ξ0 ≤
∑
k≥1

pY (alk,a′ ,a
t a|at−1) = η0(a′, a, x|at−1),

completing the proof. �
Proof of Theorem 2: We first observe that

H
(
p(0)

Y (·|a′, a, x, at−1)
)

= −
∑
k≥1

pY (alk,a′ ,a
t a|at−1)

η0(a′, a, x|at−1)
log

pY (alk,a′ ,a
t a|at−1)

η0(a′, a, x|at−1)

= −
∑
k≥1

pY (alk,a′ ,a
t a|at−1)

η0(a′, a, x|at−1)

× log
pY (alk,a′ ,a

t a|at−1)
pmaxk−1(1 − pmax)η0(a′, a, x|at−1)

−
1

η0(a′, a, x|at−1)

∑
k≥1

pY (alk,a′ ,a
t a|at−1)

× log
{

pmax
k
(

1 − pmax

pmax

)}
= − D

(
p(0)

Y (·|a′, a, x, at−1)
∣∣∣∣∣∣ p∗

)
− log

(
1 − pmax

pmax

)
−

log pmax

η0(a′, a, x|at−1)

∑
k≥1

kpY (alk,a′ ,a
t a|at−1).

Applying Lemma 5 to the last term of the above inequality,
we have

H
(
p(0)

Y (·|a′, a, x, at−1)
)

≤ −D
(

p(0)
Y (·|a′, a, x, at−1)

∣∣∣∣∣∣ p∗
)

− log
(

1 − pmax

pmax

)
−

log pmax

1 − pmax

= −D
(

p(0)
Y (·|a′, a, x, at−1)

∣∣∣∣∣∣ p∗
)

+
h(pmax)
1 − pmax

. (48)

Similarly, we obtain

H
(
p(1)

Y (·|b′, b, x, at−1)
)

≤ −D
(

p(1)
Y (·|b′, b, x, at−1)

∣∣∣∣∣∣ p∗
)

+
h(pmax)
1 − pmax

. (49)

Combining Lemma 4, (48), and (49), we obtain the desired
bound. �

6. Conclusion

We have given an explicit expression of interval algorithm
based on number systems. We have evaluated the expected
number of the Markov coin tosses in the interval algorithm
and have shown that it can be characterized explicitly with
the established expression of the interval algorithm.

The quantity ∆/Hmin(Y2(·)) indicates a lower bound of
the deviation of the upper bound of L̄ obtained by Han and
Hoshi [3] from the true value of L̄. This quantity is char-
acterized with the pY -ary representation and the pY -ary co-
representation of the endpoints of the intervals correspond-
ing to the target random numbers.
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Appendix: Proof of Property 1

In this appendix we prove Property 1. We first prepare a
lemma necessary for the proof.

Lemma 6: For any 1 ≤ k ≤ n, any ak ∈ Yk, and any
(y, y′) ∈ Y2 satisfying y < ak < y′, we have that if pY (an),
pY (ak−1y), and pY (ak−1y′) are positive, then

UY (ak−1y) ≤ LY (ak) ≤ LY (an) < UY (an), (A· 1)

LY (an) < UY (an) ≤ UY (ak) ≤ LY (ak−1y′). (A· 2)

Proof: Under the condition that pY (ak−1y), pY (ak−1y′),
y < ak < y

′, and pY (an) are positive, we have that IY (ak−1y),
IY (ak−1y′), and IY (ak) are not void and disjoint. We ob-
serve that IY (ak−1y) is in the left-hand side of IY (ak) and
that IY (ak−1y′) is in the right-hand side of IY (ak). We fur-
ther observe that IY (an) ⊆ IY (ak). Those relations between
the four intervals are shown in Fig. A· 1. From the above re-
lations between IY (ak−1y), IY (ak−1y′), IY (ak), and IY (an), for
1 ≤ k ≤ n, y < ak < y′, we have (A· 1) and (A· 2) in the
lemma. �

Proof of Property 1: We first observe the following:

IY (ak−1) − IY (ak) =
∑
y<ak ,
y>ak

IY (ak−1y). (A· 3)

Taking union of both sides of (A· 3) with respect to k = m +

1, · · · , n, we have the following:

IY (am) − IY (an) = J + J′, (A· 4)

where we set

J :=
n∑

k=m+1

∑
y<ak

IY (ak−1y),

J′ :=
n∑

k=m+1

∑
y>ak

IY (ak−1y).

To obtain the relation (A· 4), we have used two facts. One is
that

IY (am) ⊇ IY (am+1) ⊇ · · · ⊇ IY (an).

The other is that the (n − m)(M − 1) intervals

IY (ak−1y), (k, y) ∈
n⋃

k=m+1

(
{k} × {y}y,ak

)

Fig. A· 1 Relations between IY (ak−1y), IY (ak−1y′), IY (ak), and IY (an) for
1 ≤ k ≤ n, y < ak < y

′.

are disjoint. On the other hand, we have

IY (am) − IY (an)
= [LY (am), LY (an)) + [UY (an),UY (am)). (A· 5)

From (A· 4) and (A· 5), we have

[LY (am), LY (an)) + [UY (an),UY (am)) = J + J′. (A· 6)

From (A· 6), we have

J ⊆ [LY (am), LY (an)) + [UY (an),UY (am)). (A· 7)

By (A· 1) in Lemma 6, we have

UY (ak−1y) < UY (an) for any m + 1 ≤ k ≤ n, y < ak,

implying that

J ∩ [UY (an),UY (am)) = ∅. (A· 8)

From (A· 7) and (A· 8), we have that J ⊆ [LY (am), LY (an)).
Similary, from (A· 6), we have

[LY (am), LY (an)) ⊆ J + J′. (A· 9)

By (A· 2) in Lemma 6, we have

LY (an) < LY (ak−1y) for any m + 1 ≤ k ≤ n, y > ak,

implying that

[LY (am), LY (an)) ∩ J′ = ∅. (A· 10)

From (A· 9) and (A· 10), we have that [LY (am), LY (an)) ⊆ J.
Hence we have

[LY (am), LY (an)) = J, [UY (an),UY (am)) = J′,

completing the proof. �
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