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SUMMARY Autonomous robots are controlled using physical informa-
tion acquired by various sensors. The sensors are susceptible to physical
attacks, which tamper with the observed values and interfere with control
of the autonomous robots. Recently, sensor spoofing attacks targeting sub-
sequent algorithms which use sensor data have become large threats. In
this paper, we introduce a new attack against the LiDAR-based simulta-
neous localization and mapping (SLAM) algorithm. The attack uses an
adversarial LiDAR scan to fool a pose graph and a generated map. The
adversary calculates a falsification amount for deceiving pose estimation
and physically injects the spoofed distance against LiDAR. The falsification
amount is calculated by gradient method against a cost function of the scan
matching algorithm. The SLAM algorithm generates the wrong map from
the deceived movement path estimated by scan matching. We evaluated
our attack on two typical scan matching algorithms, iterative closest point
(ICP) and normal distribution transform (NDT). Our experimental results
show that SLAM can be fooled by tampering with the scan. Simple odom-
etry sensor fusion is not a sufficient countermeasure. We argue that it is
important to detect or prevent tampering with LiDAR scans and to notice
inconsistencies in sensors caused by physical attacks.
key words: instrumentation security, SLAM, LiDAR, adversarial examples

1. Introduction

Autonomous mobile robots, such as self-driving cars, are
controlled using physical information measured by various
sensors. The robots measure the outside world, create a map,
identify obstacles, and calculate a destination path. Camera,
radar, and light detection and ranging (LiDAR) sensors are
typical equipment used to measure the surrounding environ-
ment.

As autonomous mobile robots become more
widespread, they are becoming increasingly targeted by at-
tacks from adversaries. One of theways to attack these robots
is physically attacking their sensors. Adversaries have been
known to irradiate a strong laser to a camera sensor to white-
out the captured images and a spoofed laser to a LiDAR
sensor to tamper with a measured distance [1], [2].

Sensor attacks affect subsequent systems which use ac-
quired sensor data. Cao et al. conducted a security study
on a LiDAR-based object detection system using physical
sensor attacks [3]. The object detection system is impor-
tant for autonomous mobile robots to determine the position
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of surrounding obstacles (e.g., cars, pedestrians) and avoid
accidents. On the other hand, adversaries attempt to make
obstacles appear or disappear to cause accidents. Cao et
al. found that it was difficult to cheat the system by blindly
applying existing LiDAR spoofing techniques. Thus, it is
necessary to consider the object detection system when ad-
versaries attack sensors. To cheat the object detection sys-
tems of self-driving cars, studies have investigated injecting
spoofed points to LiDAR scans and creating 3D objects that
can be observed as an adversarial point cloud [3]–[5].

Simultaneously localization and mapping (SLAM) is
a technique to build a map from the observed surrounding
environment. SLAM is necessary to robots for grasping
self-location and the surrounding environment and planning
a path. Similar to object detection algorithms, the SLAM
algorithmmay also be affected by physical attacks on sensors.
In this paper, we perform a security study of a LiDAR-based
SLAM algorithm. We assume that an adversary tries to
fool the SLAM algorithm through a physical sensor attack.
We point out a vulnerability to a scan matching algorithm
on the SLAM. The scan matching algorithm is used for
estimating robot pose between a series of LiDAR scans and
the scans are concatenated as amap by analyzing consecutive
poses. The adversary calculates perturbation (the amount of
tampering with distance) of the scan by using a gradient
of loss function on the scan matching algorithm. The scan
matching algorithm estimates a wrong pose by tampered
scan, and a concatenated scan with the wrong pose builds a
wrong map. The wrong map may cause loss of self-location
and wrong robot control.

Our contributions are as follows:

• We perform a security study on a SLAM algorithm. To
the best of our knowledge, this work is the first to attack
the SLAM algorithm by tampering with LiDAR scan
data.

• We introduce an adversarial scan calculation which ap-
plies a gradient-based approach to fool a scan matching
algorithm. The adversary calculates the perturbation
needed to tamper with a robot pose.

• We simulate 2D-LiDAR SLAM on a virtual corridor
and attack the algorithm. Our attacks are evaluated by
two typical scan matching algorithms, iterative clos-
est point (ICP) [6] and normal distribution transform
(NDT) [7].

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
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2. Related Works

2.1 Spoofing Attacks against LiDAR

LiDAR is a method of ranging that uses light to measure dis-
tance. Most LiDARs use the time-of-flight (ToF) principle.
In ToF-based LiDAR, a pulse laser is irradiated from a light
source, and a light detector detects the pulse laser reflected
by objects. The distance to the object L is calculated by the
equation

L =
1
2

c∆t (1)

where c is light speed and ∆t is the time difference between
pulse laser irradiation and detection.

Many ToF-based LiDARs adopt multi-echo technology.
LiDAR can detect multiple lasers from one irradiation when
a translucent object (e.g., rain, fog) reflects a part of the light
on the pulse path. The handling of the multiple reflective
lasers is left to subsequent systems in post-processing (e.g.,
selecting the strongest reflected laser to remove effects that
rain and fog).

An adversary can falsify the distance to an object by
exploiting additional laser for attacking [1], [2]. Just after
the LiDAR irradiates the pulse laser, the adversary irradiates
a pulse laser that mimics the correct reflected laser to the
receiver. When a spoofed laser is detected before the correct
reflected laser, ∆t becomes smaller, and the measurement
distance becomes shorter. When a spoofed laser is detected
strongly after the correct reflected laser, ∆t becomes larger,
and the measurement distance becomes longer. In this way,
the ToF system may misunderstand that there is an object
closer or farther than the correct position.

2.2 Adversarial Attacks against Object Detection System
in Point Cloud

Szegedy et al. found adversarial examples that fool deep neu-
ral networks (DNNs) based image classification models [8].
An adversary adds a small perturbation to inputs, which
causes misclassification. The fast gradient sign method
(FGSM) [9] is a typical and highly effective method for cal-
culating the perturbation of an input. The FGSMsearches for
η which satisfy Eq. (2) by gradually increasing ε in Eq. (3).
Here, x is input, y is the ground truth, function f calculates
the prediction of the DNN model with trained parameters,
function sign calculates the sign of the input, and function
J calculates the distance between the ground truth y and the
prediction output from the DNN model f (x).

y , f (x + η) (2)
η = εsign(∇x J(x, y)) (3)

Similarly, studies have calculated adversarial examples for
3D point cloud classification models [10]–[14]. An adver-
sary can manipulate (i.e., add, remove, or move) the point

cloud by using hints from gradients of the DNN models.
These 3D point cloud classifiers are important parts of au-
tonomous cars. An autonomous car detects pedestrians, cars,
or other objects from the 3D point cloud acquired from the
car’s 3D-LiDAR. The adversary can also calculate the adver-
sarial point cloud against the 3D point cloud classifier on the
autonomous cars [3]. Furthermore, the adversary can create
a 3D object which is perceived as an adversarial point cloud
[4], [5].

In this paper, we do not focus on fooling machine learn-
ing algorithms such as DNN based images or point cloud
classifiers. Our goal is to fool a scan matching algorithm
that is used for robot pose estimation in the SLAM algo-
rithm. Nevertheless, our attack methodology is inspired by
these prior studies.

3. SLAM

3.1 System Overview

SLAM is an algorithm that performs localization and map-
ping simultaneously and is an important technique for au-
tonomous mobile robots. In this paper, we focus on 2D-
LiDAR SLAM. A 2D-LiDAR mounted on a robot scans
horizontally and measures distances to surrounding objects.
Figure 1 shows the points measured by the 2D-LiDAR on
a robot placed in a corridor. A set of points measured by
LiDAR scanning is called a scan. Each measurement point
is represented by the robot-centric polar coordinates (l, ξ).

A typical SLAM system is shown in Fig. 2. The system
consists of two stages. The frontend performs robot pose
estimation, pose graph construction, and submap creation as
sequential processing at each time. The robot pose is the
change in robot position over time. It is estimated by a com-
bination of scan matching, inertial or wheel sensors, or other

Fig. 1 Ground truth map (gray) and scan points (green) measured by
2D-LiDAR. Each scan point is represented by the robot-centric polar coor-
dinates.

Fig. 2 Overview of typical 2D-LiDAR SLAM system.



328
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Fig. 3 (a) Ground truth map, robot path (black dashed line), robot at
the initial location, and laser path of 2D-LiDAR. (b) Global map created
by 2D-LiDAR SLAM [15] without odometry, implemented in Matlab. (c)
Global map represented as an occupancy grid. Red lines are a pair of points
of detected loop closures.

methods. The pose graph represents the robot pose from a
starting location. The submap is built by overlaying a series
of scans based on the estimated robot poses. The backend
regularly performs pose graph optimization and global map
creation as batch processing. The estimated robot poses
accumulate errors; the backend optimizes the pose graph
when a loop is detected and mitigates the error. The back-
end creates the global map by overlaying submaps with the
optimized pose graph.

Figure 3 shows the result of the 2D-LiDAR SLAM [15]
implemented in Matlab. A virtual robot moves around the
room and performs SLAM. The robot does not have odome-
try sensors, so the SLAM system estimates robot poses using
only a scan matching algorithm. An occupancy grid is a typ-
ical map representation method. Each cell of the occupancy
grid stores a probability of the cell containing obstacles. The
occupancy grid map is used for localization, path planning,
and other robotics algorithms.

3.2 Scan Matching Algorithm

The scan matching algorithm is used for robot pose esti-
mation in 2D-LiDAR SLAM. Iterative closest point (ICP)
[6] and normal distributions transform (NDT) [7] are widely
used scan matching algorithms. The scan matching algo-
rithm aims to find a transformation in which two point clouds
overlap appropriately.

In this section, we describe an ICP algorithm, specifi-
cally the point-to-point method. Our attack is based on the
ICP algorithm. Figure 4 shows an overview of the scan
matching. In the ICP algorithm for SLAM, one of the point
clouds is a reference scan, and the other is a current scan.
The reference scan is acquired at the previous time (t−1) and
the current scan is acquired at the present (t). The transfor-
mation such that the reference scan overlaps with the current
scan is the estimated robot pose from time (t − 1) to (t).

The 2D-LiDAR scan which includes N sample points
are represented as

Sp =

(
l1 l2 · · · lN
ξ1 ξ2 · · · ξN

)
(4)

Fig. 4 Example procedure of ICP algorithm. Reference scan points are
in blue and current scan points are in green. The blue triangle indicates the
reference robot pose and the green triangle indicates the current robot pose
during estimation.

where l is the radius and ξ is the angle of each sample point.
We denote the reference scan as Sp

re f
and the current scan as

Sp
cur . The scan Sp is converted to Cartesian coordinates Sc

by

Sc =

(
l1cosξ1 l2cosξ2 · · · lN cosξN
l1sinξ1 l2sinξ2 · · · lN sinξN

)
. (5)

The ICP algorithm estimates a pair consisting of rota-
tion matrix R and translation matrix T as a robot pose. The
algorithm performs the following steps.

1. Set an initial pose. Generally, the initial pose is given
by known odometry if the robot has odometry sensors.
If the robot does not have odometry sensors, the initial
pose is set as the same as the reference scan.

2. Move the current scan using the pose. The transformed
scan is calculated by the function φ.

φ(Sc,R,T) = R · Sc + T (6)

R =
(

cos∆θ −sin∆θ
sin∆θ cos∆θ

)
(7)

T =
(
∆x
∆y

)
(8)

where ∆θ is the amount of rotation and ∆x,∆y is the
amount of translation of the robot from the reference
scan to the current scan.
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3. Give a temporary correspondence between the trans-
formed current scan and the reference scan. The corre-
spondences are calculated by the k-dimensional (KD)
tree constructed from the reference scan. A function
KDT(Sc

re f
,Sc

cur ) returns the set of points from Sc
cur

corresponding to each point of Sc
re f

.
4. Calculate loss by the following cost function L:

L(Sc
re f ,S

c
cur ,R,T) =

MSE(Sc
re f ,KDT(Sc

re f , φ(S
c
cur ,R,T)))

(9)

MSE(a, b) =
1
I

I∑
i=1
(ai − bi)2 (10)

5. Update the pose to minimize the loss. Gradient de-
scent, Newton’s method, or singular value decomposi-
tion (SVD) are often used.

6. Repeat the steps (2) to (5) until the loss converges.

4. Attack Methodology

4.1 Scenario

An adversary may tamper with a part of the current scan
with a physical spoofing attack and fool a scan matching
algorithm for pose estimation. SLAM registers an incorrect
pose to a pose graph and adds a tampered current scan to a
submap based on the incorrect pose. As a result, the global
map generated by SLAM contains an error.

In this paper, we suppose the following conditions to
evaluate our attacks. These conditions are simplified for
feasibility study and we discuss realistic scenarios later in
Sect. 6.

We suppose the following specifications for a robot tar-
geted by an attack.

• 2D-LiDAR is mounted on the robot.
• Pose estimation in SLAM uses a scan matching algo-
rithm with 2D-LiDAR scans.

• The ICP and NDT algorithms are used in the scan
matching process.

We suppose the following capabilities for an adversary.

• The adversary is able to tamper with the distance of any
sample point from the LiDAR scan.

• The adversary is able to calculate the robot pose at the
next time step.

• The adversary is able to calculate the scan that is ob-
served by the robot at the next time step.

4.2 Methodology

The adversary chooses an adversarial pose Radv,Tadv . A
goal of the adversary is that a scan matching algorithm es-
timates the target pose (Radv,Tadv) instead of the original
robot pose (Rori,Tori). For that purpose, the adversary tam-
pers with a current scan Sp

cur using

Sp
adv
= Sp

cur + M ◦ δ (11)

δ =

(
∆l1 ∆l2 · · · ∆lN
0 0 · · · 0

)
. (12)

M =
(

m1 m2 · · · mN

0 0 · · · 0

)
. (m ∈ {0,1}) (13)

where M is a mask that indicates the points the adversary
can tamper with, operator “◦” represents Hadamard product
(product of each element of the matrix). Note that the adver-
sary is only able to tamper with the distance of each sample
point and not the angle, so the second row of δ is zero.

The adversary calculates a perturbation of the current
scan δ in the following steps.

1. Set an initial adversarial scan as Sp
adv
= Sp

cur + M ◦ δ
(δ = 0).

2. Calculate loss using a loss function

L(Sc
re f ,S

c
adv,Radv,Tadv) =

MSE(Sc
re f ,KDT(Sc

re f , φ(S
c
adv,Radv,Tadv))).

(14)

The loss function focuses minimize the loss (Eq. (9)) on
the adversarial target pose.

3. Update δ to minimize the loss.
4. Repeat steps (2) to (3) until the loss converges.

The loss function is differentiable and the adversary mini-
mizes the loss by using the gradientmethod. In this paper, we
use the Adam optimizer [16] to optimize the loss functions.

5. Experiment

5.1 Setup

We simulated an autonomous mobile robot and 2D-LiDAR
in a virtual environment on Matlab 2020b. We prepared a
virtual corridor shown in Fig. 5. The robot moved 4.61m
in the virtual corridor from left to right along the dashed
line. The 2D-LiDAR mounted on the robot acquires a scan.
The LiDAR measured 120 points of distances from −90◦ to
90◦ as the scan. The maximum measurement range of the
LiDAR was 10m. Thirteen LiDAR scans were taken while
the robot was inmotion. Note that the robot was onlymoving
in the x-axis direction.

The robot performed 2D-LiDAR SLAM [15] imple-
mented in Matlab. By default implementation, SLAM uses
NDT for the scan matching algorithm. We integrated the
point-to-point ICP algorithm into SLAM, and we evaluated
our attack with the ICP and NDT scan matching algorithms.
The ICP algorithm is the basic method to match scans, and
the NDT algorithm is widely used. In the following experi-
ment, we evaluate the effect of our attack based on how the
estimated pose changed in the x-axis direction.
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Fig. 5 Virtual corridor, robot, movement path (dashed black line), and
the light path of LiDAR (blue line).

Fig. 6 Reference scan (blue) and current scan (green) are overlaid with a
ground truth pose.

Fig. 7 Reference scan (blue) and current scan (green) overlaid with pose
estimated by (a) ICP and (b) NDT without attack.

5.2 Results

5.2.1 Attack Against Pair of Scans

We selected a pair of scans that were acquired at t = 1 and
t = 2. The scan at t = 1 is the reference scan and the scan
at t = 2 is the current scan in this experiment. The scan
matching algorithm estimates that the robot pose changed
between time t = 1 and t = 2. The adversary deceives the
scan matching algorithm by tampering with the current scan.

Figure 6 shows the selected pair of scans which is over-
laid with the ground truth pose ∆x = 0.39m. The orig-
inal robot pose was (∆x,∆y,∆θ) = (0.39,0,0). We set
an adversarial target pose as a half of the original pose,
(∆x,∆y,∆θ) = (0.19,0,0).

Figure 7 shows the results of pose estimation by ICP
and NDT. The ICP estimated ∆x = 0.35m and the NDT
estimated ∆x = 0.39m. We define these estimated poses as
original poses to ICP and NDT.

Fig. 8 The result of our attack while expanding the range of the mask
from ±10◦ to ±90◦.

Fig. 9 Gradient of ∂L/∂∆l. The shade of color indicates the magnitude
of the gradient.

We evaluated our attack against the pair of scans. We
set the number of iteration of the adam optimizer as 100.
Figure 8 shows the result of our attack while expanding the
range of the mask M from ±10◦ to ±90◦. As the number of
attack points increases, the estimated poses were close to the
adversarial pose.

Tampering points required for a successful attack de-
pend on the terrain around the robot, but the adversary can
estimate the effective points for attack by using a gradient.
Figure 9 shows a gradient of ∂L/∂∆l. In this case, the wall
perpendicular to the direction of the robot movement has a
larger effect on scan matching.

The following describes the details of one result from
Fig. 8. The mask range which is from 0◦ to ±50◦ covers
the effective points estimated by the gradient. Figure 10
illustrates the mask and the difference between the current
scan and the calculated adversarial scan. Figure 11 shows
the transition of the loss in each iteration of the optimization
process. The loss of the adversarial pose became smaller
than the original pose by falsifying the measurement dis-
tance. Figure 12 shows scan matching results by ICP and
NDT algorithms by using adversarial scan. Both ICP and
NDT estimated the adversarial pose by the adversarial scan.

We evaluated the setting that the adversary had fewer
tampering points. Figure 13 shows the result of our attack
while expanding the range of themask M from−10◦ to−90◦.
Our attack fooled the NDT even if the adversary had fewer
tampering points. On the other hand, our attack fooled the
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Fig. 10 (a) Mask M is set from 0◦ to ±50◦ that indicates points which
the adversary can tamper with. (b) Difference between current scan (green)
and adversarial scan (red).

Fig. 11 Loss with original pose and adversarial pose.

Fig. 12 Scan matching result of ICP and NDT under attack. Adversarial
pose is ∆x = 0.19m. The mask M is set from 0◦ to ±50◦.

Fig. 13 The result of our attack while expanding the range of the mask
from −10◦ to −90◦.

estimated pose by ICP into shorter than the original pose,
but the estimated pose did not reach the adversarial pose.

The following describes the details of one result from
Fig. 13. The mask range which is from 0◦ to −50◦ covers
the effective points estimated by the gradient. Figure 14
illustrates the mask and the difference between the current
scan and the calculated adversarial scan. Figure 15 shows
scan matching results by ICP and NDT algorithms by using

Fig. 14 (a) Mask M is set from 0◦ to −50◦. (b) Difference between
current scan (green) and adversarial scan (red).

Fig. 15 Scan matching result of ICP and NDT under attack. Adversarial
pose is ∆x = 0.19m. The mask M is set from 0◦ to −50◦.

Fig. 16 ICP scan matching loss around ground truth pose by using the
current scan (without attack) and the adversarial scan (with attack).

adversarial scan.
The reason why the estimated pose did not reach the

adversarial pose is that the ICP scan matching loss at the
adversarial pose could not satisfy the global minimum by
limitation of the number of tampering points. Figure 16
shows the ICP scan matching loss around ground truth pose
by using the current scan (without attack) and the adversarial
scan (with attack). The loss curve was shifted to the left but
the global minimum was ∆x = 0.24m. The adversary tries
to minimize the scan matching loss at the adversarial pose
using Eq. (14) but it is not able to guaranteed the loss is
whether the global minimum.

5.2.2 Attack against a Series of Scans

We evaluated our attack against a series of scans. The 2D-
LiDAR SLAM [15] creates an occupancy grid map from
the scans. We prepared two SLAMs that using the ICP and
NDT scan matching respectively. The total ground truth
robot transition was 4.61m. Note that the ground truth robot
pose was moving only in the x-axis direction. We set the
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Fig. 17 Occupancy grids generated by SLAM with ICP and NDT scan
matching. The total ground truth robot transition is 4.61m.

Fig. 18 Occupancy grids generated by SLAM with ICP and NDT scan
matching under the attack. Occupancy grids generated by SLAM with ICP
and NDT scan matching. The total adversarial robot transition is 2.3m.

adversarial poses to 1/2 of the ground truth poses, a total
transition was 2.3m. We set the mask from 0◦ to ±50◦. It is
the same as Fig. 10(a).

Figure 17 shows the result of each SLAMwith ICP and
NDT. Figure 18 shows the result of each SLAM under the
attack. Both of the SLAM were affected by the attack and
the total travel distances were shorten. The estimated total
transition of SLAM with ICP was 2.33m and with NDT is
2.34m. They are close to adversarial pose. The shape of the
corridor has significantly changed. Due to the robot travel
distance was shorten, a virtual sidewall appeared at the red
circle region on Fig. 18.

5.2.3 Odometry Sensor Fusion as Countermeasure

Odometry sensor fusion is one possible countermeasure
against sensor attacks. Odometry can be acquired by a rotary
encoder or inertial measurement units (IMUs). The Odome-
try sensor fusion improves the robustness of scan matching.
Even if the scan matching algorithms estimate a wrong robot
pose under our attack, the pose may be corrected by using
odometry sensor fusion.

One of the simplest ways to fuse the odometry to the
scan matching algorithm is to set the odometry as an initial
pose. The scanmatching algorithm can start the optimization
step near the ground truth by using odometry.

We evaluated the scan matching-based pose estimation
with odometry by using scan pairs from t = 1 and 2 similar
to the experiment in Sect. 5.2.1. Figure 19 shows the result of

Fig. 19 Reference scan (blue) and current scan (green) overlaid with
estimated pose by the ICP (left) and NDT (right) algorithms with odometry.

Fig. 20 The result of our attack while expanding the range of the mask
M from 0◦ to ±90◦. These scan matching algorithms were used odometry
to initial pose.

ICP and NDT algorithms with odometry. The ICP algorithm
estimated a pose ∆x = 0.35 with or without odometry, but
the ground truth pose is ∆x = 0.39. When the ICP uses
odometry sensor fusion, the ICP calculates the pose which
satisfies the minimum scan matching loss from the given
odometry. According to Fig. 16, the blue line is the scan
matching loss around ground truth pose by using the current
scan (without attack), and the scan matching loss at the
estimated pose ∆x = 0.35m is global minimum. Therefore,
the ICP reaches the estimated pose even if the ICP starts the
search from the ground truth pose.

We evaluated our attack against scan matching algo-
rithms with an odometry sensor fusion. We prepared odom-
etry data from the ground truth. It assumes that accurate
odometry can be obtained. The adversary is able to tamper
with the range of the mask which is visualized in Fig. 10(a),
from 0◦ to ±50◦.

Figure 20 shows the result of our attack similar to Fig. 8
with ground truth odometry. The estimated results by ICP
gradually closed to the adversarial pose by increasing the
attack points. It indicates that ICP can notmitigate the effects
of the attack by using odometry. The NDT estimated the
original pose when the angle of the attack points is smaller
than ±40◦. It indicates that NDT can mitigate the effects of
the attack by using odometry when the attack points are less.
However, it affected by our attack when the attack points
increase.

We also evaluated our attack with fewer attack points.
The adversary is able to tamper with the range of the mask
which is visualized in Fig. 14(a), from 0◦ to −50◦. Figure 21
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Fig. 21 The result of our attack while expanding the range of the mask
M from 0◦ to −90◦. These scan matching algorithms were used odometry
to initial pose.

shows the result of our attack with ground truth odometry.
The result of ICP is similar to Fig. 13 and it indicates that
ICP can not mitigate the attack. On the other hand, the NDT
estimated the original pose even if the adversary tampered
with the scan points from 0◦ to −90◦. These results suggest
that odometry sensor fusion is a promising countermeasure
for the NDT algorithm.

6. Discussion

In the above sections, we assumed that an adversary can
tamper with the distance of any sample points from LiDAR
scans in simulation. In this section, we discuss the basic case
study for realizing an actual attack. The adversary should
consider the limitations such as attack device arrangements
and specifications in the actual attacks.

As shown in Fig. 22, physical spoofing attacks against
LiDAR require an attack device that contains a receiver and
transmitter [1], [2]. The receiver observes pulse laser from
LiDAR for determining attack timing and after an appropri-
ate delay, the transmitter irradiates a spoofed laser.

The adversary also needs to deploy multiple attack de-
vices for satisfying all attack angles even if the target robot
moves. There are two ways to deploy the attached devices in
the real world as shown in Fig. 23; (a) the adversary makes a
movable attack device that moves in parallel with the target
robot, or (b) the adversary arranges attack devices at reg-
ular intervals along the walls of the corridor. In case(a),
the attack angle is kept constant, then conditions as same as
the simulation are satisfied if the movable target device can
spoof the scan points around the mask M area. On the con-
trary, the attack angles of consecutive LiDAR scans change
according to the movement of the target robot, when the po-
sition of the spoofed laser transmitter is fixed as shown in
case(b). Many attack devices must be deployed on the cor-
ridor to satisfy the simulation conditions for deceiving the
robot on the pathway from the start and the goal position.
Placing many attack devices on the pathway get the attack
cost larger. The idea for reducing the attack devices is that
considering the effect of each sample point on the loss, which
can be calculated using the gradient of ∂L/∂∆l as shown

Fig. 22 Structure of typical attack device for physical spoofing attack.

Fig. 23 Expected attack device arrangements in actual attack scenario.
(a) Adversary makes the attack device (red triangle) move in parallel with
the target robot. (b) Adversary arranges attack devices (red) along the walls
of the corridor. The adversary can also arrange attack devices with priority
at the perpendicular wall to the moving direction (blue) of the target robot
because the wall has a large effect to scan matching.

in Fig. 9. The sample point on the perpendicular wall to the
moving direction has the large effect on the pose estimation.
Therefore, the attack device should be mainly deployed on
the perpendicular walls rather than on the wall parallel to the
moving direction. The future work is necessary for studying
the detailed arrangement of attack devices.

7. Conclusion

Autonomous robots are controlled using physical informa-
tion acquired by various sensors. Physical attacks on these
sensors tamper with the observed values, interfering with
control of the robots. Recently, sensor spoofing attacks that
target control algorithms have become a growing threat.

In this paper, we presented a new attack against the
LiDAR-based SLAM algorithm. An adversary tries to fool
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the scan matching algorithm in SLAM which is used for
pose estimation. The pose is registered to the pose graph
and is used to grow the submap with the current scan. The
adversary calculates perturbation of the scan by using a gra-
dient of loss function in the scan matching algorithm and
performs a physical spoofing attack on the basis of the per-
turbation. When the LiDAR acquires an adversarial scan, the
scanmatching algorithm estimates thewrong robot pose, and
the submap created by the wrong pose and adversarial scan.

We simulated 2D-LiDAR SLAM in a virtual corridor.
We attacked and evaluated two typical scan matching al-
gorithms, ICP and NDT. First, we attacked scan matching
between a pair of scans and tampered with the estimated
robot pose. Our attack fooled both the ICP and NDT scan
matching algorithms. Next, we attacked a series of scans
acquired by a moving robot. Our attack tampered with an
estimated pose graph and a submap generated by SLAM.
Finally, we evaluated a simple odometry sensor fusion algo-
rithm as a potential countermeasure. The NDT algorithm
was able to mitigate our attack when the adversary’s attack
points are less but it was affected when the attack points
increase. The ICP algorithm was not able to mitigate our
attack.

Our experimental results show that SLAMcan be fooled
by tampering with the scan. Simple odometry sensor fusion
is a promising countermeasure for NDT but is not sufficient.
We argue that it is important to detect or prevent tampering
with LiDAR scans and to notice inconsistencies in multiple
sensors caused by physical attacks.
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