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INVITED PAPER
Kernel-Based Hamilton-Jacobi Equations for Data-Driven Optimal
Control: The General Case

Yuji ITO†a), Nonmember and Kenji FUJIMOTO††b), Member

SUMMARY Recently, control theory using machine learning, which is
useful for the control of unknown systems, has attracted significant attention.
This study focuses on such a topic with optimal control problems for un-
known nonlinear systems. Because optimal controllers are designed based
on mathematical models of the systems, it is challenging to obtain models
with insufficient knowledge of the systems. Kernel functions are promising
for developing data-driven models with limited knowledge. However, the
complex forms of such kernel-based models make it difficult to design the
optimal controllers. The design corresponds to solving Hamilton-Jacobi
(HJ) equations because their solutions provide optimal controllers. There-
fore, the aim of this study is to derive certain kernel-based models for
which the HJ equations are solved in an exact sense, which is an extended
version of the authors’ former work. The HJ equations are decomposed
into tractable algebraic matrix equations and nonlinear functions. Solving
the matrix equations enables us to obtain the optimal controllers of the
model. A numerical simulation demonstrates that kernel-based models and
controllers are successfully developed.
key words: optimal control, machine learning, kernel functions, Hamilton-
Jacobi equations

1. Introduction

Important topics in the field of engineering include the con-
trol of various unknown nonlinear systems, such as au-
tonomous vehicles interacting with human drivers [1] and
batteries in electric vehicles [2]. Model-based approaches
are widely used for the control of the unknown systems. In
the model-based framework, after mathematical models of
the systems are obtained using provided data sets, we design
appropriate controllers based on the models. Various types
of system models have been proposed, because the identi-
fication accuracy of the models affects the resultant control
performance. Promising models involve data-driven kernel-
based functions, such as Gaussian processes (GPs) [3]–[5],
GP-based state-dependent coefficient models [6], and ker-
nel ridge regression (KRR) models [7]. The GPs have been
widely utilized in control applications [8]–[12]. The kernel-
based functions are established without requiring sufficient
knowledge regarding the systems. This advantage motivated
us to focus on kernel-based functions in model-based control
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for unknown nonlinear systems.
Optimal control problems for kernel-based models is

difficult to solve whereas the models can describe various
nonlinear dynamics. Because the control design is often re-
duced to solving nonlinear equations involving the models,
it is difficult to solve the equations. Various approaches have
relaxed the control problems into solvable forms. Model
predictive control has been employed to minimize prede-
fined performance indices approximately [13]–[18]. Other
relaxations are realized by differential dynamic program-
ming [19], iterative linear quadratic regulators [20], and a
gradient-based method [10], [21], [22]. Although these ap-
proaches have tackled the control problems, some or all of
the following drawbacks occur because of the difficulties in
the control problems. Relaxing the problems does not ensure
the optimality of the designed controllers. High computa-
tional costs are required to approximately solve the problem.
When the controllers are employed, stability of the system
models is not guaranteed.

Therefore, we proposed a controller design method for
certain kernel-based models [23] to address the aforemen-
tioned drawbacks. The main contribution of our previous
work [23] was deriving kernel-based models for which opti-
mal control problems are easily solved under several assump-
tions. After executing the system identification, an analytical
method provides the corresponding optimal controller with-
out approximations and large computations. Applying the
obtained controller guarantees stability of the system model
under the assumptions. The method is data-driven in the
sense that the controller is designed using such a data-driven
model.

However, our previous work [23] has a limitation re-
garding target systems, which restricts the range of applica-
tions. The input vector fields of the systemsmust be constant;
thus, the effects of the control inputs to the systems are con-
stant. Such an example is illustrated in Fig. 1. This study
extends the previous work to overcome this limitation. We
decompose the input vector fields into scalar nonlinear func-
tions and constant matrices. Such a decomposition allows us
to use the previous method for nonlinear input vector fields.

The remainder of this paper is organized as follows.
Mathematical notation is introduced in Sect. 2. Our objective
and relevant topics are described in Sect. 3. The previous
work [23] to address the objective is reviewed in Sect. 4.
Section 5 extends the previous work. Section 6 presents
a numerical simulation to evaluate the proposed method.
Finally, we conclude this study in Sect. 7.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Toy examples of constant and nonlinear input vector fields. The
state consists of the horizontal position and velocity of the mass point.
The input consists of the force and torque. Applying the input moves
the mass point in the horizontal direction. The force affects the horizontal
acceleration at a constant ratio, which indicates a constant input vector field.
Meanwhile, the torque affects the acceleration depending on the angle and
varying length of the arm, implying a nonlinear vector field.

2. Notation

This study uses the notations listed below.

• [v]i: the i-th component of v ∈ Rn
• [A]i, j : the i-th row j-th column entry of A ∈ Rn×m
• vec(A) := [[A]1,1, . . . , [A]n,1, [A]1,2, . . . , [A]n,2, . . . ,
[A]1,m, . . . , [A]n,m]

> ∈ Rnm for A ∈ Rn×m
• Aa ⊗ Ab ∈ R

nanb×mamb : the Kronecker product of Aa ∈
Rna×ma and Ab ∈ R

nb×mb as follows:

Aa ⊗ Ab =


[Aa]1,1Ab . . . [Aa]1,ma Ab

...
. . .

...
[Aa]na ,1Ab . . . [Aa]na ,ma Ab


• ∂vg(v) ∈ R

n×m: the partial derivative of g : Rn →
R1×m with respect to v ∈ Rn

• In: the n × n identity matrix

3. Objective

This study focuses on a data-driven control problem for un-
known systems. Section 3.1 states the goal of this study
associated with a target system. Sections 3.2 and 3.3 intro-
duce the relevant topics: kernel-based system identification
and nonlinear optimal control, respectively.

3.1 Data-Driven Optimal Control Problem

We consider a continuous-time nonlinear system with the
time t ∈ R that involves an unknown drift term:

Ûx(t) = f (x(t)) + G(x(t))u(t). (1)

In this system, the control input at t, state at t, unknown drift
term, and known input vector field are denoted by u(t) ∈
Rnu , x(t) ∈ Rnx , f : Rnx → Rnx , and G : Rnx → Rnx×nu ,

respectively. The input vector field G(x) is regarded as the
gain from the input to the dynamics on which this study
focuses. The following cost function J is regarded as a
measure of the control performance:

J(u, x(0)) :=
∫ ∞

0

(
q(x(t)) +

1
2
u(t)>R(x(t))u(t)

)
dt .

(2)

The functions q : Rnx → R and R : Rnx → Rnu×nu de-
termine the state- and input-dependent costs, respectively.
It is desirable for the controller u to minimize the value of
the cost J(u, x(0)). We assume the following: u is continu-
ous; f and G are locally Lipschitz continuous; f (0) = 0 is
satisfied; q is positive definite and continuous; R is symmet-
ric positive definite for all x ∈ Rnx and continuous; R−1 is
locally Lipschitz continuous.

While the drift term f is unknown, the training data set
is assumed to be provided that contains D pairs of (xd, f d)
satisfying

f d := f (xd) + ωd, ∀d ∈ {1,2, . . . ,D}. (3)

Assume that, for each d, the noise ωd ∈ R
nx independently

obeys an identical normal distribution with the mean of zero.
Such a data set can be acquired by assuming that the values
of x and dx/dt − G(x)u in (1) are measured.

The purpose of this study is to design a feedback con-
troller for the partially unknown nonlinear system (1) and
cost function (2). For the given data set (xd, f d)Dd=1, we
aim to find u minimizing J(u, x(0)) over all admissible con-
trollers [24, Sect. 10.1]:

min
u

J(u, x(0)). (4)

It is difficult to minimize J(u, x(0)) directly because
the drift term f is unknown. We focus on model-based ap-
proaches that are efficient in addressing this control problem
with an unknown system. The approaches consist of two
parts. First, the unknown term f is represented by a mathe-
matical model f̂ using the data set. Second, after replacing
f with f̂ , solving the optimal control problem provides an
optimal controller. The derived controller is approximately
optimal to the true term f if f is sufficiently close to f̂ .
These parts are briefly reviewed in Sects. 3.2 and 3.3.

3.2 Kernel-Based Identification of the Drift Term

We focus on kernel-based system models to identify the
unknown system f . In the fields of system identification
and machine learning [25], the models are promising for
describing nonlinear dynamics. GPs [3] andKRRmodels [7]
are well-known examples of such models. The GPs (without
variance) and KRR models under technical assumptions are
summarized by µ : Rnx → Rnx :

µ(x) := [ f 1, f 2, . . . , f D]

×
(
[kv(x1), . . . , kv(xD)] + αID

)−1
kv(x), (5)
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kv(x) := [k(x, x1), . . . , k(x, xD)]> ∈ RD, (6)

where α > 0 ∈ R and k(x, xd) ∈ R are the hyperparameter
and positive definite kernel function, respectively. This study
assumes that k(x, xd) isC2 continuous in x, such as a squared
exponential kernel.

3.3 Analysis to theModel-BasedOptimal Control Problem

We analyze the nonlinear optimal control problem (4) when
the unknown term f (x) is replaced with the model f̂ (x),
which indicates the model-based controller design. We as-
sume that f̂ (x) is locally Lipschitz and that f̂ (0) = 0 is
satisfied. A promising tool for analyzing such a problem is
the Hamilton-Jacobi-Bellman (HJB) equation [24, Theorem
10.1-2]:

H(x) := ∂xV(x)> f̂ (x) −
1
2
∂xV(x)>S(x)∂xV(x)+q(x)

= 0, ∀x ∈ Rnx , (7)
S(x) := G(x)R(x)−1G(x)>. (8)

If there exists a C1 continuous positive definite solution
V : Rnx → R satisfying the HJB equation (7), the opti-
mal controller u(t) = u∗(x(t)) to the system model f̂ (x) is
obtained by

u∗(x) := −R(x)−1G(x)>∂xV(x). (9)

While the results in [24, Theorem 10.1-2] assumed that
R(x) is constant, the above-mentioned case using the state-
dependent matrix R(x) has been easily derived in the same
way and has been widely adopted, for example, [26]–[29].

Remark 1 (Difficulty owing to the kernel-based models).
It is difficult to obtain the solution V(x) owing to the non-
linearity of f̂ (x) and/or G(x). If the unknown term f (x)

is replaced with a kernel-based model f̂ (x), such as µ(x)
in (5), the controller design suffers from nonlinear kernel
functions. The following sections address this difficulty.

4. Brief Description of the Previous Method [23]

This section reviews our previous method [23] to achieve
the goal described by (4). The previous method addressed
the difficulty described in Remark 1 under the following
assumption:

Assumption 1 (Constant input vector field). The input vector
field in the system (1) is a constant matrix Gc ∈ R

nx×nu :

∀x ∈ Rnx , G(x) = Gc. (10)

The matrix R(x) is assumed to be constant along with
Assumption 1. In Sects. 4.1 and 4.2, a novel problem setting
and its solution are introduced, respectively.

4.1 Problem Setting to Unify the Identification and Control

Although the kernel-based models f̂ (x) have the potential
to represent various dynamics, it is not straightforward to
solve the HJB equation (7) for such nonlinear models, as
mentioned inRemark 1. We introduce a strategy to tackle this
drawback, which is unifying the identification and controller
design. Let us generalize the kernel-basedmodels as follows:

f̂ (x) := C(x)kv(x), (11)

where C : Rnx → Rnx×D denotes the generalized coefficient
matrix. The model in (11) contains some types of functions,
such as the GP mean and KRR models µ(x) in (5). If C(x)
is determined such that we can solve the HJB equation (7),
then the optimal controller u∗(x) to f̂ (x) is easily derived.
This strategy suggests solving the following problem.

Main problem: Find a set F of kernel-based drift term
models f̂ (x) defined in (11) such that an exact solutionV(x)
to the HJB equation (7) is acquired.

After solving the main problem, we obtain an appropri-
ate f̂ (x) included in the set F to describe f (x). Thereafter,
the corresponding V(x) to the HJB equation (7) is acquired,
and the optimal controller u∗(x) is provided by (9), which is
the objective of our study.

4.2 Limited Solution to the Main Problem

The previous study [23] presented a solution to the main
problem under Assumption 1 with constant R(x). The way
to solve this problem is to decompose the HJB equation (7).
Assume that V(x) and f̂ (x) are parametric functions, and
that the HJB equation is decomposed as follows:

H(x) =
1
2
kv(x)

>Φ(x)>MΦ(x)kv(x), (12)

where M and Φ(x) are a constant matrix and function of
x, respectively. Free parameters to characterize V(x) and
f̂ (x) are included in M . If there exist such a M and Φ(x),
satisfying the conditionM = 0 is reduced to solving the HJB
equation as follows:

M = 0⇒ ∀x ∈ Rnx , H(x) = 0. (13)

Hence, we derive a set F of f̂ (x) for which we can decom-
pose the HJB equation, as shown in (12).

To realize the above-mentioned strategy, we assume that
the solution V(x) is a kernel-based function parameterized
by

V(x) = p[ψ1(x)π1, . . . ,ψD(x)πD]kv(x), (14)

where p ∈ R and πd ∈ R
nπ are free parameters. The function

ψd : Rnx → R1×nπ is a predefined C2 continuous function
that satisfies
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∀d ∈ {1, . . . ,D}, ψd(0) = 0, (15)
∀d ∈ {1, . . . ,D}, k(0, xd)∂xψd(0) = 0, (16)

∀d ∈ {1, . . . ,D}, k(x, xd) = 0⇒ ψd(x) = 0.
(17)

The positive definiteness of V(x) is not guaranteed, whereas
it is required for the optimal control design summarized in
Sect. 3.3. We aim to ensure this property in a numerical sense
when determining the free parameters p and πd , which is de-
scribed in Sect. 5.2. Parametrization using kernel functions
has been successfully utilized for some types of functions
in control engineering [30]–[34]. Furthermore, functions
V(x) have been approximated by the sums of basis functions
[35], [36].

Let us define π ∈ RnπD , Φ(x) ∈ RnπnxD×D , Φ′d(x) ∈
Rnx×nπ , cV (x, xd) ∈ Rnx , and Sc ∈ R

nx×nx as follows:

π := [π1
>, . . . ,πD

>]>, (18)

Φ(x) :=


vec(Φ′1(x)) · · · 0

...
. . .

...
0 · · · vec(Φ′D(x))

 , (19)

Φ′d(x) := cV (x, xd)ψd(x) + ∂xψd(x), (20)

cV (x, xd) :=

{
∂xk(x, xd)/k(x, xd) (k(x, xd) , 0)
0 (k(x, xd) = 0)

,

(21)
Sc := GcR

−1
c G>c . (22)

where Rc � 0 ∈ Rnu×nu is a positive definite symmetric
matrix. The solution to the main problem is derived as
follows.

Theorem 1 (Kernel-based HJB equation [23, Theorem 2]).
Assume that Assumption 1 and R(x) = Rc hold. For given
parameters A ∈ Rnx×nx and Q = Q> � 0 ∈ Rnx×nx , assume
that the following relations hold:

f̂ (x) = A(π> ⊗ Inx )Φ(x)kv(x), (23)
q(x) = kv(x)

>Φ(x)>(π ⊗ Inx )

× Q(π> ⊗ Inx )Φ(x)kv(x). (24)

If the equation:

M = (π ⊗ Inx )
(
pA + pA> − p2Sc + 2Q

)
(π> ⊗ Inx )

= 0 ∈ RnπnxD×nπnxD, (25)

holds, then the HJB equation (7) holds. Furthermore, f̂ (x)
is locally Lipschitz and f̂ (0) = 0 is satisfied.

Remark 2 (Limitation in Theorem 1). While Theorem 1
obtains the setF using (23), it relies on the constant property
of the input vector field G(x) in Assumption 1. However, this
indicates that the gain from the control input to the dynamics
must be constant, which restricts the range of applications.
In the next section, we extend Theorem 1 for state-dependent
G(x).

5. Proposed Method for State-Dependent Input Vector
Fields

In this section, our previous method [23] is extended to over-
come the main problem without the limitation of Assump-
tion 1. We can employ the state-dependent input vector field
G(x), as well as the constant vector field for enhancing the
applicability of the previous method. Section 5.1 provides
themain results in this study. The implementation of the pro-
posed method is provided in Sect. 5.2. Section 5.3 extends
the results for robust nonlinear control.

5.1 Solution to the Main Problem

We involve the state-dependent vector field G(x) by decom-
posing S(x) into nonlinear scalar functions and constant ma-
trices. Because of the local Lipschitz continuity of G(x) and
R(x)−1, any S(x) can be represented by

S(x) = G(x)R(x)−1G(x)> =
N∑
i=1

ξi(x)Si, (26)

where ξi : Rnx → R, Si ∈ R
nx×nx , and N are a locally

Lipschitz scalar function of x, constant matrix, and positive
integer, respectively. Using this decomposition, we derive
the following theorem to solve the main problem even for the
state-dependent vector field G(x) in (26).

Theorem 2 (Extended kernel-based HJB equation).
Assume that (26) holds. For given parameters Ai ∈ R

nx×nx

and Qi ∈ R
nx×nx (i = 1,2, . . . ,N), assume that f̂ (x) and

q(x) are given by

f̂ (x) =
( N∑
i=1

ξi(x)Ai

)
(π> ⊗ Inx )Φ(x)kv(x), (27)

q(x) = kv(x)
>Φ(x)>(π ⊗ Inx )

×

( N∑
i=1

ξi(x)Qi

)
(π> ⊗ Inx )Φ(x)kv(x). (28)

If the equation:

M i = (π ⊗ Inx )
(
pAi + pAi

> − p2Si + 2Qi

)
× (π> ⊗ Inx )

= 0 ∈ RnπnxD×nπnxD, (29)

holds for all i, then theHJB equation (7) holds. Furthermore,
f̂ (x) is locally Lipschitz and f̂ (0) = 0 is satisfied.

Proof. The proof is described in Appendix A. �

Remark 3 (Contribution of Theorem2). Theorem2provides
a solution to the main problem, even if the input vector field
G(x) depends on the state x. The set F is determined by
(27) for which an exact solution to the HJB equation (7)
is obtained. Furthermore, Theorem 2 covers the existing
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results in Theorem 1 by setting N = 1, ξ1(x) = 1, and
S1 = Sc.

Remark 4 (How to satisfy the algebraic equation (29)). The
algebraic matrix equation (29) must hold to satisfy the HJB
equation (7). A condition to satisfy the matrix equation is
provided by the setting:

Qi = (p
2Si − pAi − pAi

>)/2. (30)

Remark 5 (Positive definite properties). Recall that the pos-
itive definiteness of q(x) and V(x) is not guaranteed in The-
orem 2. We aim to ensure this property in a numerical sense
when determining the free parameters, as described in the
next subsection.

Remark 6 (Optimality to the true system). We investigate
the optimality of the model-based controller u∗(x(t)) in (9)
to true drift term f (x) by analyzing the HJB equation (7).
Let H f (x) be the function H(x) of the HJB equation to f (x).
The controller is optimal to the true system if aC1 continuous
positive definite function V(x) satisfies H f (x) = 0 for all x.
In this sense, we regard H f (x) as a metric of the optimality.
Our analysis in Appendix B indicates that H f (x) is close
to zero, i.e., the optimality is enhanced, by decreasing the
modeling error ‖ f (x) − f̂ (x)‖.

5.2 Implementation

In this subsection, we implement the main results of The-
orem 2 by modifying the implementation in our previous
work [23, Sect. V], where differences between the two im-
plementations are described in the last of this subsection.
We obtain an appropriate f̂ (x) contained in the set F that
obeys (27) such that the algebraic equation (29) holds under
the settings (14), (28), and (30). This process reduces to
an optimization of the free parameters, p, Ai , and π. Solv-
ing the optimization obtains the model f̂ (x) and controller
u∗(x) in (9) simultaneously because the HJB equation (7) is
solved.

The details of the optimization are described herein,
where the functions depending on the parameters are ex-
pressed by f̂ (x; Aall,π), V(x; p,π), q(x; p, Aall,π), and
u∗(x; p,π) with the definition of Aall := [A1, . . . , AN ]. We
consider the following constrained minimization:

min
p,Aall ,π

g(p, Aall,π)

s.t. ∀d, V(x̃d; p,π) ≥ 0, q(x̃d; p, Aall,π)) ≥ 0, (31)

where x̃d (d = 1,2, . . . , D̃) is a predefined point. The objec-
tive function g(p, Aall,π) is defined as follows:

g(p, Aall,π) :=
( D̃∑
d=1
‖ f̂ (x̃d; Aall,π) − µ(x̃d)‖

2
)

+ wπ ‖π‖
2 + wpp2 + wA‖vec(Aall)‖

2.
(32)

where wπ > 0, wp > 0, and wA > 0 are coefficients for reg-
ularizing the norms of the parameters. The function µ(x) is
the kernel-based model defined in (5) in Sect. 3.2. Minimiz-
ing g(p, Aall,π) enhances the identification accuracy because
the difference between f̂ (x; Aall,π) and µ(x) is reduced. The
constraints in (31) are employed to satisfy the positive defi-
nite properties of q(x; p, Aall,π) andV(x; p,π) in a numerical
sense. Note that Si is defined such that (26) hold before solv-
ing the minimization problem. The parameter Qi in (30) is
determined using the obtained p, Aall, and Si .

The optimization in (31) involves a large number of
parameters because the dimension of π is proportional to
the number of data points D. We employ the technique in
our previous work [23, Sect. V] to reduce the number of
parameters. This technique approximates an optimal π to
(31) using the following function π(Aall):

π(Aall) ∈ arg min
π

g(p, Aall,π), (33)

This approximation is applicable because π(Aall) is provided
in explicit form as follows.

Proposition 1 (Explicit minimizer). Assume that (27)
holds. The function π(Aall) in (33) is uniquely expressed
as:

π(Aall) = (Y (Aall)
>Y (Aall) + wπ InπD)

−1Y (Aall)
> y,

(34)

where Y (Aall) ∈ R
nx D̃×nπD and y ∈ Rnx D̃ are defined as

Y (Aall) :=
N∑
i=1
(I D̃ ⊗ Ai)Y i (35)

Y i :=


Y i,1,1 · · · Y i,1,D
...

...
Y i,D̃,1 · · · Y i,D̃,D

 , (36)

Y i,s,d := ξi(x̃s)k(x̃s, xd)Φ′d(x̃s) ∈ R
nx×nπ , (37)

y :=


µ(x̃1)
...

µ(x̃D̃)

 . (38)

Proof. The proof is described in Appendix C. �

Along with the replacement of π with π(Aall), the con-
strained minimization (31) is relaxed as the following un-
constrained minimization:

min
p,Aall

g(p, Aall,π(Aall)) + b(p, Aall,π(Aall)), (39)

The function b(p, Aall,π) is defined as follows:

b(p, Aall,π) :=
D̃∑
d=1

(
wV ln(1 + exp(−weV(x̃d; p,π)))

+ wq ln(1 + exp(−weq(x̃d; p, Aall,π)))
)
,

(40)
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Algorithm 1 Design of optimal controllers for kernel-based
models
Input: the training data set (xd , f d )

D
d=1, weight R, predefined points x̃d

(d = 1, 2, . . . , D̃), functions ξi (x) and matrices Si (i = 1, 2, . . . , N )
Output: the drift term model f̂ (x; Aall, π) and model-based optimal con-

troller u∗(x; p, π)
1: Obtain the GP mean model µ(x) in (5) by utilizing the data set
2: Define the functionψd (x) according to the conditions (15)–(17)
3: Obtain the values of p and Aall by solving (39)
4: Obtain the values of π = π(Aall) in (34)
5: Obtain f̂ (x; Aall, π),V (x; p, π), q(x; p, Aall, π) in (27), (14), and (28)

with (30)
6: Obtain u∗(x; p, π) in (9) with the substitution ofV (x; p, π)

where wV ≥ 0 and wq ≥ 0, and we > 0 are the coef-
ficients. The function b(p, Aall,π) consists of the softplus
penalty functions that indicate ln(1 + exp(a)) ≈ max{0,a}
for a ∈ R [37]. Such functions help in satisfying the positive
definiteness because the penalties occur for approximately
negative V(x̃d; p,π)) and q(x̃d; p, Aall,π)).

Finally, we summarize the proposed method in Algo-
rithm 1. The GP mean model µ(x) is obtained in Line 1.
In Lines 3 and 4, all the parameters p, Aall, and π are deter-
mined. Thereafter, the model f̂ (x) and controller u∗(x) in
(9) are obtained because the HJB equation (7) is solved.

Algorithm 1 is equivalent to the algorithm of our
previous method [23]. The extension from the previous
method to the proposed method is to modify the functions
g(p, Aall,π(Aall))+ b(p, Aall,π(Aall)) and π(Aall) in Proposi-
tion 1.

Remark 7 (The degree of freedom in choosing q(x)).
The function q(x) depends on the free parameters p, Aall,
and π. If a certain target function q∗(x) is given, it is pos-
sible to determine these parameters such that q(x; p, Aall,π)
is close to q∗(x) by solving the minimization problem (31)
with adding the term wq2

∑D̃
d=1 ‖q(x̃d; p, Aall,π) − q∗(x̃d)‖2

in the objective function g(p, Aall,π), where wq2 > 0 is a
weight coefficient. This term indicates a distance between
q(x; p, Aall,π) and q∗(x).

5.3 Extension for Nonlinear Robust Control

The main results presented in Sect. 5.1 are extended to a
robust control problem called H∞ control [38] in a manner
similar to that in our previous work [23]. This subsection
considers the case in which the system (1) involves a distur-
bance w(t) ∈ Rnw and the performance output z(t):

Ûx(t) = f (x(t)) + G(x(t))u(t) + Gd(x(t))w(t), (41)

z(t) :=
[

h(x(t))
Rsqr(x(t))u(t)

]
∈ Rnh+nu , (42)

We assume the following: Gd : Rnx → Rnx×nw is lo-
cally Lipschitz; supt ‖w(t)‖ < ∞ is satisfied; w(t) is lo-
cally Lipschitz, nonzero, and square-integrable, implying
0 <

∫ ∞
0 ‖w(t)‖

2dt < ∞; h : Rnx → Rnh and Rsqr :

Rnx → Rnu×nu are continuous; q(x) = h(x)Th(x)/2 and
R(x) = Rsqr(x)

TRsqr(x) hold.
The H∞ control problem focuses on a L2 gain from w

to z. We attempt to find a feedback controller satisfying the
condition that the L2 gain for any w is smaller than or equal
to a given parameter γ ∈ (0,∞) for x(0) = 0:( ∫ ∞

0
‖ z(t)‖2dt

) 1
2
/( ∫ ∞

0
‖w(t)‖2dt

) 1
2
≤ γ, (43)

It is well known that the controller design corresponds
to solving the Hamilton-Jacobi-Isaacs (HJI) equation [24,
Theorem 10.3-1], [39], [40]. In the model-based approach,
that is, f is replaced with f̂ , the HJI equation is reduced
to the HJB equation (7) that uses the following definition
instead of the definition (8):

S(x) := G(x)R(x)−1G(x)T −
1
γ2 Gd(x)Gd(x)

T. (44)

If a C1 continuous positive definite solution V : Rnx → R
to the HJI equation exists, u∗(x) in (9) corresponds to the
controller realizing (43) when f is replaced with f̂ . Hence,
we can exploit Theorem 2 to the H∞ control problem by
using the definition (44).

Theorem 3 (Extended kernel-based HJI equation).
Assume that (44) holds instead of (8) and that all the as-
sumptions in Theorem 2 are satisfied. The statements in
Theorem 2 hold if the HJB equation (7) is replaced with the
HJI equation.

Proof. This is proved in the same way to Theorem 2. �

6. Numerical Examples

This section demonstrates the method proposed in Sect. 5.
Section 6.1 formulates a practical example of the unknown
system (1) and describes the simulation setting. Section 6.2
shows the simulation results.

6.1 Target System and Simulation Setting

Consider the target nonlinear system (1) with nonlinear ex-
ternal forces and a nonlinear input vector field, as illustrated
in Fig. 2. Let the system state denotes the position xm in [m]
and velocity Ûxm in [m/s] of the mass point at the time t in [s]:

x :=
[
xm
Ûxm

]
, (45)

where xm is assumed to be included in (−Xm,Xm)with a dis-
tance Xm. For the flexible arm, the mass is negligible, and
the length varies depending on xm without any resistance.
The point with the mass Mm is assumed to move only in the
xm-direction without any friction. The control input is con-
sidered as the torque u in [N·m] that affects the acceleration
of the mass point. The xm-directional force of the torque is
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Fig. 2 Practical example of the systemwith a state-dependent input vector
field.

formulated by:

Lm√
L2

m + x2
m

u√
L2

m + x2
m
=

Lm

(L2
m + [x]

2
1)
u, (46)

where Lm is the length of the arm at xm = 0. The exter-
nal forces Fm(xm), such as magnetic forces, are assumed to
depend on the position xm:

Fm(xm) :=
Am

(Xm − xm)2
. (47)

The xm-directional viscose resistance is given by Cm Ûxm with
the coefficient Cm. Based on these physical models, the
target system (1) is constructed as follows:

f (x) :=
[

[x]2
(Fm([x]1) − Fm(−[x]1) − Cm[x]2)/Mm

]
,

(48)

G(x) :=
[

0
Lm/(Mm(L2

m + [x]
2
1))

]
. (49)

The physical parameters are set to Mm = 0.2 [kg], Xm = 4
[m], Am = 1.6 [N/m2], Lm = 5 [m], and Cm = 0.1 [N·s/m].

Recall that f (x) is unknown, whereas its training data
set is provided in our problem setting. In the setting of
the data set (xd, f d)Dd=1 with D = 81, the states xd are
equivalent to all members of the set {−2,−1.5, . . . ,2} ×
{−2,−1.5, . . . ,2}. The drift terms f d obeys (3), wherein
the noiseωd for each d follows the normal distribution inde-
pendently with the mean of zero and covariance of 0.22I2.

Algorithm 1 is implemented as follows. The weight in
the cost function is set to R = 1. The function S(x) in (26)
is decomposed using the following setting with N = 1:

ξ1(x) = [G(x)]
2
2, (50)

S1 =

[
0 0
0 1

]
. (51)

In Line 1, the GPML package [41] is employed for the
GP regression. The GP mean model µ(x) is developed uti-
lizing the data set and the square exponential kernel function:

k(x, xd) := β exp
(
−1
2
(x − xd)

>Σ−1(x − xd)
)
, (52)

Table 1 Mean values and standard deviations of the root mean square
errors for the 100 training data sets.

Mean value Standard deviation
First component [ f̂ (x)]1 0.078 0.019

Second component [ f̂ (x)]2 0.094 0.023

Fig. 3 Control results for the different training data sets.

where β > 0 ∈ R and diagonal Σ � 0 ∈ Rnx×nx are the
hyperparameters. Further details of the regression are found
in [23, Sections V.A and VI.A]. In Line 2, the function is
set as ψd(x) := [([x]1)2, ([x]2)2, [x]1[x]2]. In Lines 3 and
4, the coefficients in (32) and (40) are set as wV = 1000,
wq = 1000, we = 10, wπ = 5, wp = 0.001, and wA = 0.001.
The points x̃d are sampled on [−2,2] × [−2,2] at regular
intervals, where D̃ = 121. The minimization problem in
(39) is numerically solved using the quasi-Newton (BFGS)
method [42, Chapter 6]. To avoid numerical errors due to a
significantly large value of exp(−weV(x̃d)) in (40), we use the
transformation of ln(1+exp(−weV(x̃d)) = V ′+ln(exp(−V ′)+
exp(−weV(x̃d) − V ′)) with V ′ := max{−weV(x̃d),0}. The
term exp(−weq(x̃d)) is transformed in the same way. The
initial values of the decision variables are set to p = 3,
A1 = (p2S1 − 2Q1)/2p, and Q1 = I2 � 0. The simulation
is implemented utilizing the Dormand-Prince method [43],
where the sampling time and time horizon are set to 0.005
and 80, respectively.

6.2 Numerical Results

We generated 100 different training data sets (xd, f d)Dd=1 by
changing the random noise (ωd)

D
d=1 in the data sets. We

evaluated the proposed method for the 100 data sets. The
mean values and standard deviations of the root mean square
errors of the proposed model f̂ (x) are listed in Table 1. The
mean values and deviationswere smaller than 5% of themag-
nitude (approximately 2.0) of f (x). Figure 3 shows the state
trajectories by applying the proposed controller, where the
multiple lines indicate the results for the different data sets.
The states for all the results approached around the origin,
indicating that the system was successfully controlled. Fig-
ure 4 represents the positive definite properties of V(x; p,π)
and q(x; p, Aall,π) for one of the data sets. The positive
definiteness of both the function was numerically verified,
which was assumed in the proposed method. Based on these
results, we confirmed that the proposed method performs
well for a class of unknown systems.
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Fig. 4 Contour lines of V (x; p, π) and q(x; p, Aall, π) obtained for a
training data set.

7. Conclusion

In this study, we solved a data-driven optimal control prob-
lem for partially unknown nonlinear systems by extending
our previous work [23]. The target system contains a state-
dependent input vector field whereas the previous work did
not focus on such a system. The proposed method obtains
a kernel-based model and model-based optimal controller
simultaneously. The unknown drift term is described by the
model using a training data set. The nonlinear optimal con-
trol problem for the model is solved through an analytical
approach; thus, simplifying the controller design. The effec-
tiveness of the method was confirmed through a numerical
simulation.

The proposed approach should be extended to include
the variance of GP models in future work. Extensions for
other control problems and practical applications will also
be considered.
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Appendix A: Proof of Theorem 2

The partial derivative ∂xV(x) is given by [23, Lemma 1]:

∂xV(x) = p(π> ⊗ Inx )Φ(x)kv(x). (A· 1)

Using this expression, we obtain the following relations:

∂xV(x)> f̂ (x)

= kv(x)
>Φ(x)>(π ⊗ Inx )p

×

( N∑
i=1

ξi(x)Ai

)
(π> ⊗ Inx )Φ(x)kv(x), (A· 2)

∂xV(x)>S(x)∂xV(x)

= kv(x)
>Φ(x)>(π ⊗ Inx )p

2

×

( N∑
i=1

ξi(x)Si

)
(π> ⊗ Inx )Φ(x)kv(x). (A· 3)

Substituting these relations into the HJB equation (7), we
obtain the first statement:

H(x) :=
1
2
kv(x)

>Φ(x)>(π ⊗ Inx )

×

( N∑
i=1

ξi(x)
(
pAi + pAi

> − p2Si + 2Qi

))
× (π> ⊗ Inx )Φ(x)kv(x)

=
1
2
kv(x)

>Φ(x)>
( N∑
i=1

ξi(x)M i

)
Φ(x)kv(x).

(A· 4)

Next, the second statement is proved in amanner similar
to that in [23, AppendixB]. BecauseΦ(x)kv(x) and ξi(x) are
locally Lipschitz, f̂ (x) expressed in (27) is locally Lipschitz.
The property f̂ (0) = 0 holds because of the conditions (15)–
(17). The proof has been completed.

Appendix B: Optimality Analysis of the Proposed Con-
troller

After the HJB equation H(x) = 0 to the drift term model
f̂ (x) is satisfied by the proposed method, H f (x) is given
using the modeling error ( f (x) − f̂ (x)):

H f (x)

:= ∂xV(x)> f (x) −
1
2
∂xV(x)>S(x)∂xV(x) + q(x)

= H(x) + ∂xV(x)>( f (x) − f̂ (x))

= ∂xV(x)>( f (x) − f̂ (x)), (A· 5)

Let us define ‖ f (·)‖s,X := (
∫
X
‖ f (x)‖sdx)1/s , which is

the norm of f (·) over a subset X ⊂ Rnx for s ∈ {1,2}.
We assume that there exist scalars C∂V > 0 and δ > 0
such that ‖∂xV(·)‖2,X < C∂V holds if ‖ f (·) − f̂ (·)‖2,X < δ
holds. Then, we obtain the following relation using Cauchy-
Schwarz inequality:

‖ f (·) − f̂ (·)‖2,X < δ

⇒ ‖H f (·)‖1,X

= ‖∂xV(·)>( f (·) − f̂ (·))‖1,X

=

∫
X

|∂xV(x)>( f (x) − f̂ (x))|dx

≤

∫
X

‖∂xV(x)‖‖ f (x) − f̂ (x)‖dx

≤

(∫
X

‖∂xV(x)‖2dx
)1/2 (∫

X

‖ f (x) − f̂ (x)‖2dx
)1/2

≤ C∂V ‖ f (·) − f̂ (·)‖2,X, (A· 6)

This implies that the norm of the optimality metric H f (·) is
linearly bounded by the modeling error, i.e., ‖H f (·)‖1,X =

O(‖ f (·) − f̂ (·)‖2,X) as ‖ f (·) − f̂ (·)‖2,X → 0. This result
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justifies developing the data-driven model f̂ (x) with high
accuracy.

Appendix C: Proof of Proposition 1

We prove the statement by extending the existing results
[23, Proposition 1, Appendix E]. Using the existing result
transforms f̂ (x; Aall,π) as follows:

f̂ (x; Aall,π) =
( N∑
i=1

ξi(x)Ai

)
(π> ⊗ Inx )Φ(x)kv(x)

=

N∑
i=1

ξi(x)Ai

D∑
d=1
Φ′d(x)πdk(x, xd)

=

N∑
i=1

Ai[ξi(x)k(x, x1)Φ
′
1(x), . . .

. . . , ξi(x)k(x, xD)Φ′D(x)]π . (A· 7)

Using this expression, we obtain
f̂ (x̃1; Aall,π)

...

f̂ (x̃D̃; Aall,π)

 =
N∑
i=1


Ai[Y i,1,1, . . . ,Y i,1,D]π

...
Ai[Y i,D̃,1, . . . ,Y i,D̃,D]π


=

N∑
i=1


Ai · · · 0
...

. . .
...

0 · · · Ai

 Y iπ

= Y (Aall)π . (A· 8)

Substituting the relation (A· 8) into g(p, Aall,π) in (33) pro-
vides the well-known regularized quadratic minimization
with a constant Cπ:

π(Aall) ∈ arg min
π

(
‖Y (Aall)π − y ‖

2 + wπ ‖π‖
2 + Cπ

)
.

(A· 9)

Thus, the solution π(Aall) for this minimization is uniquely
obtained by (34), where using the condition wπ > 0 ensures
the nonsingularity of thematrix (Y (Aall)

>Y (Aall)+wπ InπD).
This completes the proof.
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