
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022
131

INVITED PAPER
Sublinear Computation Paradigm: Constant-Time Algorithms and
Sublinear Progressive Algorithms

Kyohei CHIBA†, Nonmember and Hiro ITO†a), Member

SUMMARY The challenges posed by big data in the 21st Century
are complex: Under the previous common sense, we considered that
polynomial-time algorithms are practical; however, when we handle big
data, even a linear-time algorithm may be too slow. Thus, sublinear- and
constant-time algorithms are required. The academic research project,
“Foundations of Innovative Algorithms for Big Data,” which was started in
2014 and will finish in September 2021, aimed at developing various tech-
niques and frameworks to design algorithms for big data. In this project,
we introduce a “Sublinear Computation Paradigm.” Toward this purpose,
we first provide a survey of constant-time algorithms, which are the most
investigated framework of this area, and then present our recent results
on sublinear progressive algorithms. A sublinear progressive algorithm
first outputs a temporary approximate solution in constant time, and then
suggests better solutions gradually in sublinear-time, finally finds the exact
solution. We present Sublinear Progressive Algorithm Theory (SPA The-
ory, for short), which enables to make a sublinear progressive algorithm for
any property if it has a constant-time algorithm and an exact algorithm (an
exponential-time one is allowed) without losing any computation time in
the big-O sense.
key words: sublinear computation paradigm, big data, sublinear-time
algorithms, constant-time algorithms, tester, progressive algorithms

1. Introduction

Big data is changing the way people live their everyday lives
in all aspects of modern life from health and medicine to
security and entertainment. Requirements for computer al-
gorithms are also evolving, particularly in the need for speed.
For example, in the past, polynomial-time algorithms were
considered fast, but if we applied an O(n2)-time algorithm
on big data of a peta-byte scale or more, we would have
encountered problems with computational resources or the
running time. When we handle big data, even a linear-time
algorithm may be too slow! Certainly, in the era of big data,
we need sublinear-time algorithms. If the computation (=
running) time of an algorithm is o(n), where n is the size
of the input, then the algorithm is called a sublinear-time
algorithm. If the running time is constant (i.e., O(1)), then it
is called a constant-time algorithm, which is a special case
of a sublinear-time algorithm.

From this point of view, an academic research project,
“Foundations of Innovative Algorithms for BigData,” whose
research director is Naoki Katoh, Professor of Hyogo Uni-

Manuscript received March 27, 2021.
Manuscript revised August 30, 2021.
Manuscript publicized October 8, 2021.
†The authors are with School of Informatics and Engineering,

The University of Electro-Communications, Chofu-shi, 182-8585
Japan.

a) E-mail: itohiro@uec.ac.jp
DOI: 10.1587/transfun.2021EAI0003

versity, began in October, 2014 and will finish in September
2021∗. The total budget for this project ismore than 3million
dollars. Although the project was started by 24 members,
many more researchers have gathered and now the number
of regular members has grown to more than 40 in total.

In this project, we introduce a new paradigm,

“Sublinear Computation Paradigm,”

which shows how we need sublinear-time algorithms in var-
ious situations in the era of big data. Under this paradigm,
we have obtained many fruitful results [26], [27], especially
in the area of constant-time algorithms. The paper [20]
presents a constant-time “universal” tester for a model of
complex networks, and was selected as one of the best three
works in the final report of the project.

In this paper, we survey sublinear-time, mainly
constant-time, algorithms. In this area, property testing is the
most examined framework. Property testing probabilistically
distinguishes that the input has a predetermined property and
that the input is far from satisfying the property. Property
testing was firstly presented by Rubinfeld and Sudan [34] in
1992 in the context of program checking. The first study
that presented the notion of the constant-time testability of
combinatorial structures (mainly graphs) was given by Gol-
dreich, Goldwasser, and Ron [17], whose conference version
appeared in 1995 (STOC’95). Many studies following their
idea of testability have appeared and the importance of this
area is growing. See [8], [15], [16] for details.

This paper also introduces the idea of “sublinear pro-
gressive algorithms” and presents some results on how to
construct these algorithms. A sublinear progressive algo-
rithm first outputs a temporary approximate solution in con-
stant time, and then suggests better solutions gradually, fi-
nally finding the exact solution. We present Sublinear Pro-
gressive Algorithm Theory (SPA Theory, for short; Theo-
rem 23), which enables to make a sublinear progressive al-
gorithm for any property if it has a constant-time algorithm
and an exact algorithm (an exponential-time one is allowed)
without losing any computation time in the big-O sense.

This paper is organized as follows. After presenting the
basic notations and terminology in Sect. 2, we show some
tools useful in this area in Sect. 3. Basic techniques are ex-
plained by using examples based on fundamental problems

∗The main project finished successfully in March 2020. Fol-
lowing this success, an additional project, whose scale has been
reduced, will continue until September 2021.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

132
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

in Sect 4. Next, we present key results in this area, focus-
ing mainly on the characterizations of constant-time testable
properties in Sect. 5. Finally, we show our results on sublin-
ear progressive algorithms through detailed discussions in
Sect. 6 and we present our conclusions in Sect. 7.

2. Notation and Terminology

2.1 Basic Terms and Symbols

In this paper, a graph is a simple graph, i.e., it has neither
a self-loop nor parallel edges, unless otherwise stated. For
simplicity, we omit rounding operators necessary to ensure
that all values of formulas such as

√
n are integers.

Let Z and R be the set of integers and real numbers,
respectively. For any set of real numbers R, R+ := {x ∈
R | x > 0} and R+0 := {x ∈ R | x ≥ 0}, e.g., Z+0 is the set of
nonnegative integers.

2.2 Oracles

A sublinear computation time means that an algorithm does
not read the whole data of an input except for the case when
that the size of the input is very small (i.e., smaller than
some constant). Thus in order to consider sublinear-time
algorithms, how to model the problems is important. A
subliner-time algorithm gets the data of the input through an
oracle. If an algorithm queries a question, then the oracle
gives a constant-sized answer. For example, in the dense-
graph model, which is one of the most-studied models, the
edge-oracle is used: If an algorithm asks a pair of vertex
ID’s, say (i, j), then the oracle answers 1 if there is an edge
between them; otherwise 0. Here, we normally assume that
the ID of vertices are given by a set of successive positive
integers from 1 to n, where n is the number of vertices and
the algorithm knows n. Through this oracle, algorithms get
(partial) information of the input graph.

Since an algorithm reads only a part of the input, get-
ting a correct result is usually impossible. Thus we should
introduce a relaxation. We explain about “property test-
ing,” which is the most studied framework in subliner-time
algorithms.

In this framework, we allow an approximation error:
An algorithm for testing a property accepts the input with
high probability (say more than 2/3) if it has the property,
or rejects the input with high probability if it is far from
having the property. To treat this idea mathematically, we
must define what a property is and what “far” means.

2.3 Distance and ε-Far

The above “far” is quantified by using a positive real number
ε > 0: To explain the farness, we use graphs for example.
For other types of inputs, e.g., functions, grammars, strings,
images, and figures, similar methods as graphs are used.

We introduce the distance between two instances (= in-
puts). We can define the distance only between two instances

Fig. 1 `(G,G′) = 2.

whose size of the input, say N , are the same. Note that since
an input is represented by the answers of an oracle, N is
equal to the number of possible different queries, e.g., for
the edge-oracle, N = n2, where n is the number of vertices†.
In other words, if the inputs are graphs, then we define the
distance only between graphs whose number of vertices are
the same. We call a graph that consists of n vertices an
n-graph.

The distance between two instances I and I ′ the size
of which are both N , denoted by dist(I, I ′), is defined as
follows. Let `(I, I ′) be the number of distinct queries of the
oracle whose answers are different between I and I ′, e.g.,
if I = G = (V,E) and I ′ = G′ = (V,E ′) are n-graphs and
the oracle is the edge-oracle, then `(G,G′) is the number of
pairs (i, j) ∈ n × n such that (i, j) ∈ E ∧ (i, j) < E ′ or (i, j) <
E ∧(i, j) ∈ E ′. See Fig. 1 for an example: `(G,G′) = 2 since
removing (1,4) and adding (4,6) are necessary to make G
equal to G′.

Now,

dist(I, I ′) :=
`(I, I ′)

N
. (1)

Next, we define the distance between an instance and a
property. Before showing the definition, we define proper-
ties. Let Π be the universal set of possible instances. Let
ΠN be the subset of instances whose size is N in Π. Clearly
Π =

⋃∞
i=1 Πi . A property is a subset of Π closed under iso-

morphism. The intuitivemeaning of how those two instances
are isomorphic is that they are the same except for their la-
bels (IDs), e.g., when we consider graphs, two n-graphs
G = (V,E) and G′ = (V ′,E ′) are isomorphic if there is a bi-
jection π : V → V ′ such that (i, j) ∈ E ⇔ (π(i), π(j)) ∈ E ′.
For an example of properties, a graph property “planar”
is defined by the set of planar graphs. Note that this is
clearly closed under isomorphism. For any property P,
Pi := P ∩ Πi .

The distance between an instance I and a property P is
defined as follows. Let N be the size of I.

dist(I,P) :=
{

minI ′∈PN dist(I, I ′) if PN , ∅,
∞ otherwise.

Let I and I ′ be instances and let P be a property. For a
†If the input is an undirected simple graph, then it must be(n

2
)
= n(n − 1)/2. We normally use, however, n2 for simplicity.

Note that multiplying any constant has essentially no effect.

CHIBA and ITO: SUBLINEAR COMPUTATION PARADIGM
133

positive real number ε > 0, we say that I and I ′ are ε-far if
dist(I, I ′) > ε ; otherwise, ε-close. We also say that I and P
are ε-far if dist(I,P) > ε ; otherwise, ε-close.

2.4 Testers

We define testing algorithms, one-sided-error, query com-
plexity, and testers as follows.

Definition 1: A testing algorithm for a property P is an
algorithm that, given query access (by the oracles) to an
instance I, accepts every graph from P with probability at
least 2/3, and rejects every graph that is ε-far from P with
probability at least 2/3. If the testing algorithm accepts every
graph from P with probability 1, then the algorithm is said
to be a one-sided error. �

The success probability 2/3may look too small to apply
to actual situations. However, this is not essential, since we
can decrease this probability to be any small positive value
by iterating the algorithm a constant number of times that
depends on the value.

Definition 2 (query complexity and tester): The number of
queries made by an algorithm to the given oracle is called the
query complexity of the algorithm. If the query complexity
of a testing algorithm is bounded by a constant independent
of the size of instance N (but it may depend on ε), then the
algorithm is called a tester. A property is testable if there is
a tester for the property.

3. General Tools

3.1 Inequalities Useful to Bound Probabilities

First, we present some general tools useful for analyzing the
probabilities of randomized algorithms. Since these tools
will be used later in this paper, readers can skip this section
and go to the next section for the nonce, and return when
they appear later.

Lemma 3: For any real value x, 1 + x ≤ ex .

Proof: It is easily obtained by differentiating ex − x − 1 and
e0 = 1. �

Theorem 4 (Hoeffding’s inequality [19]): Let X1, . . ., Xs

be independent random variables bounded as ai ≤ Xi ≤ bi
for all i ∈ {1, . . . , s}. X := 1

s

∑s
i=1 Xi . Let Ex[X] be the

expected value of X . Then for any t ≥ 0, the probability
that |X − Ex[X]| ≥ t occurs is bounded by the following
inequality:

Pr[|X − Ex[X]| ≥ t] ≤ 2 exp
(
−

2s2t2∑s
i=1(bi − ai)2

)
. (2)

3.2 The Regularity Lemma

Next, we present the monumental lemma known as

Szeméredi’s regularity lemma. Before explaining this
lemma, we need to provide some terms.

For a pair of subsets of vertices A,B ⊆ V of graph
G = (V,E), we denote the set of edges between A and B by
E(A,B), i.e., E(A,B) := {(v, w) ∈ E | v ∈ A, w ∈ B}. The
density between A and B is defined as den(A,B) := |E(A,B) |

|A | |B | .

Definition 5 (ε-regular pair): Let 0 < ε ≤ 1 be a real num-
ber and A,B ⊆ V . A pair (A,B) is called ε-regular if
|den(A,B) − den(X,Y)| ≤ ε for any two subsets X ⊆ A
and Y ⊆ B satisfying |X | ≥ ε |A| and |Y | ≥ ε |B |.

Definition 6 (ε-regular equipartition): A family of subsets
V = {V1, . . . ,Vk} (Vi ⊆ V , ∀i ∈ {1, . . . , k}) is called a
partition of V if Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k and
V = V1 ∪ · · · ∪Vk . This k is called the order of the partition.
A partition V = {V1, . . . ,Vk} of the vertex set of a graph is
called an equipartition if |Vi | and |Vj | differ by nomore than 1
for all 1 ≤ i < j ≤ k. An equipartitionV = {V1, . . . ,Vk} of
the vertex set of a graph is called ε-regular if all but at most
εk2 of the pairs (Vi,Vj) (i, j ∈ {1, . . . , k}) are ε-regular. �

Now we can explain the lemma.

Theorem 7 (Szeméredi’s regularity lemma [3], [35]): For ev-
ery pair of an integer t and a real number ε > 0, there exists
an integer T = T7(t, ε) such that any graph with n ≥ T
vertices has an ε-regular equipartition of order k, where
t ≤ k ≤ T .

3.3 Yao’s Minimax Principle

In this subsection, we introduce Yao’s minimax principle,
which is based on the idea that any randomized algorithm can
be regarded as a distribution over deterministic algorithms.
We say that a deterministic algorithm A errs in testing a
property P on an instance I if A rejects I if I ∈ P and A
accepts I if I is ε-far from P. We also consider a distribution
of instances I. The subdistribution consisting of instances
whose size is N is denoted by IN . Clearly I =

⋃∞
i=1 Ii .

Yao’s minimax principle can be expressed in many dif-
ferent forms. The following is one in the property testing
form.

Theorem 8 (Yao’s minimax principle [8], [16], [36]): Let
P be a property and q : Z+ × R+ → Z+ be a function.
Assume that for any ε > 0 and for infinitely many N ∈ Z+,
there exists a distributionIN such that for every deterministic
algorithm Awhose query complexity is q(N, ε), the following
holds:

Pr
I∼IN
[A errs in testing P on I] >

1
3
,

where I ∼ IN means that I is chosen according to distribu-
tion IN . Then the query complexity of any algorithm to test
P on parameter ε and size N is more than q(N, ε).

Proof: LetA be an arbitrary randomized algorithm for test-
ing P with query complexity at most q(N, ε). A is regarded

134
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

as a distribution over deterministic algorithms. Thus the
probability thatA errs in testing P when instances are given
over the distribution IN is expressed as follows.

Pr
A∼A, I∼IN

[A errs in testing P]

≥ min
A∈supp(A)

Pr
I∼IN
[A errs in testing P], (3)

where supp(A) is the support of A. From the assumption,
(3) is greater than 1/3. Therefore the probability thatA errs
in testing P when instances are given over the distribution
IN is more than 1/3. �

4. Basic Techniques

4.1 An Elementary Example of Testers

Here we show an elementary (maybe naive) example of
testers to help readers to understand how testers work. A
function f : {1, . . . ,n} → R is linear if there are real values
a, b ∈ R such that f (x) = ax + b for all x ∈ {1, . . . ,n}†.
A function f is ε-far from linear if for at least εn variables
x ∈ {1, . . . ,n}, f (x) must be changed to make f linear.

We will show a tester for testing linearity. The oracle
of this problem, for any x ∈ {1, . . . ,n}, returns f (x). In this
algorithm, we assume that ε ≤ 1/4, since if ε > 1/4, ε-far
is also 1/4-far, and thus using 1/4 replaced with ε > 1/4 is
sufficient. The algorithm is the following.

procedure Linearity
begin
01 choose s = 2ε−1 values S = {x1, x2, . . . , xs} from
{1, . . . ,n} independently at random;
02 check whether all points (xi, f (xi)), xi ∈ S are colinear;
03 if they are colinear, then accept the input; otherwise,
reject it;
end.
Theorem 9: Linearity is a one-sided-error tester for lin-
earity with query complexity O(ε−1).

Proof: If the input is linear, then it is clearly accepted by
the algorithm. Assume that the input is ε-far from linear.
Let B be one of the minimum sets of integers i ∈ {1, . . . ,n}
such that f (xi) should be changed to make the input linear.
From the assumption, |B | > εn. Thus the probability that a
randomly chosen i is not in B is 1 − ε .

Let L be the line formed by all the points that is not in
B. If S is colinear, then (i) S ∩ B = ∅ or (ii) |S − B | ≤ 1.
(Note that (ii) occurs only when the points in S ∩ B are
accidentally on a line, say LB, and note that LB may cross
L.) The algorithm accepts the input by mistake in only these
cases. The probability that (i) occurs is

(1 − ε)s ≤ (e−ε)s = e−εs = e−ε (2ε
−1) = e−2 ≤

1
6
. (4)

†In many articles of property testing, “linearity” is used in a
different form. To give priority to a good understanding of persons
who are not familiar with this area, we use this definition.

The first inequality is obtained from Lemma 3.
The probability that (ii) occurs is at most

sε s−1 = 2ε s−2 = 2(1 − (1 − ε))s−2

≤ 2
(
e−(1−ε)

)s−2
= 2

(
e−1

) (1−ε)(s−2)
(5)

The first inequality is obtained from Lemma 3. From 1−ε ≥
3/4 and s = 2ε−1 ≥ 8 (since ε ≤ 1/4),

(1 − ε)(s − 2) ≥ 3. (6)

From (5) and (6), it follows that the probability that (ii) occurs
is at most

2e−3 <
1
6
. (7)

From (4) and (7), the probability that the algorithm accepts
the input in mistake is at most 1/6 + 1/6 = 1/3, i.e., the
algorithm rejects it with probability at least 2/3.

This algorithm is clearly a one-sided-error, since no
linear input is ever rejected. The query complexity is O(s) =
O(ε−1). �

4.2 Testing Triangle-Freeness on Dense Graphs

In this subsection, we show an example of graph-property
testing. For an integer n ∈ Z+, we denote byKn a complete n-
graph. If a graph does not contain any K3 as a subgraph, then
it is said to be triangle-free. Triangle-freeness is clearly a
property since any graph isomorphic to a triangle-free graph
is also triangle-free.

We first consider a tester for triangle-freeness in the
dense-graph model, where the edge-oracle is used. We show
a one-sided-error tester of triangle-freeness as follows, where
G = (V,E) is a given n-graph and sε is an integer that is fixed
by ε and will be defined later.

procedure Triangle-Freeness
begin
01 choose s = sε vertices S = {v1, v2, . . . , vs} from V
independently at random;
02 make the subgraph G(S) induced by S through the oracle;
03 if G(S) contains no K3, then accept the input; otherwise,
reject it;
end.

This algorithm is a one-sided-error, since it rejects an
input only if it finds a copy of K3. Showing that it rejects
every graph that is ε-far from triangle-free with probability
at least 2/3 is not simple.

Lemma 10 ([2]): For any ε > 0, there is an integer s =
s10(ε) such that for any graph, if it is ε-far from triangle-
free, then a subgraph induced by s vertices chosen uniformly
at random from the graph contains a K3 with probability at
least 2/3.

Proof sketch: Let G = (V,E) be an n-vertex graph ε-far

CHIBA and ITO: SUBLINEAR COMPUTATION PARADIGM
135

from triangle-free. Let S be the set of vertices chosen by
the above algorithm. From Theorem 7, it can be proven that
there are T = T10(ε), γ = γ10(ε) and t = t10(ε) that satisfy
the following property: If n ≥ T , then G has a γ-regular
equipartition V of V with t ≤ |V| ≤ T . From that G is
ε-far from triangle-free, (the detail is omitted but) it can be
shown that there must be W1,W2,W3 ∈ V such that (Wi,Wj)

are γ-regular and den(Wi,Wj) ≥ 2γ for all 1 ≤ i < j ≤ 3.
Since V is an equipartition, |Wi |/n > 1/2T holds. From
this, (the detail is omitted again but) it follows that if s is
large enough, S includes three vertices v1 ∈ W1, v2 ∈ W2,
and v3 ∈ W3 such that (v1, v2), (v2, v3), (v3, v1) ∈ E with high
probability. �

Theorem 11 ([2]): Triangle-freeness on the dense-graph
model is testable by Triangle-Freeness with a one-sided-
error.

Proof: We adopt s10(ε) in Lemma 10 as sε in the procedure.
If the graph is triangle-free, the algorithm clearly accept it,
and thus the algorithm is a one-sided-error. Assume that the
input graph is ε-far from triangle-free. From Lemma 10,
G(S) contains at least one K3 with probability at least 2/3,
and the input is rejected with probability at least 2/3. �

Note that the query complexity of this algorithm is very
huge, since the constant s10(ε) in Lemma 10 is a tower of
ε−1.

4.3 Parameter Testing

In this subsection, we explain a method for approximating
a value in constant time. Such a framework is sometimes
called parameter testing.

Definition 12: Let x∗ ∈ R+0 be a nonnegative real value.
For a pair of nonnegative real values α ≥ 1 and β ≥ 0, a
value x is said to be an (α, β)-approximation of x∗ if

x∗

α
− β ≤ x ≤ αx∗ + β. (8)

�

For an example, we show a constant-time (1, εn)-
approximation algorithm for evaluating the number of edges
of a given graph in the “bounded-degree-graph model.” The
bounded-degree-graphmodel (or the bounded-degreemodel,
for short) only considers graphs such that every vertex has at
most a constant number of neighbours, which is defined as
follows.

Definition 13 (degree and bounded-degree): We call the
number of adjacent vertices of a vertex v ∈ V of G = (V,E)
the degree of v, which is denoted by degG(v), i.e., degG(v) :=
|{w ∈ V | (v, w) ∈ E}|. The subscript G may be omitted if
it is clear. For a positive integer d ∈ Z+, if degG(v) ≤ d for
every vertex v ∈ V in graph G = (V,E), G is said to be a
d-bounded-degree. The set of d-bounded-degree graphs is
denoted by Γ(d). Sometimes the d-bounded-degree is called

a bounded-degree for short. �

The bounded-degree model considers only Γ(d), where
d is arbitrary. For any graph G = (V,E) ∈ Γ(d), |E | ≤ dn/2,
where n = |V |, i.e., |E | = O(n) for any constant d. Hence G
is sparse. This means that the edge-oracle is useless, since
for almost all queries, the answers will be “there is no edge
between the pair of vertices.” Thus in the bounded-degree
model, the following oracles are used.

• Degree-oracle: If an algorithm gives a vertex v ∈ V ,
this oracle replies deg(v).

• Adjacent-vertex-oracle: If an algorithm gives a pair of
v ∈ V and an integer i ∈ {1, . . . ,deg(v)}, this oracle
answers the ith neighbour of v if exists; otherwise, 0.

In this model, the denominator of the distance
(Equation(1)) is dn.

Lemma 14: In the d-bounded-degree model, for any ε > 0
and any 0 < p < 1, a (1, εn)-approximation of |E | can be
obtained with probability at least 1−p and query complexity
O(d2ε−2 log p−1).

Clearly |E | can be expressed by the following equations,
where Ex[deg] is the average degree of G:

|E | =
1
2

∑
v∈V

deg(v) =
n · Ex[deg]

2
. (9)

By using this equation, we can construct an algorithm
for estimating |E | as follows.

procedure Graph-Size-Estimation
begin
01 choose s = d2

8ε2 ln 2
p vertices S = {v1, . . . , vs}

from V independently at random;
02 calculate deg = 1

s

∑s
i=1 deg(vi) and m = n · deg/2;

03 output m;
end.

Proof of Lemma 14: From Hoeffding’s inequality (Theo-
rem 4),

Pr[|deg − Ex[deg]| ≥ 2ε]

≤ 2 exp
(
−

2s2(2ε)2

sd2

)
= 2 exp

(
ln

p
2

)
= p. (10)

From m = n · deg/2 and |E | = n · Ex[deg]/2, it follows that
the above probability is equal to Pr[|m − |E | | ≥ εn]. There-
fore m is a (1, εn)-approximation of |E |. �

4.4 Lower Bounds on Query Complexity

Some properties have been known to be non-testable. In this
subsection we show how to prove non-testability by using
examples.

A graph G = (V,E) is called bipartite if V can be
partitioned into two subsets V1 and V2 such that every edge

136
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

is between V1 and V2, i.e., E = E(V1,V2). Bipartiteness is
clearly a property. Bipartiteness is the property that was first
found to have a super-constant lower bound for testing. This
was obtained by Goldreich and Ron [18].

Theorem 15 ([18]): For the 3-bounded-degree (graph)
model, there is an ε > 0 such that any testing algorithm for
bipartite with parameter ε requires Ω(

√
n) queries, where n

is the number of vertices.

Proof sketch: In order to use Yao’s minimax principle (The-
orem 8), we construct a distribution G on 3-bounded-degree
graphs such that any deterministic algorithm whose query
complexity less than

√
n/4 cannot distinguish the given graph

being bipartite from being 0.01-far from bipartite with prob-
ability at least 2/3.
G consists of two subsetsG1 andG2: the former consists

of bipartite graphs and the latter consists of graphs that are
0.01-far from bipartite. A graph is given from G1 or G2
in the same probability, and any algorithm whose query
complexity is small cannot distinguish from which subset
the graph comes with high probability. We restrict n as even.

1. G1 consists of all 3-regular graphs that are composed
of a Hamiltonian cycle and a perfect matching.

2. G2 consists of all 3-regular graphs that are composed of
a Hamiltonian cycle and the perfect matching satisfying
the following restriction: the distance on the cycle be-
tween every two vertices that are connected by a perfect
matching edge must be odd.

Clearly all graphs in G2 are bipartite. It can be also proven
that almost all graphs in G1 are far from bipartite.

Furthermore, it can be proven that any testing algorithm
that performs o(

√
n) queries cannot distinguish between a

graph chosen randomly from G1 and a graph chosen ran-
domly from G2. �

In the same paper [18], it is also shown that testing
expander requires Ω(

√
n) queries.

Stricter Ω(n) lower bounds on query complexity have
been known for some properties. Bogdanov, Obata, and Tre-
visan [10] showed the first Ω(n) lower bound for Bounded-
degree graph 3-colorability, and furthermore for Vertex
Cover, Max Cut, Max 2SAT,Max E3SAT†, andMax E3LIN-
2††, where all the above problems are in the bounded-
degree model, by introducing a reduction method. Later,
Yoshida and Ito [39] showed that 3-edge-colorability, Di-
rected/undirected Hamiltonian path/cycle, 3-dimensional
matching, and Schaefer-type generalized 3SAT, all in the
bounded-degree model, also have the same (linear) lower
bounds by introducing some new reduction methods.

†EkSAT is SAT, with each clause having exactly k literals.
††EkLIN-h is the problem of deciding the satisfiability of a

system of linear equations modulo h, with each equation having
exactly k variables.

5. Characterizations of Testable Properties

One of the most attractive themes in the area of property
testing is finding a combinatorial characterization of testable
properties.

5.1 Dense Graphs

For the dense-graph model, a complete combinatorial char-
acterization of testable properties was found by Alon et al.
[3]. To put it briefly, this characterization is expressed by
the regularity lemma (3.2). To explain this a little more, the
characterization is said to be “regular reducible,” which is
shown as follows.

Definition 16 (regularity-instance): A regularity-instance
R is given by an error-parameter ε > 0, an integer k, a
set of

(k
2
)
densities 0 ≤ ηi, j ≤ 1 indexed by 1 ≤ i < j ≤ k,

and a set R of pairs (i, j) of a size at most εk2. A graph
is said to satisfy the regularity-instance if it has an equipar-
tition {Vi | 1 ≤ i ≤ k} such that for all (i, j) < R the pair
(Vi,Vj) is ε-regular and satisfies |E(Vi,Vj)| = ηi, j |Vi | |Vj |, i.e.,
den(Vi,Vj) = ηi, j . The complexity of the regularity instance
is max(k,1/ε).

Definition 17 (regular-reducible): A graph property P is
regular-reducible if for any δ > 0 there exists r = rP(δ)
such that for any n there is a family R of at most r regularity-
instances each of complexity at most r , such that the follow-
ing holds for every ε > 0 and every n-graph G:

1. If G ∈ P, then for some R ∈ R, G is δ-close to R.
2. If G is ε-far from P, then for any R ∈ R, G is (ε − δ)-

far††† from R.

Theorem 18 ([3]): For the dense-graph model, a graph
property is testable if and only if it is regular-reducible.

For example, the triangle-freeness considered in 4.2 is
regular reducible.

5.2 Bounded-Degree Graphs

We have not obtained a complete characterization of testable
properties in the bounded-degree (graph) model. However,
an important sufficient condition called “hyperfiniteness”
was found.

Definition 19 (hyperfinite): Let ε > 0, t > 0, and d > 0.
Let G = (V,E) be an d-degree-bounded n-graph. If one can
remove at most εdn edges from G so that each connected
component of the resulting graph has at most t vertices, then
G is called (ε, t)-hyperfinite (with respect to degree bound
d). For a function ρ : R+ → R+, if G is (ε, ρ(ε))-hyperfinite
for every ε > 0, then G is called ρ-hyperfinite. A set G of

†††Here we extend the term “ε-far” to negative ε , since for every
instance can be regarded as ε-far (from any family of instances) for
any ε ≤ 0 from the definition.

CHIBA and ITO: SUBLINEAR COMPUTATION PARADIGM
137

d-degree-bounded graphs is called ρ-hyperfinite if ∀G ∈ G
is ρ-hyperfinite. G is called hyperfinite if there is a function
ρ such that G is ρ-hyperfinite. �

Note that if a graph is hyperfinite, then it is close to a
graph that can be partitioned into small connected compo-
nents. If a graph can be partitioned into small, connected
components, then a local search from randomly chosen ver-
tices is well suited. In fact, the following theorem was given
by Newman and Sohler [33].

Theorem 20 ([33]): In the bounded-degree model, every
graph property is testable for any hyperfinite family of
graphs.

Unfortunately this theorem is not a necessary condi-
tion, e.g., k-edge/vertex-connected for any fixed k ≥ 3 is
not hyperfinite but testable [18], [38]. However, a neces-
sary condition based on hyperfiniteness was also found by
Fichtenberger et al. [13] as shown in the following.

A subproperty of a property P is a property that is
a subset of P. A property is non-trivially testable if it is
testable and there exists ε > 0 such that there is an infinite
number of graphs that are ε-far from the property.

Theorem 21 ([13]): Every testable property of bounded-
degree graphs is either finite or contains an infinite hyperfi-
nite subproperty. Also, the complement of every non-trivially
testable graph property contains an infinite hyperfinite sub-
property.

Ordinarily we suppose that testing algorithms know the
size of the input, e.g., the number of vertices of a given
graph. Alon and Shapira [5], however, introduced an idea of
the oblivious tester, which must work without knowing the
size, and showed a complete characterization of one-sided-
error oblivious testers.

Recently, combinatorial characterizations of one-sided
error testability for monotone and hereditary properties in
the bounded-degree model were presented by Ito, Khoury,
and Newman [22]. If for any G ∈ P, a graph obtained
by removing an arbitrary edge (resp., vertex) is also in P,
then P is called monotone (resp., hereditary) [4]. Note
that any minor-closed property [12] (including planar) and
k-colorability for any k ∈ Z+ (including bipartite) are mono-
tone and hereditary. This characterization covers not only
undirected graphs but also digraphs. In the paper, an idea
of “forbidden configurations” was presented. This idea may
be useful in obtaining a characterization of one-sided-error
testable properties with no restriction on the bounded-degree
model.

5.3 General Graphs

We have shown two models on graphs: the dense-graph
model and the bounded-degree model. Another popular
model is the general (graph) model. This model is a common
generalization of the other two models.

In this model, an upper bound d of the average degree

of every graph is given, i.e., d ≥
∑

i∈V deg(i)/n for every
graph. Ordinarily we assume that d is a constant, and thus
this model treats sparse graphs. The distance is defined as
Eq. (1), where d is the upper bound on the average degree.
This model allows all oracles that can be used in the other
two models.

As written above, this model is a common generaliza-
tion of the other twomodels and it is inevitably more difficult
than them. Althoughwe are now far from getting a character-
ization, class HSF (Hierarchal Scale Free), which models
complex networks was presented by Ito [20]. It is shown that
any property is testable in HSF , i.e., a universal tester† is
given in this class.

In the general-graph model, while no other universal
(constant-time) tester has been known, universal testing al-
gorithms with polylog(n)-time query complexity have been
found on forests [28] and outerplanar graphs [7].

5.4 Other Results

We briefly introduce some other results on not only charac-
terizations, but also various types of problems. On affine-
invariant functions, Yoshida [37] presented a complete char-
acterization of testable properties.

Batu, Berenbring, and Sohler [6] gave a parameter-
testing algorithm for the bin packing problem with query
complexity Õ(

√
n · poly(ε−1)). Ito, Kiyoshima, and Yoshida

[23] showed a parameter-testing algorithm for the knapsack
problem with query complexity Õ(ε−4). For EXPTIME-
complete problems, the generalized chess, Shogi (Japanese
chess), and Xiangqi (Chinese chess) were proven to be all
testable by Ito, Nagao, and Park [24]. Ito and Ueda applied
sublinear-time algorithms to the cake-cutting problem [25].

Lovász and Vesztergombi [30] introduced an idea of
nondeterministic property testing, and showed a relation to
deterministic (i.e., ordinary) property testing. In response to
this paper Gishboliner and Shapira [14] provideed an addi-
tional results using Szemerédi’s regularity lemma.

6. Sublinear Progressive Algorithm

6.1 What is a Sublinear Progressive Algorithm

In this section, we present the idea of “sublinear progressive
algorithms.” Constant- or sublinear-time algorithms are very
useful when we need to get a solution quickly if a problem
suddenly occurs and we should need to read very huge data
if we used a traditional polynomial-time algorithm. In such
a case, it is useful to get an approximate solution quickly
by using a constant- or sublinear-time algorithm. Even in
such a case, however, after getting a temporary solution, we
may hope to get a better solution gradually as time permits.
Ideally, we want to get better and better solutions gradually,

†A universal tester means that it can test every property in a
wide class of instances (e.g., graphs). Since this “wide” is intuitive
idea, “a universal tester” is not a mathematically defined term.

138
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Fig. 2 Progressive algorithms.

and to get an exact solution finally in the same time as if we
applied an exact algorithm from the biginning.

We call such algorithms “sublinear progressive algo-
rithms,” which are illustrated in Fig. 2. Only preliminary
results on this idea have been presented by the authors in an
international conference [11]†.

In this section, we show that for any problem, if there are
both a constant-time algorithm and an exact algorithm, we
can construct an ideal sublinear-time algorithm, i.e., given
any positive integers r ≥ 2 and t ≥ 1, an algorithm that
outputs r solutions S1, S2, . . ., Sr in this order, where Sr is
the exact solution, under the constraint that

(1) S1 is obtained in time O(t),
(2) for any i ∈ {1, . . . ,r} the worst-case computation time

Ti for getting Si isO(T∗(Si)), whereT∗(Si) is the compu-
tation time to get Si by using the original constant-time
algorithm (if i ∈ {1, . . . ,r − 1}) or exact algorithm (if
i = r), and

(3) R := maxi∈{2,...,r } Ti/Ti−1 is minimized in the big-O
sense.

Themeaning of Constraint (3) is that the timewe should
wait for the next solution follows a geometric progression.
If it follows an arithmetic progression, then T2 ≈ Tr/r . Tr/r
is very close to Tr , which is the time to output the final
(exact) solution, in the big-O sense. Thus, in this case, we
must wait for a very long time (until Tr/r) to get the second
solution ifT∗(Sr) is very huge. By introducing the geometric
progression, the waiting times become gradually longer and
longer. This is reasonable in actual situations.

6.2 Related Problems

The term “progressive algorithms” is already known in the
context of polynomial-time algorithms. In this context, some
studies have discussed the following: Convex hulls and com-
puting popular places from trajectory data [1], group Steiner
tree search [29], sorting in the external memory model [31],
Euclideanminimum spanning tree [32] have been developed.

An analogous concept to a progressive algorithm is an
†Oral presentation only. No proceedings published.

anytime algorithm [9]. An anytime algorithm is an algorithm
that returns some answer for any allocation of computation
time, and is expected to return better answers when given
more time. However, the performance of anytime algorithms
has been evaluated experimentally.

6.3 Sublinear Progressive Algorithm Theorem

We present Sublinear Progressive Algorithm Theorem (SPA
Theorem, for short) as follows. While we show only the
property-testing version here, the parameter-testing version
is easily defined similarly and is omitted.

Definition 22: Let P be a property. For positive real
numbers ε > 0 and 0 < p < 1/2, a random valuable
S ∈ {yes,no}, which is the output of testing algorithm for P,
is said to be an (ε,1 − p)-solution if the input is in P, then
S = yes with probability at least 1− p and if the input is ε-far
from P, then S = no with probability at least 1 − p. �

Our algorithm, given r ≥ 2, outputs r solutions S1, S2,
. . ., Sr , where for i = 1, . . . ,r−1, Si is an (εi,1−pi)-solution,
and Sr is the exact solution. Let Ti be the time calculated
to get Si by the progressive algorithm. Constraint (2) in 6.1
means that every intermediate solution and the final solution
must be calculated in almost the same time as the original
constant-time or exact algorithms. In order to satisfy Con-
straint (3), these solutions are obtained in the time following
an arithmetic progression, i.e.,Ti = O(tτi−1) for some τ > 1.
Moreover, from the requirement of actual applications, εi and
pi should become better and better gradually.

The following theorem shows that for any property,
if it has a constant-time algorithm and an exact algorithm
(an exponential-time algorithm is allowed), then a sublinear
progressive algorithm satisfying the above conditions exists.

Theorem 23 (SPA Theorem: property testing version): Let
P be a property. Suppose that there exist a testerAlg0 whose
time complexity is T∗(ε,1 − p), where ε > 0 is an approxi-
mation parameter and 0 < p ≤ 1/2 is a failure probability,
and an exact algorithmAlg1 whose time complexity isT∗(n),
where n is the size of the input, forP. Then there exists an al-
gorithm, given any positive integers r ≥ 1 and 0 < t ≤ T∗(n),
that provides r solutions S1, S2, . . ., Sr , in time T1, T2, . . .,
Tr , respectively, and satisfies the following conditions:

(1) T1 = Θ(t).
(2.1) Sr is the exact solution and Si is an (εi,1− pi)-solution

for some εi > 0 and 0 < pi ≤ 1/2, ∀i ∈ {1, . . ., r − 1}.
(2.2) Tr = O(T∗(n)) and Ti = O(T∗(εi,1 − pi)), ∀i ∈ {1, . . .,

r − 1}.
(3) For i ∈ {1, . . . ,r − 1}, Ti = O(tτi−1) for some τ ≥ 2,

and moreover if τ > 2, then Ti = Θ(tτi−1).
(4) Both εi and pi are decreasing functions of i.

Note that in O(∗) and Θ(∗) in this theorem, ε , r , and
t are regarded as variables. Although we did not define εr
and pr in this theorem, we can introduce them as εr = 0 and
pr = 0 (since Si is the exact solution).

CHIBA and ITO: SUBLINEAR COMPUTATION PARADIGM
139

In Condition (3) of this theorem, the common ratio of
increasing Ti is at least 2, i.e., τ ≥ 2. This is because if τ is
smaller than 2, then we do not need to calculate solutions so
frequently, and it is sufficient to use 2 as the common ratio.
Moreover, the latter half of Condition (3) “if τ > 2, then
Ti = Θ(tτi−1)” is important. Since if this constraint does not
exist, then Ti = O(tτi−1) (for i ∈ {1, . . . ,r − 1}) can be triv-
ially satisfied by letting τ be very huge, e.g., τ ≥ T∗(n)/T1.

Proof of Theorem 23: All of the Conditions (*) appearing
in this proof represent the conditions in the statement of this
theorem.

From Condition (1), we calculate ε1 and p1 that satisfy
T∗(ε1,1 − p1) ≤ max{2t, t + c} for an appropriate constant
c > 0, which is required to output S1 ∈ {yes,no} when
t is too small. Note that since any random solution is an
(ε,1/2)-solution for any ε , there must be such ε1 and p1.

T1 := max{2t, t + c}. (11)

Let τ and T ′1 , . . ., T ′r be as follows, where n is the size
of the input.

τ = max

{(
T∗(n)

T1

) 1
r−1

,2

}
, (12)

T ′i := min{T1τ
r−1,T∗(n)} (i = 1, . . . ,r). (13)

If (T∗(n)/T1)
1/(r−1) < 2 in (12), then τ = 2 and T ′i may

reach T∗(n) before i = r , and the algorithm can stop there,
i.e., if ∃k, T ′

k−1τ ≥ T∗(n), then we stop the increment ofT ′i at
this point, i.e., T ′

k
= T ′

k+1 = · · · = T ′r . Let k be the minimum
positive integer that satisfies the above condition. Note that
k < r occurs only if τ = 2. From these definitions, T ′1 = T1
and T ′

k
= T ′r = T∗(n).

For each i = 2, . . . , k − 1, we calculate εi and pi that
satisfy T∗(εi,1− pi) = Θ(T ′i). Since T∗(ε,1− p) is a decreas-
ing function of both ε and p and T∗(ε,1− p) ≤ T∗(n) for any
0 ≤ ε ≤ 1 and 0 ≤ p ≤ 1 (∵ Alg1 outputs (0,1)-solution and
thus if T∗(ε,1 − p) > T∗(n)) for some ε and p, then we can
replace Alg0 with Alg1 for such ε and p), there must be such
εi and pi satisfying εi ≤ εi−1 and pi ≤ pi−1.

Now we present the progressive algorithm. Note that
k < r occurs only if τ = 2, otherwise k = r .

procedure Progressive
begin
01 do from i = 1 to k − 1;
02 if T ′i = T∗(n) then stop;
03 calculate εi and pi;
04 call Alg0(εi,1 − pi) and output the solution (Si);
05 enddo
06 call Alg1 and output the solution (S∗);
end.

We show that this algorithm satisfies the conditions.
Conditions (1), (2.1), and (4) are clear from the construction
of the algorithm. From T ′1 = T1 = max{2t, t + c}, Condition

(2.2) is clear for i = 1.
For every i ∈ {2, . . . , k},

Ti =
i∑

j=1
T ′i =

i∑
j=1

T ′1τ
j−1 =

τ

τ − 1
(τ j−1 − 1)T ′1

≤ 2τ j−1T ′1 (∵ τ ≥ 2)
= 2T ′i .

From this, it follows that Tk = Tr = O(T∗(n)) and
O(T∗(εi,1 − pi)) for i ∈ {2, . . . , k − 1}, i.e., Condition (2.2)
is satisfied for all i. The former half of Condition (3) is also
clear. If τ > 2, then k = r and the latter half of Condition
(3) is also satisfied. �

Theorem 23 assures that we can construct a progressive
algorithm without losing any computation time in the big-
O sense. Furthermore, it can be observed that the above
algorithm is the optimum in some sense as shown below.

Observation 24: The algorithm constructed in the proof
of Theorem 23 is the algorithm that minimizes the ratio
R := maxi∈{2,...,r } Ti/Ti−1 in the big-O sense, among all
algorithms that satisfy all of the conditions.

Proof of Observation 24: Let T̂i be the time when the ith
solution Si is outputted by the optimal algorithm. To obtain
the exact solution Sr we need at least T∗(n) time, i.e., T̂r ≥
T∗(n). Moreover, the first solution S1 must be outputted in
time Θ(t), since T1 = Θ(t) also, we have T̂1 ≤ c′T1 for some
constant c′ ≥ 1. Thus

T̂r
T̂1
≥

T∗(n)
c′T1

=
τr−1

c′
. (∵ (12) and τ ≥ 2.)

From

T̂r ≤ Rr−1T̂1,

it follows that

R ≥

(
T̂r

c′T̂1

) 1
r−1

≥

(
1
c′

) 1
r−1

τ ≥
τ

c′
(∵ c′ ≥ 1.)

= Ω(τ).

�

6.4 Representative Example of εi and pi

We consider a representative case on progressive algorithms.
In many constant-time algorithms, the computation time for
getting an (ε,1 − p)-solution can be represented by

t(ε,1 − p) = c′
(
1
ε

)c′′
lg

1
p
, (14)

where c′ and c′′ are constants that depend on the property.
Under this assumption we show the concrete expres-

sions of εi and pi that appeared in Theorem 23. However,

140
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

there is a freedom to fix the ratio between εi and pi , i.e., even
if the value of t(εi,1− pi) is fixed, there are two variables, εi
and pi , and we cannot fix them.

In the proof of Theorem 23, computation time of Si
is longer than one of Si−1 at the ratio of τ, i.e., t(εi,1 −
pi)/t(εi−1,1 − pi−1) = τ. This τ can be divided into the ε-
depending time, (1/ε)c′′ , and the p-depending time, lg(1/p).
Here, we fix the ratio as ρ : 1 − ρ for arbitrary 0 ≤ ρ ≤ 1
in every step, i.e., the ε-depending time becomes τρ times
longer and the p-depending time becomes τ1−ρ times longer
in each step.

The freedom in fixing ε1 and p1 still remains. If p1 is
fixed, then from t(ε1,1 − p1) = T1 and (14), we obtain

ε1 =

(
c′ lg 1

p1

T1

)1/c′′

. (15)

Note that ε1 ≤ 1. From this, c′ lg(1/p1) ≤ T1, and thus

p1 ≥

(
1
2

)T1/c
′

. (16)

By setting c in (11) to be larger than or equal to this c′, p1
can be at most 1/2. We can choose any p1 that satisfies (16).
From the above discussions, εi and pi for i ∈ {2, . . . ,r − 1}
are expressed as follows.

εi =
ε1

τρ(i−1)/c , (17)

pi = p1
τ(1−ρ)(i−1)

. (18)

7. Concluding Remarks

This paper consisted of two parts. The first part was a survey
on the sublinear computation paradigm, mainly on constant-
time algorithms. In this part, after presenting basic tools
and some examples, we showed key results mainly on the
characterization of testing properties.

In the second part, we considered a theory of sublin-
ear progressive algorithms, which is the first publishment
in journal papers. We presented the Sublinear Progressive
Algorithm Theory (SPA Theory, for short), which enables to
make a sublinear progressive algorithm for any property if
it has a constant-time algorithm and an exact algorithm (an
exponential-time one is allowed) without losing any compu-
tation time in the big-O sense.

Due to the space restrictions, however, we were limited
to only a few subjects. If you are interested in this area, please
refer to the special issues and books on the sublinear-time
paradigm [26], [27] and property testing [8], [15], [16], [21],
which are helpful.

The 21st Century can be called the Big Data Era. The
larger big data becomes, the more we need sublinear- and
constant-time algorithms. The importance of this area will
become greater and greater. We hope many ambitious young
researchers will join us in this endeavor.

Acknowledgments

We would like to express our gratitude to Professor Ilan
Newman of the University of Haifa, Israel, Professor Naoki
Katoh of the University of Hyogo, Japan, Associate Profes-
sor Yuichi Yoshida of the National Institute of Informatics,
Japan, and Associate Professor Suguru Tamaki of the Uni-
versity of Hyogo, Japan for their great help. We appreciate
Mr. Mikiya Imura, who was a student of Tokyo Institute of
Technology, Japan, for his preliminary research on progres-
sive algorithms with us. We also thank the members of the
Foundations of Innovative Algorithms for Big Data, who
have continuously helped us. We are also grateful to the
anonymous referees for their careful and detailed comments,
which improved this article much better. This work was
partially supported by JST CREST JPMJCR1402, and JSPS
KAKENHI 15K11985 and 20K11671.

References

[1] S.P.A. Alewijnse, T.M. Bagautdinov, M. de Berg, Q.W. Bouts, A.P.
ten Brink, K. Buchin, and M.A. Westenberg, “Progressive geomet-
ric algorithms,” Proc. SOCG’14, pp.50–59, 2014 (Journal version:
JoCG, vol.6, no.2, pp.72–92, 2015).

[2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, “Efficient
testing of large graphs,” Proc. FOCS 99, pp.656–666, 1999 (Journal
version: Combinatorica, vol.20, pp.451–476, 2000).

[3] N. Alon, E. Fischer, I. Newman, and A. Shapira, “A combinato-
rial characterization of the testable graph properties: It’s all about
regularity,” SIAM J. Comput., vol.39, no.1, pp.143–167, 2009.

[4] N.Alon andA. Shapira, “Everymonotone graph property is testable,”
Proc. STOC 2005, pp.128–138, 2005. (Journal version: SIAM J.
Comput., vol.38, no.6, pp.1703–1727, 2008).

[5] N. Alon and A. Shapira, “A characterization of the (natural) graph
properties testable with a one-sided error,” Proc. FOCS 2005,
pp.429–438, 2005 (Journal version: SIAM J. Comput., vol.37, no.6,
pp.1703–1727, 2008).

[6] T. Batu, P. Berenbrink, and C. Sohler, “A sublinear-time approxima-
tion scheme for bin packing,” Theor. Comput. Sci., vol.410, no.47–
49, pp.5082–5092, 2009.

[7] J. Babu, A. Khoury, and I. Newman, “Every property of outerplanar
graphs is testable,” Proc. RANDOM 2016, LIPICS, pp.21:1–21:19,
2016.

[8] A. Bhattacharyya and Y. Yoshida, Property Testing—Problems and
Techniques, Springer, 2021.

[9] M. Boddy and T.L. Dean, “Solving time-dependent planning prob-
lems,” Proc. IJCAI’89, vol.2, pp.979–984, 1989.

[10] A. Bogdanov, K. Obata, abd L. Trevisan, “A lower bound for testing
3-colorability in bounded-degree graphs,” Proc. FOCS 02, pp.93–
102, 2002.

[11] K. Chiba, M. Imura, H. Ito, and I. Newman, “Sublinear progres-
sive algorithms—The framework and fundamental theorems,” The
5th International Workshop on Innovative Algorithms for Big Data
(IABD2019), Kyoto, Japan, Nov. 2019.

[12] R. Diestel: Graph Theory, 5th ed., Springer, 2016.
[13] H. Fichtenberger, P. Peng, and C. Sohler, “Every testable (infi-

nite) property of bounded-degree graphs contains an infinite hy-
perfinite subproperty, arXiv: 1811.02937, 2018 (also appeared in
SODA2019).

[14] L. Gishboliner and A. Shapira, “Deterministic vs non-deterministic
graph property testing,” Electronic Colloquium on Computational
Complexity, Report no.59, pp.1–17, 2013.

[15] O.Goldreich, ed., Property Testing—Current Research and Surveys,

http://dx.doi.org/10.1145/2582112.2582156
http://dx.doi.org/10.1145/2582112.2582156
http://dx.doi.org/10.1145/2582112.2582156
http://dx.doi.org/10.1145/2582112.2582156
http://dx.doi.org/10.1007/s004930070001
http://dx.doi.org/10.1007/s004930070001
http://dx.doi.org/10.1007/s004930070001
http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1137/050633445
http://dx.doi.org/10.1137/050633445
http://dx.doi.org/10.1137/050633445
http://dx.doi.org/10.1137/06064888x
http://dx.doi.org/10.1137/06064888x
http://dx.doi.org/10.1137/06064888x
http://dx.doi.org/10.1137/06064888x
http://dx.doi.org/10.1016/j.tcs.2009.08.006
http://dx.doi.org/10.1016/j.tcs.2009.08.006
http://dx.doi.org/10.1016/j.tcs.2009.08.006
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://dl.acm.org/doi/10.5555/1623891.1623912
https://dl.acm.org/doi/10.5555/1623891.1623912
http://dx.doi.org/10.1109/sfcs.2002.1181886
http://dx.doi.org/10.1109/sfcs.2002.1181886
http://dx.doi.org/10.1109/sfcs.2002.1181886
http://dx.doi.org/10.1137/1.9781611975482.45
http://dx.doi.org/10.1137/1.9781611975482.45
http://dx.doi.org/10.1137/1.9781611975482.45
http://dx.doi.org/10.1137/1.9781611975482.45
http://dx.doi.org/10.1007/978-3-642-16367-8

CHIBA and ITO: SUBLINEAR COMPUTATION PARADIGM
141

LNCS 6390, Springer, 2010.
[16] O. Goldreich, Introduction to Property Testing, Cambridge Univer-

sity Press, 2017.
[17] O. Goldreich, S. Goldwasser, and D. Ron, “Property testing and its

connection to learning and approximation,” J. ACM, vol.45, no.4,
pp.653–750, July 1998.

[18] O. Goldreich and D. Ron, “Property testing in bounded degree
graphs,” Proc. STOC 1997, pp.406–415, 1997 (Journal versioon:
Algorithmica, vol.32, no.2, pp.302–343, 2002).

[19] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Am. Stat. Assoc., vol.58, no.301, pp.13–30, 1963.

[20] H. Ito, “Every property is testable on a natural class of scale-free
multigraphs,” Proc. ESA 2016, LIPICS, vol.49, pp.21:2–21:15, 2016
(ISBN 978-3-95977-005-7).

[21] H. Ito, “What graph properties are constant-time testable?—Dense
graphs, sparse graphs, and complex networks,” The Review of So-
cionetwork Strategies, vol.13, no.2, pp.101–121, Springer, 2019.

[22] H. Ito, A. Khoury, and I. Newman, “On the characterization of 1-
sided error strongly-testable graph properties for bounded-degree
graphs,” Comput. Complex., vol.29, no.1, pp.1–45, Springer, 2020.

[23] H. Ito, S. Kiyoshima, and Y. Yoshida, “Constant-time approximation
algorithms for the knapsack problem,” Proc. TAMC 2012, LNCS
7287, pp.131–142, Springer, 2012.

[24] H. Ito, A. Nagao, and T. Park, “Generalized shogi, chess, and
xiangqui are constant-time testable,” IEICE Trans. Fundamentals,
vol.E102-A, no.9, pp.1126–1133, Sept. 2019.

[25] H. Ito and T. Ueda, “How to solve the cake-cutting problem in sub-
linear time,” Proc. 8th International Conference on Fun with Al-
gorithms (FUN2016), LIPICS, vol.49, pp.21:1–21:15, 2016 (ISBN
978-3-95977-005-7).

[26] N. Katoh, et al., eds.: “Special Issue on Foundations of Innovative
Algorithms for Big Data—Sublinear Computational Paradigm and
Its Expansions”, The Review of Socionetwork Strategies, vol.13,
no.2, 2019.

[27] N. Katoh, et al. eds., Sublinear Computation Paradigm—
Algorithmic Revolution in the Big Data Era, Springer, 2022 (Open
Access: DOI: 10.1007/978-981-16-4095-7).

[28] M. Kusumoto and Y. Yoshida, “Testing forest-isomorphizm in the
adjacency list model,” Proc. of ICALP2014 (1), LNCS 8572, pp.763–
774, 2014.

[29] R.-H. Li, L. Qin, J. Xu Yu, and R. Mao, “Efficient and progressive
group steiner tree search,” Proc. SIGMOD/PODS’16, pp.91–106,
2016.

[30] L. Lovász and K. Vesztergombi, “Non-deterministic graph property
testing,” Combinatorics, Probability and Computing, vol.22, no.5,
pp.749–762, 2013.

[31] A. Mesrikhani and M. Farshi, “Progressive sorting in the external
memory model,” The CSI Journal on Computer Science and Engi-
neering, vol.15, no.2, pp.1–4, 2018.

[32] A. Mesrikhani, M. Farshi, and M. Davoodi, “Progressive algorithm
for euclidean minimum spanning tree,” Proc. ICCG’18, pp.29–32,
2018.

[33] I. Newman and C. Sohler, “Every property of hyperfinite graphs
is testable,” Proc. STOC 2011, ACM, pp.675–784, 2011 (Journal
version: SIAM J. Comput., vol.42, no.3, pp.1095–1112, 2013).

[34] R. Rubinfeld and M. Sudan, “Robust characterizations of polynomi-
als with applications to program testing,” SIAM J. Comput., vol.25,
no.2, pp.252–271, 1996 (Conference version was appeared in 1992).

[35] E. Szemerédi, “Regular partitions of graphs,” J.C. Bermond, J.C.
Fournier, M. Las Vergnas, and D. Sotteau, eds., Colloq. Internat.
CNRS, CNRS, Paris, pp.399–401, 1978.

[36] A.C. Yao, “Lower bounds to randomized algorithms for graph prop-
erties,” Proc. FOCS 1987, pp.393–400, 1987.

[37] Y. Yoshida, “A characterization of locally testable affine-invariant
properties via decomposition theorems,” Proc. STOC 14, pp.154–
163, 2014.

[38] Y. Yoshida and H. Ito, “Property testing on k-vertex-connectivity of

graphs,” Proc. ICALP 08, Part I, LNCS 5125, pp.539–550, Springer,
2008 (Journal version: Algorithmica, vol.62, no.3–4, pp.701–712,
2012).

[39] Y. Yoshida and H. Ito, “Query-number preserving reductions and
linear lower bounds for testing,” IEICE Trans. Inf. & Syst., vol.E93-
D, no.2, pp.233–240, Feb. 2010.

Kyohei Chiba received a B.E. degree from
the Department of Communication Engineering
and Informatics at The University of Electro-
Communications in 2017, and received an M.E.
degree from the Graduate School of Informatics
and Engineering at The University of Electro-
Communications in 2019. His main research in-
terests are in theoretical computer science, graph
theory and discrete algorithms.

Hiro Ito received B.E., M.E., and Ph.D.
degrees from the Department of Applied Math-
ematics and Physics, the Faculty of Engineer-
ing, Kyoto University in 1985, 1987, and 1995,
respectively. In 1987–1996, 1996–2001, and
2001–2012, he was a member of NTT Labora-
tories, Toyohashi University of Technology, and
Kyoto University, respectively. Since 2012, he
has been a full professor in the School of In-
formatics and Engineering at The University of
Electro-Communications (UEC). He has been

engaged in research on discrete algorithms mainly on graphs and networks,
discretemathematics, recreationalmathematics, and algorithms for big data.
Dr. Ito is a member of IEICE, the Operations Research Society of Japan,
the Information Processing Society of Japan, and the European Association
for Theoretical Computer Science. He is also a member of the steering
committee of JCDCG3.

http://dx.doi.org/10.1007/978-3-642-16367-8
http://dx.doi.org/10.1007/978-3-642-16367-8
http://dx.doi.org/10.1017/9781108135252
http://dx.doi.org/10.1017/9781108135252
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1007/s00453-001-0078-7
http://dx.doi.org/10.1007/s00453-001-0078-7
http://dx.doi.org/10.1007/s00453-001-0078-7
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1007/s12626-019-00054-0
http://dx.doi.org/10.1007/s12626-019-00054-0
http://dx.doi.org/10.1007/s12626-019-00054-0
http://dx.doi.org/10.1007/s00037-019-00191-6
http://dx.doi.org/10.1007/s00037-019-00191-6
http://dx.doi.org/10.1007/s00037-019-00191-6
http://dx.doi.org/10.1007/978-3-642-29952-0_17
http://dx.doi.org/10.1007/978-3-642-29952-0_17
http://dx.doi.org/10.1007/978-3-642-29952-0_17
http://dx.doi.org/10.1587/transfun.e102.a.1126
http://dx.doi.org/10.1587/transfun.e102.a.1126
http://dx.doi.org/10.1587/transfun.e102.a.1126
http://dx.doi.org/10.1007/978-981-16-4095-7
http://dx.doi.org/10.1007/978-981-16-4095-7
http://dx.doi.org/10.1007/978-981-16-4095-7
http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1145/2882903.2915217
http://dx.doi.org/10.1145/2882903.2915217
http://dx.doi.org/10.1145/2882903.2915217
http://dx.doi.org/10.1017/s0963548313000205
http://dx.doi.org/10.1017/s0963548313000205
http://dx.doi.org/10.1017/s0963548313000205
http://dx.doi.org/10.1137/120890946
http://dx.doi.org/10.1137/120890946
http://dx.doi.org/10.1137/120890946
http://dx.doi.org/10.1137/s0097539793255151
http://dx.doi.org/10.1137/s0097539793255151
http://dx.doi.org/10.1137/s0097539793255151
http://dx.doi.org/10.1109/sfcs.1987.39
http://dx.doi.org/10.1109/sfcs.1987.39
http://dx.doi.org/10.1145/2591796.2591802
http://dx.doi.org/10.1145/2591796.2591802
http://dx.doi.org/10.1145/2591796.2591802
http://dx.doi.org/10.1007/s00453-010-9477-y
http://dx.doi.org/10.1007/s00453-010-9477-y
http://dx.doi.org/10.1007/s00453-010-9477-y
http://dx.doi.org/10.1007/s00453-010-9477-y
http://dx.doi.org/10.1587/transinf.e93.d.233
http://dx.doi.org/10.1587/transinf.e93.d.233
http://dx.doi.org/10.1587/transinf.e93.d.233

