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A Modulus Factorization Algorithm for Self-Orthogonal and
Self-Dual Quasi-Cyclic Codes via Polynomial Matrices∗

Hajime MATSUI†a), Member

SUMMARY A construction method of self-orthogonal and self-dual
quasi-cyclic codes is shown which relies on factorization of modulus poly-
nomials for cyclicity in this study. The smaller-size generator polynomial
matrices are used instead of the generator matrices as linear codes. An algo-
rithm based on Chinese remainder theorem finds the generator polynomial
matrix on the original modulus from the ones constructed on each factor.
This method enables us to efficiently construct and search these codes when
factoring modulus polynomials into reciprocal polynomials.
key words: error-correcting codes, finite fields, codes over rings, Chinese
remainder theorem, reciprocal polynomials

1. Introduction

The construction of error-correcting codes and self-dual
codes with large minimum distances is a fundamental prob-
lem in coding theory [1]. Because their minimum distance
can be calculated by the method of [2], we focus on con-
structing many these codes efficiently in this study. It is
shown [3] that generator polynomial matrices are effective
for the construction of quasi-cyclic codes which are equiva-
lent to R-modules in (R/(1 − xm)R)l , where R = Fq[x] and
R/(1 − xm)R is the quotient ring by an ideal (1 − xm)R in
R. In [4], codes over some rings are constructed by the
product of generator polynomial matrices although it can-
not efficiently construct self-orthogonal or self-dual codes
because their product breaks these properties. In [5], self-
orthogonal and self-dual integer codes are constructed by
using generator matrices and Chinese remainder theorem.
However, self-orthogonal and self-dual quasi-cyclic codes
have never been constructed by using generator polynomial
matrices and Chinese remainder theorem.

In this paper, we consider the construction of self-
orthogonal and self-dual quasi-cyclic codes by modulus fac-
torization, whichmeans that (R/uR)l = (R/u1R)l⊕(R/u2R)l

with u = u1u2 and gcd(u1,u2) = 1. The composition of two
R-modules in (R/u1R)l and (R/u2R)l into another R-module
in (R/uR)l can be done by an algorithm which employs Chi-
nese remainder theorem. Our theorems assert that the class
of R-modules in (R/uR)l which have the prescribed prop-

Manuscript received March 18, 2021.
Manuscript revised April 24, 2021.
Manuscript publicized May 21, 2021.
†The author is with Toyota Technological Institute, Nagoya-shi,

468-8511 Japan.
∗The contents of the letter were partially presented in [6]. This

work was supported in part by JSPS KAKENHI Grant Number
JP19K22850.

a) E-mail: matsui@toyota-ti.ac.jp
DOI: 10.1587/transfun.2021EAL2021

erty corresponds to the class of pairs of certain R-modules
in (R/u1R)l and (R/u2R)l and vice versa.

The rest of this paper is organized as follows. Section 2
prepares notations for R-modules in (R/uR)l for some u ∈ R,
where we refer to [3]–[5] for details. Section 3 describes the
efficient construction of R-modules in (R/uR)l , where we
focus on the case of reciprocal u,u1,u2 for simplicity, and
shows Example 1 of the above construction.

2. Preliminaries

Let R = Fq[x], l ∈ Z be positive, and

L = Rl = {c = (c1 · · · cl) | ci ∈ R, 1 ≤ i ≤ l}.

For positive k ∈ Z, let Mk ,l(R) be the set of all k-by-l
matrices with entries in R and Ml(R) = Ml,l(R). For G ∈
Ml(R) with det(G) , 0, let LG = {cG | c ∈ L}. Let u ∈ R
be nonzero and I ∈ Ml(R) be the identity matrix. Then we
denote uL = LuI and

L

uL
= L/uL = {c = (c1 · · · cl) | ci ∈ R/uR, 1 ≤ i ≤ l}.

LetC ⊂ L/uL. We say thatC is an R-module if and only
if ∀r, s ∈ R, ∀a, b ∈ C =⇒ ra + sb ∈ C. For any R-module
C ⊂ L/uL, there exists G ∈ Ml(R) such that LG ⊃ uL and
C = LG/uL, where LG/uL denotes the quotient R-module
of LG by uL. Conversely, for any G ∈ Ml(R), if LG ⊃ uL,
then LG/uL can be defined and fixes an R-module in L/uL.

Let C ⊂ L/uL be an R-module. We say that G ∈ Ml(R)
is a generator matrix of C if and only if LG ⊃ uL and
C = LG/uL.

Note that LG ⊃ uL is equivalent to the fact that there
exists A ∈ Ml(R) such that AG = uI. Thus, for any G ∈
Ml(R), there exists an R-module C ⊂ L/uL such that C =
LG/uL if and only if LG ⊃ uL if and only if ∃A ∈ Ml(R)
such that AG = uI. If AG = uI, then it follows from
det(A) det(G) = ul that det(G) divides ul .

For any subset S ⊂ L/uL, let |S| denote the number of
elements in S.

Lemma 1: (cf. [4]) For any A ∈ Ml(R)with det(A) , 0, we
have |L/LA| = ψ(det(A)), where ψ(a) = qdeg(a) for a ∈ R.
In particular, if G ∈ Ml(R) is a generator matrix of an R-
module C ⊂ L/uL, then |C| = ψ

(
ul/det(G)

)
.

We say that G is upper triangular if and only if G =(
gi, j

)
∈ Ml(R) satisfies gi, j = 0 for all 1 ≤ j < i ≤ l, i.e., G
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is of the form

G =
©«
g1,1 g1,2 · · · g1,l

0 g2,2 · · · g2,l
...

. . .
. . .

...
0 · · · 0 gl,l

ª®®®®¬
,

and det(G) , 0. We say that G =
(
gi, j

)
∈ Ml(R) is reduced

if and only if G satisfies the following three conditions:

1. G is upper triangular,
2. deg(gi, j) < deg(gj , j) for all 1 ≤ i < j ≤ l,
3. gi,i is monic [4] for all 1 ≤ i ≤ l.

LetGLl(R) be the group of invertiblematrices in Ml(R).
Note that we have LU = L for someU ∈ Ml(R) if and only if
U ∈ GLl(R). We fix any G ∈ Ml(R) with det(G) , 0. Then
there exist U ∈ GLl(R) and reduced G′ ∈ Ml(R) such that
UG = G′. In other words, there exists reduced G′ ∈ Ml(R)
such that LG = LG′. It is shown [4] that there exists one and
only one reduced G′ among UG for all U ∈ GLl(R).

From now on, unless otherwise noted, G ∈ Ml(R)
indicates the reduced generator matrix of an R-module
C = LG/uL ⊂ L/uL.

Let Tl(R) = {G ∈ Ml(R) |G is reduced}. For a nonzero
u ∈ R, let

{G}u = {G ∈ Tl(R) | AG = uI for some A ∈ Ml(R)} ,

i.e., {G}u is the set of the reduced generator matrices of all
R-modules in L/uL. Thus, we have the following one-to-one
and onto correspondences [4]

{G}u → {R-moduleM | L ⊃ M ⊃ uL}
G 7→ LG

→ {R-module C | C ⊂ L/uL}
7→ LG/uL.

From now on, let u,u1,u2 ∈ R be nonzero with u = u1u2
and gcd(u1,u2) = 1. Our first aim is to relate {G}u with
{G1}u1 and {G2}u2 . This is done by Theorem 1.

Proposition 1: (cf. [5]) For s = 1,2, let Gs =
(
g
(s)
i, j

)
∈

Ml(R) be reduced such that LGs ⊃ Lus . Then there exists
reduced G =

(
gi, j

)
∈ Ml(R) such that LG = LG1 ∩LG2 and

gi,i = g
(1)
i,i g
(2)
i,i for all 1 ≤ i ≤ l.

Remark 1: ByProposition 1, an algorithmwhich computes
G is extracted as Algorithm 1 in [5]. If we estimate the
computational complexity ofAlgorithm1 as the total number
of finite-field operations, it is evaluated approximately as
O

(
l3 deg(u)

)
, which is the same order as that of multiplying

generator matrices in [4].

Proposition 2: (cf. [5]) Let G ∈ Ml(R) be reduced such
that LG ⊃ uL. Then there exists reduced G1 =

(
g
(1)
i, j

)
∈

Ml(R) such that LG1 = LG + u1L and, for all 1 ≤ i ≤ l,
g
(1)
i,i = gcd

(
gi,i,u1

)
.

Theorem 1: (cf. [5]) Let

α : {G1}u1 × {G2}u2 → {G}u [(G1,G2) 7→ G]

be a map defined by LG1 ∩ LG2 = LG with Proposition 1.
Moreover, let

β : {G}u → {G1}u1 × {G2}u2 [G 7→ (G1,G2)]

be a map defined by LG + u1L = LG1 and LG + u2L = LG2
with Proposition 2. Then both α and β are bijective maps
and inverse each other.

3. Duality

Let m ∈ Z be positive. For a ∈ R, we define a 〈m〉 ∈ R by

a 〈m〉 = a0 +

m−1∑
i=1

am−i xi if a ≡
m−1∑
i=0

ai xi mod (1 − xm).

If deg(a) < m, we have a 〈m〉 ≡ xma(x−1)mod (1− xm).
Because 0〈m〉 = (1− xm)〈m〉 = 0,

[
a 7→ a 〈m〉

]
can be seen as

a map R/(1 − xm)R→ R/(1 − xm)R. The following lemma
shows that

[
a 7→ a 〈m〉

]
is a ring automorphism.

Lemma 2: For a, b ∈ R, we have (ab)〈m〉 ≡ a 〈m〉b〈m〉

mod (1 − xm).

Proof. Because the map
[
a 7→ a 〈m〉

]
is Fq-linear, we

may prove only for xi, x j for 0 ≤ i, j < m. Note that(
xi

) 〈m〉 (x j
) 〈m〉

≡ xm−i xm−j ≡ x2m−i−j and
(
xi+j

) 〈m〉
≡

xm−(i+j modm) mod (1 − xm). The lemma is proved by
x2m−i−j ≡ xm−(i+j modm) mod (1 − xm). �

For a ∈ R, we denote ã = xdeg(a)a(x−1), i.e., the recip-
rocal polynomial of a. We say that a is self-reciprocal if and
only if γã = a for some γ ∈ Fq \ {0}.

Lemma 3: If deg(a) < m for a ∈ R, then xdeg(a)a 〈m〉 ≡ ã
and a 〈m〉 ≡ xm−deg(a)ã mod (1 − xm).

Proof. If a =
∑m−1

i=0 ai xi , then

a 〈m〉 ≡
deg(a)∑
i=0

ai xm−i mod (1 − xm),

xdeg(a)a 〈m〉 ≡
deg(a)∑
i=0

ai x−i+deg(a) = ã mod (1 − xm).

Multiplying xm−deg(a), we have xma 〈m〉 ≡ xm−deg(a)ã
mod (1 − xm). Because xma 〈m〉 = a 〈m〉 − (1 − xm)a 〈m〉 ,
we have a 〈m〉 ≡ xm−deg(a)ã mod (1 − xm). �

Lemma 4: Suppose that u1 ∈ R divides 1 − xm. For a, b ∈
R, if a ≡ b mod u1, then a 〈m〉 ≡ b〈m〉 mod ũ1. Moreover, if
u1 is self-reciprocal, then a 〈m〉 ≡ b〈m〉 mod u1.

Proof. If a = b + c1u1 for some c1 ∈ R, then a 〈m〉 ≡
b〈m〉 + c 〈m〉1 u 〈m〉1 mod (1 − xm). Because ũ1 divides 1 − xm

and u 〈m〉1 ≡ 0 mod ũ1 by Lemma 3, the lemma is proved. �

Remark 2: If u1 is not self-reciprocal, then a 〈m〉 ≡ b〈m〉
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mod u1 is not true in general, e.g., 1+ x+ x3 ≡ 0 mod (1+ x+
x3) but

(
1 + x + x3) 〈7〉 ≡ 1+x4+x6 ≡ x . 0 mod (1+x+x3).

For G =
(
gi, j

)
∈ Mk ,l(R), we define G∗ ∈ Ml,k(R) by

G∗ ≡
(
g
〈m〉
j ,i

)
mod (1 − xm).

Lemma 5: For F ∈ Mh,k(R) and G ∈ Mk ,l(R), we have
(FG)∗ ≡ G∗F∗ mod (1 − xm).

Proof. Because (FG)∗ is defined by the transpose and 〈m〉
mod (1 − xm), the lemma is proved immediately. �

Let u ∈ R divide 1−xm. Let C ⊂ L/uL be an R-module
and let

Ĉ = {a ∈ L/uL | a (b∗) ≡ 0 mod u, ∀b ∈ C} . (1)

Then an R-module Ĉ is called the dual R-module of C.

Lemma 6: If G ∈ Ml(R) indicates the reduced gener-
ator matrix of an R-module C = LG/uL, then Ĉ =
{a ∈ L/uL | aG∗ ≡ (0 · · · 0) mod u}.

Proof. It is sufficient to show that Ĉ ⊃ Ĉ′ if we denote Ĉ′ =
{a ∈ L/uL | aG∗ ≡ (0 · · · 0) mod u}. Suppose a ∈ Ĉ′. For
any b ∈ C, there exists c ∈ L such that b ≡ cG mod u. Then
a (b∗) ≡ a ((cG)∗) ≡ a (G∗c∗) = (aG∗) c∗ ≡ 0 mod u. �

If u = 1 − xm, the following proposition shows the
relationship between the operation a(b∗) in L/uL and the
Euclidean inner product in

(
Fq

)ml .

Proposition 3: For a, b ∈ L/(1 − xm)L, we have a (b∗) ≡ 0

mod (1− xm) if and only if ®a
((
®b(v)

)>)
= 0 for all 0 ≤ v < m,

where n = ml, ®a = [®a1 · · · ®al] ∈
(
Fq

)n indicates the con-
catenating vector of ®a1, · · · , ®al related to a = (a1 · · · al) ∈
L/(1 − xm)L by, for all 1 ≤ i ≤ l,

ai =
m−1∑
j=0

ai, j x j 7→ ®ai =
(
ai,0,ai,1, · · · ,ai,m−1

)
∈

(
Fq

)m
,

®b(v) ∈
(
Fq

)n indicates the vector related to xvb ∈ L/(1 −
xm)L, and > indicates transpose. In particular, if u =
1 − xm, then Ĉ in (1) agrees with the dual code C⊥ ={
®a ∈

(
Fq

)n ��� ®a (
®b>

)
= 0, ∀®b ∈ C

}
of C as Fq-linear codes.

Proof. Note that, for f , g ∈ Fq[x] with deg( f ),deg(g) < m,

f · xmg(x−1) =

m−1∑
i=0

fi xi
m∑
j=1

gm−j x j

=

m∑
v=1

(
v−1∑
i=0

figm−v+i

)
xv +

m−1∑
v=1

(
m−1∑
i=v

figi−v

)
xm+v .

Because g 〈m〉 ≡ xmg(x−1) mod (1 − xm), we have

f
(
g 〈m〉

)
≡

m∑
v=1

(
v−1∑
i=0

figm−v+i +
m−1∑
i=v

figi−v

)
xv

=

m−1∑
v=0

(
®f
(
®g(m−v)

)>)
xv mod (1 − xm),

which leads the lemma because

a (b∗) =
l∑

i=1
ai

(
b〈m〉i

)
≡

l∑
i=1

m−1∑
v=0

(
®ai

(
®b(m−v)i

)>)
xv

=

m−1∑
v=0

(
l∑

i=1
®ai

(
®b(m−v)i

)>)
xv = 0 mod (1 − xm)

deduces that
∑l

i=1 ®ai
(
®b(m−v)i

)>
= 0 for all 0 ≤ v < m. �

Assumption 1: From now on, we suppose that u ∈ R di-
vides 1 − xm and is self-reciprocal.

If u is irreducible and deg(u) ≥ 2, the following propo-
sition shows the relationship between the operation a(b∗) in

L/uL and the Hermitian inner product in
(
Fqdeg(u)

) l
.

Proposition 4: Assume that u ∈ R is irreducible and
deg(u) ≥ 2. If we identify R/uR = Fqdeg(u) , then, for
f ∈ R/uR, we have f 〈m〉 = f q

deg(u)/2 . In particular, if u satis-
fies the assumptions, then Ĉ in (1) agrees with the Hermitian

dual code C⊥H =

{
ā ∈

(
Fqdeg(u)

) l ���� ā
(
b̄†

)
= 0, ∀b̄ ∈ C

}
of C

as Fqdeg(u) -linear codes, where ā ∈
(
Fqdeg(u)

) l
indicates the

vector related to a = (a1 · · · al) ∈ L/uL by

L/uL = (R/uR)l 3 a 7→ ā = (ā1, · · · , āl) ∈
(
Fqdeg(u)

) l
and b̄† =

(
b̄q

deg(u)/2

1 , · · · , b̄q
deg(u)/2

l

)>
∈

(
Fqdeg(u)

) l
.

Proof. Because
[

f 7→ f 〈m〉
]
belongs to the Galois group of

order deg(u) which is cyclic and generated by [ f 7→ f q] and
the order of

[
f 7→ f 〈m〉

]
is equal to two, deg(u)must be even

and f 〈m〉 = f q
deg(u)/2 . Another proof is given directly as fol-

lows. It suffices to prove that, for all 1 ≤ i < deg(u), xm−i ≡(
xi

)qdeg(u)/2
mod u, which is equivalent to 1 ≡ x1+qdeg(u)/2

mod u. We can suppose gcd(q,m) = 1. Let the cyclotomic
coset corresponding to u be

{
j, jq, · · · , jqdeg(u)−1 mod m

}
for some j. If gcd( j,m) > 1, by dividing j,m by gcd( j,m),
we can suppose gcd( j,m) = 1. Because u is self-reciprocal,
deg(u) is even and m divides ( j+ jqdeg(u)/2). Thus, m divides
(1 + qdeg(u)/2), which completes the proof. �

Proposition 5: If F = ( fi, j) ∈ Ml(R) satisfies KF = uI
for some K = (ki, j) ∈ Ml(R), then uL + LF∗ = LF̃, where
F̃ ∈ Ml(R) is given by

F̃ ≡ diag
[
xdeg( f1,1), · · · , xdeg( fl ,l )

]
F∗ mod (1− xm) (2)

and diag [d1, · · · , dl] ∈ Ml(R) is the diagonal matrix whose
i-th entry is di for all 1 ≤ i ≤ l.

Proof. It follows from (2) that uL + LF∗ ⊃ LF̃. On the
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other hand, because diag
[
xm−deg( f1,1), · · · , xm−deg( fl ,l )

]
F̃ ≡

xmF∗ ≡ F∗ mod (1 − xm), we have LF∗ ⊂ LF̃ + uL. If
uL ⊂ LF̃ is shown, then uL+ LF∗ ⊂ LF̃. Because of KF =
uI and Lemma 5, F∗K∗ ≡ u 〈m〉 I mod (1 − xm). Let N ∈
Ml(R) be defined byK∗diag

[
γxdeg(k1,1), · · · , γxdeg(kl ,l )

]
≡ N

mod (1− xm). Then we have F̃N ≡ γũI = uI mod (1− xm),
where we use ki,i fi,i = u and Lemma 3. Because we may
assume that K and F are upper triangular, F̃N is lower
triangular. Then there exists lower triangularT ∈ Ml(R) such
that F̃N = uI+ (1− xm)T . Because the diagonal elements of
F̃N equal γ f̃i,i k̃i,i = γũ = u for all 1 ≤ i ≤ l, the diagonal
elements of T equal 0. Then there exists P ∈ GLl(R) such
that uIP = uI + (1 − xm)T . Thus, we have F̃NP−1 = uI
and it follows from

(
NP−1) F̃ = uI that LF̃ ⊃ uL, which

completes the proof. �
Consider a homomorphism of R-modules

L

uL
→
L

uL
[a 7→ aG∗] .

Let C̃ denote C̃ = (uL + LG∗) /uL, i.e., the image of this
map. Then there exists an exact sequence of R-modules

0→ Ĉ →
L

uL
→ C̃ → 0

and an equality
���Ĉ��� ���C̃��� = |L/uL|.

Corollary 1: A generator matrix of C̃ is given by G̃ of (2).
In particular, we have

���C̃��� = |C| and ���Ĉ��� |C| = |L/uL|.
Proof. C̃ = (uL + LG∗) /uL = LG̃/uL follows from Propo-
sition 5. Then

���C̃��� = |C| follows from deg( fi,i) = deg(gi,i) if

G̃ = ( fi, j) and G = (gi, j). �

Corollary 2: If AG = uI for some A = (ai, j) ∈ Ml(R),
then a generator matrix of Ĉ is given by Ã of (2).

Proof. Because of AG = uI = GA and Lemma 5, A∗G∗ ≡
u 〈m〉 I mod (1 − xm). By Lemma 4, we have u 〈m〉 ≡ 0
mod u. Thus, A∗G∗ ≡ 0I mod u and (uL + LA∗) /uL ⊂ Ĉ.
On the other hand, by GA = uI, Proposition 5 deduces
uL + LA∗ = LÃ. Thus, we have LÃ/uL ⊂ Ĉ. Because the
diagonal elements of Ã are equal to ãi,i for all 1 ≤ i ≤ l,�����LÃ

uL

����� = q
∑l

i=1 deg(gi ,i ),

�����LG̃
uL

����� = q
∑l

i=1 deg(ai ,i ),�����LÃ
uL

�����
�����LG̃
uL

����� = ql deg(u) =

���� LuL ���� , ���Ĉ��� ���C̃��� = |L/uL|
deduce

���LÃ/uL
��� = ���Ĉ���, hence LÃ/uL = Ĉ. �

We say that C is self-orthogonal if and only if C ⊂ Ĉ,
which is equivalent to GG∗ ≡ 0I mod u. We denote {G}∗u =
{G ∈ {G}u |GG∗ ≡ 0I mod u}.

Theorem 2: (cf. [5]) Let u,u1,u2 ∈ R satisfy u = 1 − xm,

u = u1u2, gcd(u1,u2) = 1, and u1 and u2 are self-reciprocal.
Furthermore, we again denote α, β the restriction maps of
α, β to {G1}

∗
u1
× {G2}

∗
u2
, {G}∗u , respectively. Then both α

and β are bijective maps and inverse each other.

We say that C is self-dual if and only if C = Ĉ. For self-
orthogonal C, because we have |C| ≤

���Ĉ��� and |C|2 ≤ |L/uL|,
C is self-dual if and only if |C|2 = |L/uL|. We denote
{G}∗∗u =

{
G ∈ {G}∗u

�� |LG/uL|2 = |L/uL|
}
.

Corollary 3: (cf. [5]) Let the notation be as in Theorem 2.
We again denote α, β the restriction maps of α, β of Theorem
2 to {G1}

∗∗
u1
× {G2}

∗∗
u2
, {G}∗∗u , respectively. Then both α and

β are bijective maps and inverse each other.
Example 1: Set q = 2, l = 3, u1 = 1+ x, u2 = 1+ x + x2 +
x3 + x4, and u = u1u2. Consider R-modules C1 = LG1/u1L,
C2 = LG2/u2L, C = LG/uL by

A1G1 = (1 + x)I = ©«
1 0 0
0 11 1
0 0 1

ª®¬ ©«
11 0 0
0 1 1
0 0 11

ª®¬ ,
A2G2 = (1 + x + x2 + x3 + x4)I

=
©«
11111 1111 0

0 1 0
0 0 1

ª®¬ ©«
1 1111 0
0 11111 0
0 0 11111

ª®¬ ,
AG = (1 + x5)I

=
©«
11111 0111 1111

0 11 1
0 0 1

ª®¬ ©«
11 0111 11111
0 11111 11111
0 0 100001

ª®¬ ,
where, e.g., 0111 denotes x + x2 + x3 ∈ R. Then C1,C2,C
are self-orthogonal because

G1G∗1 =
©«
11 0 0
0 1 1
0 0 11

ª®¬ ©«
10001 0 0

0 1 0
0 1 10001

ª®¬
≡ 0I mod (1 + x),

G2G∗2 =
©«
1 1111 0
0 11111 0
0 0 11111

ª®¬ ©«
1 0 0

10111 11111 0
0 0 11111

ª®¬
≡ 0I mod (1 + x + x2 + x3 + x4),

GG∗ = ©«
11 0111 11111
0 11111 11111
0 0 100001

ª®¬ ©«
10001 0 0
00111 11111 0
11111 11111 100001

ª®¬
≡ 0I mod (1 + x5).

Moreover, we have α(G1,G2) = G in terms of Theorem 2, in
other words, by Proposition 1, we can find B1,B2 ∈ Ml(R)
such that B1G1 = B2G2 = G as follows.

©«
1 0111 1111
0 11111 0
0 0 11111

ª®¬ ©«
11 0 0
0 1 1
0 0 11

ª®¬
=

©«
11 1 1
0 1 1
0 0 11

ª®¬ ©«
1 1111 0
0 11111 0
0 0 11111

ª®¬ = G.
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4. Conclusions

In this study, we have shown that self-orthogonal and self-
dual quasi-cyclic codes can be constructed by using generator
polynomial matrices and the factorization of 1 − xm into
reciprocal polynomials. The flow of the whole discussion is
the same as in the case of integer codes [5], but in the case of
QC codes, the actual bijections can be constructed by using
Proposition 5. We have mainly described the case with two
factors u1,u2, but the same is true for the case with three or
more factors. In future work, the results will be generalized
to the case which does not satisfy Assumption 1. Another
work will focus on generalizing the results to the case of
generalized quasi-cyclic codes.
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