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Finite-Size Correction of Expectation-Propagation Detection

Yuki OBA†, Nonmember and Keigo TAKEUCHI††a), Member

SUMMARY Expectation propagation (EP) is a powerful algorithm for
signal recovery in compressed sensing. This letter proposes correction of a
variance message before denoising to improve the performance of EP in the
high signal-to-noise ratio (SNR) regime for finite-sized systems. The vari-
ance massage is replaced by an observation-dependent consistent estimator
of the mean-square error in estimation before denoising. Massive multiple-
input multiple-output (MIMO) is considered to verify the effectiveness of
the proposed correction. Numerical simulations show that the proposed
variance correction improves the high SNR performance of EP for massive
MIMO with a few hundred transmit and receive antennas.
key words: compressed sensing, massive multiple-input multiple-output
(MIMO), expectation propagation, state evolution, variance correction

1. Introduction

Orthogonal approximate message-passing (OAMP) [1] or
vector approximate message-passing (VAMP) [2] is a pow-
erful iterative algorithm for signal recovery in compressed
sensing. A prototype of OAMP/VAMP was originally
proposed by Opper and Winther [3]. Bayes-optimal
OAMP/VAMP can be regarded as a large-system approxi-
mation [4], [5] of expectation propagation (EP) [6]. In this
letter, Bayes-optimal OAMP/VAMP is referred to as EP.

The performance of EP degrades for finite-sized sys-
tems in general. This is because the large system limit—
both input and output dimensions tend to infinity with their
ratio fixed— is assumed in the derivation of EP [5]. This let-
ter improves the performance of EP for finite-sized systems
via correction of an update rule in EP.

The main idea is to replace a conventional estimator
of the mean-square error (MSE) in estimation before de-
noising with an observation-dependent consistent estimator.
The conventional estimator is equivalent to state evolution
(SE) [2], [5] that describes the rigorous dynamics of theMSE
in the large system limit. Thus, it is essentially determin-
istic while a naive approximation of SE is used in practical
implementations. To improve the estimation of the MSE for
finite-sized systems, we propose a consistent estimator of the
MSE that depends on observations explicitly.
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As a related work, Donoho et al. [7, Eq. (39)] proposed
an observation-dependent consistent estimator of the MSE
in approximate message-passing (AMP) [8], which is an iter-
ative algorithm applicable only to a smaller class of systems
than EP. The consistent estimator improves the performance
ofAMP for finite-sized systems. Motivated by [7], we extend
the consistent estimator in AMP to the EP case.

The other related methods were proposed in [9], [10].
The initialization of the postulated prior variance was nu-
merically optimized in [9]. Kamilov et al. [10] corrected the
conventional estimator of the MSE before denoising in the
middle of denoising. This post-correction is based on the
expectation-maximization (EM) algorithm and applicable to
EP. However, the EM iteration requires additional complex-
ity especially for complicated denoisers.

The contributions of this letter are twofold. One is
to propose an observation-dependent consistent estimator of
the MSE in EP estimation before denoising. We prove the
consistency in the large system limit via rigorous SE [5].

The other contribution is numerical simulations for
massive multiple-input multiple-output (MIMO) with a few
hundred transmit and receive antennas. EPwith the proposed
correction is numerically shown to outperform conventional
EP for high signal-to-noise ratios (SNRs).

Throughout this letter, CN(0,Σ) denotes the circularly
symmetric complex Gaussian distribution with covariance
Σ. The conjugate transpose and trace operators for a matrix
are represented as ·H and Tr(·), respectively. The notations
‖ · ‖, a.s.

= , and a.s.
→ denote the Euclidean norm, almost sure

equality, and almost sure convergence.

2. Mathematical Model

The goal of this letter is to estimate an N-dimensional signal
vector x ∈ CN from M-dimensional noisy observations y ∈
CM , given by

y = Ax + w, w ∼ CN(0, σ2IM ). (1)

In (1), w is independent of {A, x} and the additive white
Gaussian noise (AWGN) vector with covariance σ2IM . The
sensing matrix A ∈ CM×N is assumed known and indepen-
dent of {x,w}.

Throughout this letter, we postulate the following as-
sumptions:

Assumption 1: x has independent and identically dis-
tributed (i.i.d.) elements with zero mean and unit variance.
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Assumption 2: The sensing matrix A is assumed right-
unitarily invariant [5], i.e. AΨ ∼ A for any unitary matrix
Ψ independent of A. Furthermore, the empirical eigenvalue
distribution of AHA is assumed to converge almost surely
toward a compactly supported deterministic distributionwith
unit first moment in the large system limit—M and N tend
to infinity while the ratio δ = M/N is kept constant.

UnderAssumptions 1 and 2, EPwas proved to beBayes-
optimal in the large system limit [2], [5] if the ratio δ is larger
than a certain value—called belief-propagation threshold.
For example, Assumption 2 holds when A has zero-mean
i.i.d. elements with variance 1/M . This assumption is called
i.i.d. Rayleigh fading in wireless communications.

3. Expectation Propagation

3.1 Conventional EP

EP [5] computes an estimator xB,t+1 ∈ C
N of the signal vec-

tor x in iteration t = 0,1, . . . via message-passing between
two modules, called modules A and B. Module A receives
an extrinsic estimator xB→A,t ∈ C

N of x and an estimator
v̄B→A,t > 0 of the MSE N−1E[‖x − xB→A,t ‖

2] from mod-
ule B. Define a coefficient γ̄t as

γ̄−1
t = lim

M=δN→∞

1
N

Tr
(
Ξ−1
t AAH

)
, (2)

with

Ξt = σ
2IM + v̄B→A,tAA

H. (3)

The messages xA→B,t (γ̄t ) ∈ C
N and v̄A→B,t > 0 sent to

module B are computed as follows:

xA→B,t (γ̄t ) = xB→A,t + γ̄tA
HΞ−1

t (y − AxB→A,t ), (4)
v̄A→B,t = γ̄t − v̄B→A,t, (5)

with xB→A,0 = 0 and v̄B→A,0 = 1.
We have set the postulated prior variance v̄B→A,0 to

the true prior variance N−1E[‖x‖2]. While this option is
intuitively reasonable, optimization of v̄B→A,0 can improve
the performance of EP for finite-sized systems [9].

Module B postulates the virtual AWGN observation
model of x,

xA→B,t (γ̄t ) = x + w t, w t ∼ CN(0, v̄A→B,t IN ), (6)

where w t is independent of x. This postulation implies
that module B regards v̄A→B,t as an estimator of the MSE
N−1E[‖x − xA→B,t (γ̄t )‖

2] in module A.
Module B first computes the posterior mean xB,t+1 ∈

CN of x given xA→B,t (γ̄t ), v̄A→B,t , and the corresponding
MSE v̄B,t+1 as

xB,t+1 = E[x |xA→B,t (γ̄t ), v̄A→B,t ], (7)

v̄B,t+1 =
1
N
E
[
‖x − xB,t+1‖

2�� v̄A→B,t
]
. (8)

The posterior mean xB,t+1 is used as an estimator of x in

iteration t + 1. To refine the estimator, module B feeds the
messages xB→A,t+1 and v̄B→A,t+1 back to module A,

xB→A,t+1 = v̄B→A,t+1

(
xB,t+1

v̄B,t+1
−

xA→B,t (γ̄t )

v̄A→B,t

)
, (9)

1
v̄B→A,t+1

=
1

v̄B,t+1
−

1
v̄A→B,t

. (10)

The variance parameters v̄A→B,t and v̄B→A,t in EP can
be pre-computed via the recursion (2), (3), (5), (8), and (10)
with the initial value v̄B→A,0 = 1—called SE recursion—
when γ̄t is represented in closed form. SE analysis [2], [5]
proved that the squared errors N−1‖x − xA→B,t (γ̄t )‖

2,
N−1‖x − xB,t+1‖

2, and N−1‖x − xB→A,t+1‖
2 converge al-

most surely toward v̄A→B,t , v̄B,t+1, and v̄B→A,t+1 in the large
system limit, respectively. Thus, the AWGN postulation (6)
is correct in the large system limit.

In practical implementations, as a naive estimator of γ̄t
we use γt > 0 obtained by removing the large system limit
in (2),

γ−1
t =

1
N

Tr
(
Ξ−1
t AAH

)
. (11)

Furthermore, the MSE v̄B,t+1 is replaced with the posterior
variance vB,t+1, given by

vB,t+1 =
1
N
E
[
‖x − xB,t+1‖

2�� xA→B,t (γ̄t ), v̄A→B,t
]
.

(12)

EP requires computation of the high-complexity matrix
inversion Ξ−1

t . A reduction in the complexity is possible
via the singular-value decomposition (SVD) of A [2] or an
approximate implementation based on the conjugate gradient
method [11], [12]. Thus, the complexity issue in EP is
outside the scope of this letter.

Céspedes et al. [4] proposed EP with vector variance
parameters vA→B,t ∈ R

N and vB→A,t ∈ R
N , instead of

the scalar variance parameters v̄A→B,t and v̄B→A,t [5]. The
vector variance parameters can improve the performance
of EP in small systems. However, the performance gap
between the vector and scalar variance parameters shrinks as
the system size increases. Furthermore, the low-complexity
implementations in [2], [11], [12] are not applicable to EP
with the vector variance parameters. Since we are interested
in moderately large systems, we focus on EP with the scalar
variance parameters in this letter.

3.2 Variance Correction

The three variance parameters v̄A→B,t , v̄B,t+1, and v̄B→A,t+1
are not accurate for finite-sized systems while they are con-
sistent with the corresponding MSEs in the large system
limit. In particular, error propagation occurs for finite-sized
systems when v̄A→B,t is significantly smaller than the true
instantaneous MSE N−1‖x − xA→B,t (γ̄t )‖

2. This is because
smaller v̄A→B,t lets the posterior mean xB,t+1 be harder de-
cision.
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To resolve this finite-size issue, we propose a
y-dependent consistent estimator v̂A→B,t of N−1‖x −
xA→B,t (γ̄t )‖

2,

v̂A→B,t =
1
M
‖AxA→B,t (γ) − y ‖2, (13)

with (4), where γ ≥ 0 is a design parameter. The parameter
γ was set straightforwardly to zero in AMP [7, Eq. (39)],
i.e. the message itself fed back from the denoiser. In EP,
however, the estimator v̂A→B,t is not consistent when γ is set
to zero or γ̄t . In the proposed EP, the conventional update
rule (5) is replaced by v̄A→B,t = v̂A→B,t with an appropriate
parameter γ determined in the following theorem.

Theorem 1: Suppose that γ satisfies the quadratic equation

γ2

δv̄B→A,t

(
1 −

σ2

γ̄t

)
−

2γ
δ
+σ2 +

v̄B→A,t

δ
= γ̄t − v̄B→A,t .

(14)

Then, v̂A→B,t is a consistent estimator of N−1‖x −
xA→B,t (γ̄t )‖

2 in the large system limit.

Proof: We use [5, Theorem 4] to prove the consistency
of v̂A→B,t in the large system limit. However, use of [5,
Theorem 4] requires the consistency of v̂A→B,τ for all τ <
t. To circumvent this dilemma, we prove Theorem 1 by
induction.

We omit the proof of Theorem1 for t = 0 since the proof
is the same as for the general case. Suppose that v̂A→B,τ is
consistent for all τ < t. We prove the consistency of v̂A→B,t .

Consider the SVD A = UΣVH and let zt =
AxA→B,t (γ) − y , bt = VHqt , and qt = xB→A,t − x. We use
(1), (3), and (4) to represent zt as

zt = U(Gt bt + H tU
Hw), (15)

with

Gt = (IM − γΣΣ
HΞ̃
−1
t )Σ, (16)

H t = γΣΣ
HΞ̃
−1
t − IM , (17)

Ξ̃t = σ
2IM + v̄B→A,tΣΣ

H. (18)

The induction hypothesis allows us to use [5, Theorem 4
(A2)] to find that (13) reduces to

v̂A→B,t
a.s.
=
‖qt ‖

2Tr(GtG
H
t )

MN
+
‖w ‖2Tr(H tH

H
t )

M2 + o(1)

a.s.
=

v̄B→A,tTr(GtG
H
t )

M
+
σ2Tr(H tH

H
t )

M
+ o(1). (19)

In the derivation of the last equality, we have used the almost
sure convergence N−1‖qt ‖

2 a.s.
→ v̄B→A,t [5, Theorem 4], ob-

tained from the induction hypothesis, and the strong law of
large numbers M−1‖w ‖2

a.s.
→ σ2.

We next evaluate the traces. Substituting (16) and (17),
and using (18), we have

v̂A→B,t
a.s.
= σ2 +

v̄B→A,t − 2γ
δ

+
γ2

M
Tr

(
ΣΣHΞ̃

−1
t ΣΣ

H
)
+ o(1), (20)

where we have used the unit-first-moment assumption
N−1Tr(ΣΣH)

a.s.
= 1 + o(1) in Assumption 2. Applying the

following identity:

v̄B→A,t

N
Tr

(
ΣΣHΞ̃

−1
t ΣΣ

H
)

a.s.
= 1 −

σ2

γ̄t
+ o(1) (21)

obtained from (2) and (18), we arrive at

v̂A→B,t
a.s.
→σ2 +

v̄B→A,t − 2γ
δ

+
γ2

δv̄B→A,t

(
1 −

σ2

γ̄t

)
=γ̄t − v̄B→A,t = v̄A→B,t, (22)

where the last two equalities follow from (14) and (5), re-
spectively. Since N−1‖x− xA→B,t ‖

2 was proved to converge
almost surely toward v̄A→B,t in the large system limit [5],
v̂A→B,t is a consistent estimator of N−1‖x − xA→B,t ‖

2 in the
large system limit. �

Theorem 1 allows us to determine the parameter γ > 0
as the unique positive solution to the quadratic equation (14)
since γ̄t given in (2) is bounded from below by

γ̄t ≥

(
lim

M=δN→∞

1
N

Tr(σ−2AAH)

)−1
a.s.
= σ2+o(1). (23)

In practical implementations, however, we replace γ̄t with
γt given in (11), which might be smaller than σ2 because of
the fluctuation of the trace N−1Tr(AAH). Thus, we select a
solution to the quadratic equation (14) such that γ becomes
positive and bounded as a function of γt .

If γt given in (11) is larger than or equal to σ2 + (1 +
δ−1)v̄B→A,t , we select

γ =
v̄B→A,t +

√
Dt

1 − σ2/γt
, (24)

with

Dt =v̄
2
B→A,t +

(
1 −

σ2

γt

)
v̄B→A,t

· {δγt − δσ
2 − (1 + δ)v̄B→A,t }. (25)

If γt is smaller than σ2 + (1 + δ−1)v̄B→A,t , we select

γ =
v̄B→A,t −

√
Dt

1 − σ2/γt
, (26)

while we use the following at γt = σ2:

γ =
1 + δ

2
v̄B→A,t . (27)

It is straightforward to confirm the positivity and bounded-
ness of γ when γ is given in (24), (26), or (27).

Remark 1: When γt is in the interval (σ2, σ2 + (1 +
δ−1)v̄B→A,t ), both (24) and (26) are positive. In this case,
we have selected (26), which is continuous at γt = σ2
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Fig. 1 SER versus SNR 1/σ2. δ = 10/11 and 40 iterations.

and discontinuous at γt = σ2 + (1 + δ−1)v̄B→A,t , while
(24) diverges in the limit γt → σ2 and is continuous at
γt = σ

2 + (1 + δ−1)v̄B→A,t . Note that the interval is narrow
since the event γt < σ2 + (1 + δ−1)v̄B→A,t occurs typically
for v̄B→A,t � 1.

4. Numerical Simulations

As a numerical example, we considermassiveMIMOwith 16
quadrature amplitudemodulation (QAM) over i.i.d. Rayleigh
fading. In massive MIMO, the signal dimension N corre-
sponds to the number of transmit antennas while the obser-
vation dimension M is the number of receive antennas. Note
that the variance correction proposed in Sect. 3.2 is appli-
cable to the other problems in signal processing under mild
conditions in Assumptions 1 and 2.

The variance parameter v̄A→B,t in conventional EP [5]
is computedwith (5). Tomake a fair comparison between the
improve EP [9] and proposed EP, we simulated the conven-
tional EP with numerical optimization of the initial variance
parameter v̄B→A,0 = vinit.

The variance parameter v̄A→B,t in the proposed EP is
computedwith the initial value v̄B→A,0 = 1 and the consistent
estimator v̄A→B,t = v̂A→B,t given in (13). See Sect. 3.2
for how to compute the parameter γ in (13). In these EP
algorithms, we replace the parameters γ̄t and v̄B,t+1 with the
practical alternatives γt and vB,t+1 given in (11) and (12),
respectively.

Figure 1 presents comparisons between the conven-
tional and proposed EP in terms of symbol error rate (SER)
for the overloaded case δ = 10/11. The initial value
v̄B→A,0 = vinit = 10 in the conventional EPwas optimized via
numerical simulations at SNR 1/σ2 = 19 dB. The proposed
EP outperforms the two conventional EP algorithms in the
high SNR regime. The gap in the SERs between the con-
ventional and proposed EP algorithms is larger for M = 200
than for M = 400 while their SERs improve toward the rig-
orous SE prediction [2], [5] in the large system limit as the
system size increases. We conclude that the proposed EP

Fig. 2 Cumulative distribution of the estimation error v̄A→B,t −N
−1 ‖x−

xA→B,t ‖
2 for iteration t = 6. M = 200, N = 220, and SNR 1/σ2 = 20 dB.

improves the high SNR performance of the conventional EP
algorithms for finite-sized systems.

To investigate why the proposed EP can improve the
high SNR performance, we estimated the cumulative distri-
bution of the estimation error v̄A→B,t − N−1‖x − xA→B,t ‖

2

from 106 independent trials, shown in Fig. 2. The conven-
tional EP with v̄B→A,0 = 1 under-estimates the instantaneous
MSE N−1‖x − xA→B,t ‖

2 more likely than the proposed EP.
When the variance parameter v̄A→B,t is under-estimated, the
denoiser (7)—called soft decision in communications—is
likely to make a harder decision, which implies the occur-
rence of error propagation. Since error propagation provides
more significant impacts in the high SNR regime than in the
low SNR regime, the proposed EP can improve the high SNR
performance of the conventional EP.
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