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PAPER
Convex and Differentiable Formulation for Inverse Problems in
Hilbert Spaces with Nonlinear Clipping Effects

Natsuki UENO†a), Nonmember, Shoichi KOYAMA†, and Hiroshi SARUWATARI†, Members

SUMMARY Wepropose a useful formulation for ill-posed inverse prob-
lems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse
problems are often formulated as optimization problems, and nonlinear
clipping effects may cause nonconvexity or nondifferentiability of the ob-
jective functions in the case of commonly used regularized least squares.
To overcome these difficulties, we present a tractable formulation in which
the objective function is convex and differentiable with respect to optimiza-
tion variables, on the basis of the Bregman divergence associated with the
primitive function of the clipping function. By using this formulation in
combination with the representer theorem, we need only to deal with a
finite-dimensional, convex, and differentiable optimization problem, which
can be solved by well-established algorithms. We also show two practical
examples of inverse problems where our theory can be applied, estimation
of band-limited signals and time-harmonic acoustic fields, and evaluate the
validity of our theory by numerical simulations.
key words: inverse problem, Hilbert space, representer theorem, Bregman
divergence, convex optimization

1. Introduction

An inverse problem is a process of determining or estimating
a quantity of interest from its indirect observation, called
a forward problem, whose theory has been under intensive
investigation in engineering, applied mathematics, andmany
other fields. Here, we consider the following types of forward
problem:

s = ( f1(L1u), . . . , fN (LNu)), (1)

where N is a natural number, u ∈ U is a quantity of interest,
U is a real Hilbert space consisting of all possible candidates
for quantities of interest, s ∈ S is observed data, S ⊆ RN

is a set consisting of all possible candidates for observed
data, L1, . . . , LN : U → R are bounded linear functionals,
and f1, . . . , fN : R → R are continuous and monotonically
increasing (not necessarily strictly monotonically increasing
and therefore not necessarily invertible) functions represent-
ing nonlinear clipping effects (hereafter referred to as clip-
ping functions). Three examples of clipping functions are
shown in Fig. 1. The goal of solving the inverse problem is
to find the unknown quantity u from the given L1, . . . , LN ,
f1, . . . , fN , and available (often noisy) data s.

A wide variety of physical measurements in practical
situations can be modeled by Eq. (1) in a unified way. A
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typical example is a restoration problem of a band-limited
continuous-time signal from its discrete and clipped samples.
Here, L1, . . . , LN represent sampling, i.e., pointwise evalu-
ations, of signals, and f1, . . . , fN represent clipping effects
caused by sensors, amplifiers, and analog-to-digital convert-
ers. There are several related works on signal reconstruc-
tion methods and theories using nonclipped samples [1]–
[3], clipped but uniform samples [4]. Several reconstruction
methods for clipped signals [5]–[9] can be applied also in
cases of nonuniform samples. Moreover, Rencker et al. [9]
provided a discussion on influence of observational noises
before clipping effects. However, formulation in these meth-
ods has discontinuous sensitivity against the observational
noises after clipping effects, and a signal reconstruction
method considering noises after clipping effects remains to
be established and investigated. In addition, Eq. (1) includes
many other examples such as measurements of various phys-
ical fields, e.g., electric, magnetic, and acoustic fields. For
example, in an acoustic field measurement using multiple
(omnidirectional or directional) microphones [10], [11], the
directivity and frequency response of the microphones can
be modeled by L1, . . . , LN . Note that L1, . . . , LN are not
limited to pointwise evaluations of functions, as this exam-
ple shows.

In general, this inverse problem is ill-posed, i.e., the for-
ward problem is not bijective and/or not continuous. There-
fore, the following types of optimization problem are often
used for determining the most reasonable solution:

minimize
u∈U

Qs (u) B D f (Lu, s) +
δ

2
‖u‖2

U
, (2)

where L : U → RN and f : RN → S are simpli-
fied notations of L1, . . . , LN and f1, . . . , fN , respectively,
i.e., f (Lu) = ( f1(L1u), . . . , fN (LNu)), D f : RN × S →

(−∞,+∞] is a loss function, δ ∈ (0,+∞) is a regularization
parameter, and ‖ · ‖U is the norm induced by the inner prod-
uct 〈·, ·〉U onU . Here, Qs : U → (−∞,+∞] is an objective
function for evaluating the reasonability of u under the given
s, which is composed of two terms on the right-hand side
of Eq. (2). The first term evaluates the consistency between
Lu and s under f . On the other hand, the second term is
added to avoid divergence of the solution and determined
independently of the observation. The following regularized
least squares is one of the most commonly used formulations
in the form of Eq. (2):

minimize
u∈U

Qs (u) B
1
2
‖ f (Lu) − s‖2

RN +
δ

2
‖u‖2

U
. (3)
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Fig. 1 Examples of clipping functions.

Various regularization methods have been proposed and an-
alyzed in innumerable works (see, for example, [12]–[15] for
an overview).

The optimization problem of Eq. (2) or (3) includes two
difficulties. One is that U may have infinite dimensions.
This problem can be overcome using the representer the-
orem [16]–[21], which states that the optimal solution of
Eq. (2) can be represented as an N-linear combination of
certain vectors determined by L1, . . . , LN . Therefore, we
need only to seek the optimal (finitely many) coefficients of
these vectors. Although this theorem is typically applied to
kernel methods [22], [23] in machine learning because of its
affinity for reproducing kernel Hilbert spaces [24], [25], it
is also useful in physical measurements. For example, the
authors proposed an acoustic field estimation method based
on the representer theorem for cases when f is linear [26].
When the observation includes nonlinear clipping effects,
however, there still remains another difficulty even with the
aid of the representer theorem; even a commonly used reg-
ularized least squares, i.e., Eq. (3), is not necessarily convex
and differentiable with respect to the optimization variables
owing to the nonlinearity or nondifferentiability of f . There-
fore, an alternative formulation of the loss function that is
easy to optimize is desired from a practical viewpoint.

In this paper, we propose a tractable formulation where
the loss function is convex and differentiable with respect to
the optimization variables and has a divergence-like prop-
erty, i.e., it is minimized if and only if s = f (Lu). By
using our proposed formulation in combination with the
representer theorem, we need only to deal with a finite-
dimensional, convex, and differentiable optimization prob-
lem without any constraints, which can be solved easily by
using well-established algorithms such as gradient descent,
nonlinear conjugate gradient descent, and quasi-Newton
methods [27]–[31]. This loss function is designed using
the primitive functions of the clipping functions and also re-
lated closely to the concept of the Bregman divergence. Even
in cases where another loss function such as Eq. (3) is con-
sidered to be suitable from a stochastic or other viewpoint,
a good initial solution can be obtained by using our pro-
posed formulation owing to its convexity. We also provide
two practical examples, estimation problems of band-limited
signals from their time-sampled values and time-harmonic
acoustic fields using pressure-gradient microphones, and
evaluate the validity of our theory by numerical experiments.

The rest of this paper is organized as follows. In Sect. 2,

we introduce the representer theorem. In Sect. 3, we propose
a convex and differentiable formulation of the loss function
in Eq. (2). In Sect. 4, we show two practical examples of
inverse problems in which our theory can be applied, and the
results of their numerical experiments are provided. Finally,
we present our conclusion in Sect. 5.

2. Representer Theorem

We introduce the representer theorem, which guarantees that
Eq. (2) can be reduced to an optimization problem with re-
spect to N variables. Since there are several related re-
sults [16]–[21], all of which are called representer theorems,
we provide here a suitable form for Eq. (2) also with ex-
tension to local solutions [18]. This extension is essential
because we also consider nonconvex formulation such as
Eq. (3) with initialization using our proposed convex formu-
lation. This theorem is effective, especially when U has
infinite dimensions; however, it is also useful when U has
finite but much larger dimensions than N because it may
contribute to a significant reduction of computational cost in
the optimization.

2.1 Preliminaries

First, we introduce the Riesz representation theorem for
Hilbert spaces (see, e.g., [32], [33], for a proof).

Theorem 1: Let (U, 〈·, ·〉U ) be a Hilbert space over K (R
or C) andΦ : U → K be a bounded linear functional. Then,
there exists a unique ϕ ∈ U satisfying

Φu = 〈ϕ, u〉U ∀u ∈ U . (4)

From the Riesz representation theorem, for the bounded lin-
ear operator L defined in Sect. 1, there exists a unique se-
quence (v1, . . . , vN ) ∈ UN satisfying

Lnu = 〈vn, u〉U ∀u ∈ U, n ∈ {1, . . . , N } . (5)

Hereafter, we call vn the representation vector of Ln and
(v1, . . . , vN ) the representation vector sequence of L.

Next, we define a Gram operator as follows.

Definition 2: Let (U, 〈·, ·〉U ) be a Hilbert space over K (R
or C), N be a natural number, and vn ∈ U be the representa-
tion vector of a bounded linear functional Ln : U → K for
each n ∈ {1, . . . , N }. Then, a linear mapping K : KN → KN
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whose representation matrix K is given as

K B



K1,1 · · · K1,N
...

. . .
...

KN,1 · · · KN,N


(6)

with

Kn1,n2 B
〈
vn1, vn2

〉
U = Ln1vn2 ∀n1, n2 ∈ {1, . . . , N }

(7)

is called a Gram operator generated by (v1 . . . , vN ). This
matrix K is always self-adjoint and positive-semidefinite,
and it is positive-definite if and only if (v1, . . . , vN ) is lin-
early independent. Furthermore, the semi-inner product and
seminorm on KN induced by K are denoted by 〈·, ·〉K and
‖ · ‖K , respectively, i.e.,

〈α, β〉K B 〈α, K β〉KN ∀α, β ∈ KN, (8)

‖α‖K B
√
〈α, α〉K ∀α ∈ KN . (9)

2.2 Statement

In accordance with a prior work [17], we provide the state-
ment for slightly more general conditions than those in
Eq. (2); it can be easily confirmed that Eq. (2) satisfies these
conditions. For an essential part of the proof, see [18].

Theorem 3: Assume the following conditions.

• (U, 〈·, ·〉U ) : Hilbert space over K (R or C)

– ‖ · ‖U : norm onU induced by the inner product
〈·, ·〉U

• N : natural number
• L : U → KN bounded linear operator

– (v1, . . . , vN ): representation vector sequence of L
– K : Gram operator generated by (v1, . . . , vN )
– ‖ · ‖K : seminorm on KN induced by K

• E : KN → (−∞,+∞] arbitrary function
• g : [0,+∞) → (−∞,+∞) strictly monotonically in-
creasing function

Then, any global/local optimal point u(opt) ∈ U of the opti-
mization problem

minimize
u∈U

Q(u) B E(Lu) + g(‖u‖U ) (10)

admits the following representation:

u(opt) =

N∑
n=1

α
(opt)
n vn. (11)

Here, α(opt) B (α(opt)
1 , . . . , α

(opt)
N ) ∈ KN is given as a

global/local optimal point of the optimization problem

minimize
α∈KN

Q(∗) (α) B E(Kα) + g(‖α‖K ). (12)

More precisely, the following two propositions hold:

1. If and only if u(opt) ∈ U is a global optimal point of
Eq. (10), u(opt) can be represented in the form of u(opt) =∑N

n=1 α
(opt)
n vn for some α(opt) B (α(opt)

1 , . . . , α
(opt)
N ) ∈

KN that is a global optimal point of Eq. (12).
2. If and only if u(opt) ∈ U is a local optimal point of

Eq. (10), u(opt) can be represented in the form of u(opt) =∑N
n=1 α

(opt)
n vn for some α(opt) B (α(opt)

1 , . . . , α
(opt)
N ) ∈

KN that is a local optimal point of Eq. (12).

Remark 4: With respect to the term “local”, we consider
the standard topologies onU and KN induced by the norms
‖ · ‖U and ‖ · ‖KN , respectively. In particular, u(opt) ∈ U
is called a local optimal point of Eq. (10) if and only if
Q(u(opt)) < +∞ and there exists some ε ∈ (0,+∞) satisfying
Q(u(opt)) ≤ Q(u) ∀u ∈ B(u(opt); ε ). Here, for u0 ∈ U and
ε ∈ (0,+∞), B(u0; ε ) ⊂ U denotes the open ball centered at
u0 with radius ε , i.e., B(u0; ε ) B {u ∈ U | ‖u − u0‖U < ε }.

3. Convex Formulation

In this section, we present a tractable formulation of the loss
function D and provide a concrete discussion for solving the
optimization problem by computation.

3.1 Formulation

Let F1, . . . , FN : R → R denote primitive functions of
f1, . . . , fN , respectively. Note that F1, . . . , FN are dif-
ferentiable and convex because f1, . . . , fN are continuous
and monotonically increasing. In addition, the ranges of
f1, . . . , fN are respectively denoted by S1, . . . ,SN ⊆ R.
Then, we define the loss function D f as

D f (z, s) B
N∑
n=1

dn(zn, sn)

∀z B (z1, . . . , zN ) ∈ RN, s B (s1, . . . , sN ) ∈ S
(13)

with

dn(zn, sn)

B
1
σ2
n

[Fn(zn) − Fn( f −1
n (sn)) − sn(zn − f −1

n (sn))]

∀zn ∈ R, sn, ∈ Sn, n ∈ {1, . . . , N } , (14)

where σ1, . . . , σN ∈ (0,+∞) are dispersion parame-
ters representing the observational uncertainty. Although
f1, . . . , fN is not uniquely invertible in general, this is a well-
defined function because any choice of f −1

n (sn) in Eq. (14)
yields the same value (see Appendix A). This loss function
has the following divergence-like properties.

1. D f (z, s) ≥ 0 ∀z ∈ RN, s ∈ S.
2. D f (z, s) = 0 if and only if s = f (z).

Proofs of these properties are provided in Appendix B. In
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cases of a strictly monotonically increasing fn, dn can also
be represented as dn(zn, sn) = BFn (zn, f −1

n (sn))/σ2
n ∀zn, ∈

R, sn ∈ Sn, where BFn : R × R → [0,+∞) denotes the
Bregman divergence associated with Fn. Moreover, if fn is
the identity function, dn is a weighted squared error function
defined as dn(zn, sn) = (zn−sn)2/(2σ2

n) ∀zn, sn ∈ R. Using
Eq. (14), we obtain the objective function as

Qs (u) B
N∑
n=1

1
σ2
n

[Fn(Lnu) − Fn( f −1
n (sn))

− sn(Lnun − f −1
n (sn))] +

δ

2
‖u‖2

U
. (15)

This can be simplified by omitting the terms irrelevant to the
optimization variable as

Qs (u) =
N∑
n=1

1
σ2
n

(Fn(Lnu) − snLnu) +
δ

2
‖u‖2

U
+ C,

(16)

where C ∈ R is a constant.
From Theorem 3, the minimization problem of Eq. (16)

on U can be recast to the minimization problem of the
following objective function on RN :

Q(∗)
s (α) B

N∑
n=1

1
σ2
n

(Fn(Knα) − snKnα) +
δ

2
‖α‖2K +C,

(17)

where Kn : RN → R is a linear mapping whose representa-
tion matrix (a row vector) Kn is given by

Kn B [Kn,1, . . . , Kn,N ] ∀n ∈ {1, . . . , N } . (18)

Then, Q(∗)
s is a convex function because the functions

Fn(Knα), −snKnα, and ‖α‖2K are convex with respect to
α (all of the following functions are convex: linear func-
tions, seminorm functions†, composition of a convex func-
tion and linear transformation, square of a convex nonneg-
ative function, and nonnegative weighted sums of convex
functions [30]).

Note that Eq. (16) can be defined even when s < S (due
to observational noises) by ignoring the constant C. Also in
this case, the exsitence of the solution is guaranteed because
Qs (where C is omitted) is continuous and coercive (see Ap-
pendix C); therefore, one can use the proposed formulation
regardless of whether or not s is inS. It should be also noted
that most related works [6]–[9] cannot be used in such cases.

3.2 Derivation of Gradient

As described above, the objective functionQ(∗)
s is convex and

†In [30], the convexity of norm functions is shown; however, it
can be extended immediately to seminorm functions because only
the triangle inequality and absolute homogeneity are sufficient to
yield its convexity.

has no constraint. In addition, Q(∗)
s is partially differentiable,

and the gradient of Q(∗)
s is given by

∂

∂αi
Q(∗)

s (α) =
N∑
n=1

1
σ2
n

( fn(Knα) − sn)Kn,i + δKiα

∀i ∈ {1, . . . , N } . (19)

Therefore, many well-established iterative algorithms using
the gradient of Q(∗)

s , such as gradient descent, nonlinear
conjugate gradient descent, and quasi-Newton methods, are
available for the minimization of Q(∗)

s .
Furthermore, if f1, . . . , fN are η-Lipschitz continuous

with η ∈ [0,+∞), the gradient of Q(∗)
s is also Lipschitz

continuous with a Lipschitz constant ηM2
K/σ

2
min + δMK ,

where MK denotes the maximum eigenvalue of the repre-
sentation matrix of K and σmin denotes the minimum value
of {σ1, . . . , σN }. In this case, the global convergence is
guaranteed in many iterative algorithms including a gradi-
ent descent with a fixed step size [27] and an accelerated
gradient descent [28].

4. Application Examples and Numerical Experiments

We provide two examples of inverse problems to which our
proposed formulation can be applied. Hereafter, for any
measurable set X ⊆ R and measurable function ρ : X → C
with respect to the Lebesgue measure,

∫
x∈X

ρ(x) dµ denotes
the Lebesgue integral of ρ on X.

4.1 Estimation of Band-Limited Signals

First, we provide an example of an estimation problem of
band-limited signals from their irregularly time-sampled val-
ues with soft clipping effects.

4.1.1 Formulation

A band-limited signal can be modeled as a function u : R→
R in the form of

u(t) =
1
√

2π

∫
ω∈Ω

û(ω) exp(iωt) dµ ∀t ∈ R (20)

with a square-integrable function û : Ω → C, where Ω B
[−ωmax, ωmax] and ωmax ∈ (0,+∞) denotes the maximum
angular frequency of target signals. Therefore, we define a
real Hilbert spaceU and its inner product 〈·, ·〉U as

U B

{
u : R→ R

�����
∃û : Ω→ C

s.t.
∫
ω∈Ω
|û(ω) |2 dµ < +∞, u = Fû

}
,

(21)

and

〈u1, u2〉U B

∫
t∈R

u1(t)u2(t) dµ, (22)
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respectively, where F denotes the transform of functions
defined as Eq. (20).

We consider the forward problem in the form of Eq. (1)
with

Lnu B u(tn) ∀u ∈ U, n ∈ {1, . . . , N } , (23)
fn(z) B τtanh(z/τ) ∀z ∈ R, n ∈ {1, . . . , N } , (24)

where (t1, . . . , tN ) ∈ RN are sampling times and τ ∈ (0,+∞]
represents a clipping level (τ = +∞ means that f1, . . . , fN
are the identical functions).

In this case, vn and Kn1,n2 are given by

vn(t) =
ωmax
π

sinc(ωmax(t − tn))

∀t ∈ R, n ∈ {1, . . . , N } , (25)

and

Kn1,n2 =
ωmax
π

sinc(ωmax(tn2 − tn1 ))

∀n1, n2 ∈ {1, . . . , N } , (26)

respectively, where sinc(·) is the unnormalized sinc function
defined as sinc(0) B 1 and sinc(z) B sin(z)/z for z ∈
R \ {0}. These are derived by the fact that the sinc function
is the reproducing kernel ofU , as noted in [34], [35].

4.1.2 Experimental Evaluation

We conducted numerical experiments using Julia v.1.2.0
whose settings are given in Table 1. Here, noisy obser-
vation was simulated. Note that observation noise was
added after the clipping effects (therefore, mere inversion
of f causes significant amplification of the noise). We com-
pared the following five conditions: clipped (Proposed, SC:
soft consistency, RLS: regularized least squares, and Pro-
posed+RLS) and nonclipped (Proposed). Under the clipped
(Proposed, RLS, and Proposed+RLS) conditions, τ was
set as 1. Under the nonclipped (Proposed) condition, on the
other hand, τ was set as +∞. Under the clipped (Proposed)
and nonclipped (Proposed) conditions, the optimal solu-
tions u(opt) ∈ U were obtained by minimizing Eq. (17) with
an initial value of zero. Under the clipped (SC) condition,
the objective function was defined using the soft consistency
loss function [9] as

QSC,s (u) B
N∑
n=1

1
2σ2

n

(Lnu − ΠCn (Lnu))2 +
δ

2
‖u‖2

U
,

(27)

where Cn ⊆ R is the feasible set defined as Cn B
{z ∈ R | f (z) = sn}, andΠCn (·) denotes the orthogonal pro-
jection into Cn for each n ∈ {1, . . . , N } (the Euclidean-
distance-based loss function is used here although the
method of [9] can be combined with other loss functions
such as the Huber loss function). On the basis of Theorem 3,
the optimal solutions were obtained by minimizing

Table 1 Settings in band-limited signal estimation.

ωmax ωmax B 2πfmax with fmax = 100 Hz.

u u(t) B
∑200
ν=0 aν sinc(ωmaxt − νπ).

(a0, . . . , a200)
Sampled independently from the univariate
real normal distribution with mean 0 and
variance 1.

N N B 500.

(t1, . . . , tN )
Sampled independently from the uniform
distribution on [0, 1] s.

τ τ B 1 (clipped), τ B +∞ (nonclipped).

Observation noise

Added to each fn (Lnu) for n ∈ {1, . . . , N }
independently from the univariate real
normal distribution with mean 0 and
variance 10−3 × ‖ f (Lu) ‖2

RN
/N .

δ, (σ2
1, . . . , σ

2
N ) δ B 10−1.5, σ2

n B 1 ∀n ∈ {1, . . . , N }.

Evaluation
criterion

NMSE B 10 log10 (E/S),
where
E B

∑Nt
i=1 |u

(opt) (t(eval)
i ) − u(t(eval)

i ) |2,
S B

∑Nt
i=1 |u(t(eval)

i ) |2.

(t(eval)
1 , . . . , t(eval)

Nt
)

Equally spaced points from 0 s to 1 s with
intervals of 0.001 s (Nt = 1001).

Q(∗)
SC,s (α) B

N∑
n=1

1
2σ2

n

(Knα − ΠCn (Knα))2 +
δ

2
‖α‖2K

(28)

with an initial value of zero. Here, for each n ∈ {1, . . . , N },
the signal sn was discarded when it was outside the range
of fn owing to the observational noise since Cn cannot be
defined for such sn. Under the clipped (RLS) condition, the
objective function was defined as the following regularized
least squares:

QLSQ,s (u) B
N∑
n=1

1
2σ2

n

( fn(Lnu) − sn)2 +
δ

2
‖u‖2

U
.

(29)

On the basis of Theorem 3, the optimal solutions were ob-
tained by minimizing

Q(∗)
LSQ,s (α) B

N∑
n=1

1
2σ2

n

( fn(Knα) − sn)2 +
δ

2
‖α‖2K

(30)

with an initial value of zero. Under the clipped
(Proposed+RLS) condition, Eq. (17) was minimized first
with an initial value of zero, and then Eq. (30) was mini-
mized using the obtained solution of Eq. (17) as the initial
value. In the optimization, we used a nonlinear conjugate
gradient in Optim.jl [36] with the default settings. We eval-
uated the estimation performance by using the normalized
mean squared error (NMSE). The results are provided in Ta-
ble 2. Since some parameters were randomly determined,
the mean and standard deviation of the NMSEs over 50 tri-
als were calculated. We also plotted the true and estimated
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Fig. 2 Results of band-limited signal estimation in [0.25, 0.75] s in the first trial. The NMSEs were
(a) −23.33, (b) −18.28, (c) −20.89, and (d) −24.20 dB.

Table 2 Results of band-limited signal estimation (50 trials).

Condition NMSE: mean ± standard deviation

Clipped (Proposed) −19.67 ± 3.64 dB
Clipped (SC) −15.94 ± 3.87 dB
Clipped (RLS) −16.84 ± 2.19 dB
Clipped (Proposed+RLS) −21.70 ± 3.25 dB
Nonclipped (Proposed) −25.66 ± 3.70 dB

signals in the first trial in Fig. 2. The estimation accuracy for
clipped (SC) was lowest, which means its lack of robustness
against observational noises after clipping effects. Also the
estimation accuracy for clipped (RLS) was low, which was
considered to be due to its nonconvexity. On the other hand,
the estimation accuracy for clipped (Proposed) was higher
than that for clipped (RLS), and it was further improved
by clipped (Proposed+RLS), which was close to that for
nonclipped (Proposed). One possible reason why clipped
(Proposed+RLS) outperformed clipped (Proposed) is be-
cause the formulation of RLS is well suited for Gaussian
noises; it can be interpreted formally as a maximum a poste-
riori (MAP) estimation when the observational noises follow
Gaussian distributions. From these results, one can see that
an accurate estimation was achieved using the formulation
of Eq. (17), which could also be used as an initial value in
the optimization of a different formulation.

4.2 Estimation of Time-Harmonic Acoustic Fields

Next, we provide an example of an estimation problem of
time-harmonic acoustic fields using pressure-gradient mi-
crophones (also called velocity microphones) with hard clip-
ping effects.

4.2.1 Formulation

Consider the following two-dimensional acoustic wave equa-
tion: (

∂2

∂x2 +
∂2

∂ y2 −
1
c2

∂2

∂t2

)
u(x, y, t) = 0 ∀x, y, t ∈ R.

(31)

Here, u(x, y, t) ∈ R denotes the sound pressure at a position
(x, y) ∈ R2 and a time t ∈ R, and c ∈ (0,+∞) denotes
the speed of sound. One of the solutions for Eq. (31) is a
complex sinusoidal plane wave function defined as

ϕ(x, y, t; θ) B exp
(
iω0

(
t −

x cos θ + y sin θ
c

))
∀x, y, t ∈ R, (32)

where ω0 ∈ (0,+∞) denotes an angular frequency and θ ∈
[0, 2π) denotes a polar angle of the traveling direction of the
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plane wave. As a superposition of plane waves, the time-
harmonic incident acoustic field with angular frequency ω0
can be well modeled as

u(x, y, t) =
∫
θ∈[0,2π)

Re (ů(θ)ϕ(x, y, t; θ)) dµ

∀x, y, t ∈ R (33)

with a square-integrable function ů : [0, 2π) → C. We define
a real Hilbert spaceU and its inner product 〈·, ·〉U as

U B

{
u : R3 → R

�����
∃ů : [0, 2π) → C

s.t.
∫
θ∈[0,2π)

|ů(θ) |2 dµ < +∞, u = Hů
}

(34)

and

〈u1, u2〉U B

∫
θ∈[0,2π)

Re
(
ů1(θ)∗ů2(θ)

)
dµ, (35)

respectively, where H denotes the transform of functions
defined as Eq. (33) and ů1, ů2 : [0, 2π) → C is functions
satisfying u1 = Hů1 and u2 = Hů2.

Suppose M pressure-gradient microphones are located
at (x1, y1), . . . , (xM, yM ) ∈ R2, and let t1, . . . , tPm ∈ R with
a natural number Pm be the sampling times of the mth mi-
crophone for each m ∈ {1, . . . , M }. We consider the forward
problem in the form of Eq. (1) with

Lnu B Am
∂

∂d(θm)
u(xm, ym, tp)

∀n B (m, p) ∈ {(1, 1), . . . , (M, PM )} , (36)

fn(z) B



−τ z ≤ −τ
z −τ < z < τ

τ z ≥ τ

∀n B (m, p) ∈ {(1, 1), . . . , (M, PM )} . (37)

Here, Am ∈ R is a gain of themthmicrophone, ∂/∂d(θm) de-
notes the directional derivative along the direction d(θm) B
(cos θm, sin θm) defined as

∂

∂d(θm)
u(xm, ym, tp)

B

(
cos θm

∂

∂x
+ sin θm

∂

∂ y

)
u(xm, ym, tp), (38)

and τ ∈ (0,+∞] is a clipping level. Note that f1, . . . , fN
are noninvertible functions for τ , +∞. In this case, vn and
Kn1,n2 are given respectively by

vn(x, y, t)

B 2πAm
ω0
c

J1

(
ω0
c

√
(x − xm)2 + (y − ym)2

)
· cos(∠(x − xm, y − ym) − θm) cos(ω0(t − tp))
∀x, y, t ∈ R, n B (m, p) ∈ {(1, 1), . . . , (M, PM )}

(39)

Table 3 Settings in time-harmonic acoustic field estimation.

ω0 ω0 B 2πf0 with f0 = 100 Hz.

c c = 340 m/s.

u

u(x, y, t)
B

∑10
ν=−10 Re

(
aνJν

(
ω0
c

√
x2 + y2

)
· exp(iν∠(x, y)) exp(iω0t)

)
.

(a−10, . . . , a10)
Sampled independently from the univariate
circular-symmetric complex normal
distribution with mean 0 and variance 1.

M , (P1, . . . , PM )
M B 12, Pm B 10 ∀m ∈ {1, . . . , M }
(N = 120).

(x1, . . . , xM ),
(y1, . . . , yM )

Sampled independently from the uniform
distribution on [−2, 2] m.

(θ1, . . . , θM )
Sampled independently from the uniform
distribution on [0, 2π).

(A1, . . . , AM ) Am = c/ω0 ∀m ∈ {1, . . . , M }.

(t(1,1), . . . , t(M,PM ) )
Sampled independently from the uniform
distribution on [0, 0.01] s.

τ τ = 0.5 (clipped), τ = +∞ (nonclipped).

Observation noise

Added to each fn (Lnu) for
n ∈ {(1, 1), . . . , (M, PM ) }
independently from the univariate real
normal distribution with mean 0 and
variance 10−3 × ‖ f (Lu) ‖2

RN
/N .

δ, σ2
n

δ B 10−1.5, σ2
n B 1

∀n ∈ {(1, 1), . . . , (M, PM ) }.

Evaluation
criterion

NMSE B 10 log10 (E/S),
where
E B

∑Nx
i=1

∑Ny

j=1
∑Nt

k=1
|u(opt) (x(eval)

i , y(eval)
j , t(eval)

k
)

−u(x(eval)
i , y(eval)

j , t(eval)
k

) |2,
S B

∑Nx
i=1

∑Ny

j=1
∑Nt

k=1
|u(x(eval)

i , y(eval)
j , t(eval)

k
) |2.

(x(eval)
1 , . . . , x(eval)

Nx
),

(y(eval)
1 , . . . , y(eval)

Ny
)

Equally spaced points from −2 m to 2 m
with intervals of 0.05 m (Nx = 81,
Ny = 81).

(t(eval)
1 , . . . , t(eval)

Nt
)

Equally spaced points from 0 s to 0.01 s
with intervals of 0.001 s (Nt = 11).

and

Kn1,n2 B −π
(
Am

ω0
c

)2 [
J2

(
ω0
c

rm2,m1

)
· cos(2φm2,m1 − θm1 − θm2 )

− J0

(
ω0
c

rm2,m1

)
cos(θm2 − θm1 )

]

· cos(ω0(tp2 − tp1 ))
∀n1B (m1, p1), n2B (m2, p2) ∈ {(1, 1), . . . , (M, PM )}

(40)

with

rm2,m1 B
√

(xm2 − xm1 )2 + (ym2 − ym1 )2 (41)

φm2,m1 B ∠(xm2 − xm1, ym2 − ym1 ) (42)
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Fig. 3 Results of time-harmonic acoustic field estimation at t = 0 s in the first trial. The NMSEs were
(b) −17.83 and (c) −6.82 dB. The clipping distortion was −8.07 dB.

Table 4 Results of time-harmonic acoustic field estimation (50 trials).

Condition NMSE: mean ± standard deviation

Clipped (Proposed) −12.33 ± 5.01 dB
Clipped (SC) −6.97 ± 3.65 dB
Nonclipped (Proposed) −17.25 ± 4.30 dB

Here, Jν (·) denotes the νth-order Bessel function of the first
kind for each integer ν and ∠(x, y) denotes the polar angle
of (x, y) for each x, y ∈ R. The derivations of vn and Kn1,n2
are given in detail in Appendix D.

4.2.2 Experimental Evaluation

We conducted numerical experiments using Julia v.1.2.0
whose settings are given in Table 3. Among the five condi-
tions investigated in Sect. 4.1.2, clipped (Proposed and SC)
with τ = 0.5 and nonclipped (Proposed) with τ = +∞ were
compared in this experiment because Eq. (30) is not differen-
tiable with respect to the optimization variables. Here, under
the clipped (SC) condition, each of sn for n ∈ {1, . . . , N }
was projected into Sn, i.e., [−τ, τ], as a preprocessing (note
that this preprocessing was unavailable in the experiments in
Sect. 4.1.2 since Sn is an open set in that case). The results
from 50 trials are shown in Table 4. The clipping distortion
defined as 10 log10 ‖ f (Lu) − Lu‖2

RN /‖Lu‖2
RN was also cal-

culated, and its mean ± standard deviation for 50 trials was
−10.18 ± 3.87 dB. In addition, we show the true and esti-
mated acoustic fields in the first trial in Fig. 3. Here, pairs
of red and blue circles represent the position and orientation
of the pressure-gradient microphones; the direction from the
blue circle to the red circle corresponds to the direction of the
derivative that the pressure-gradient microphone observed.
Even under the hard clipping effects, clipped (Proposed)
achieved an estimation performance relatively close to that
of nonclipped (Proposed), compared with the value of the
clipping distortion. We can also see that clipped (Proposed)
outperformed clipped (SC), as was the case in the experi-
ments in Sect. 4.1.2.

5. Conclusion

We presented a new useful formulation for ill-posed inverse
problems in Hilbert spaces with nonlinear clipping effects.
A loss function was designed so that it was convex and dif-
ferentiable with respect to the optimization variables. By
using this formulation in combination with the representer
theorem, we derived a tractable optimization problem that is
easy to optimize using well-established algorithms. Finally,
we provided two practical examples of inverse problemswith
soft and hard clipping effects, and the experimental evalua-
tions confirmed the validity of our proposed formulation.
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Appendix A: Well-Definedness of Loss Function

Assume fn(yn) = fn(wn) = sn and yn ≤ wn, and then we
will prove

Fn(yn) − sn yn = Fn(wn) − snwn, (A· 1)

which immediately yields the independence of f −1
n (sn)

in (14). First, since fn is monotonically increasing and
fn(yn) = fn(wn), fn takes a constant value sn on the inter-
val [yn, wn]. Therefore, we obtain

Fn(wn) − Fn(yn) = sn(wn − yn), (A· 2)

which yields (A· 1).

Appendix B: Properties of Loss Function

We show the following properties on dn for each n ∈
{1, . . . , N }. Here, again note that z̃n = f −1

n (sn) and fn
is the derivative of Fn.

1. dn(zn, sn) ≥ 0 ∀zn ∈ R, sn ∈ Sn.
(Proof) It can be proved immediately from the following
inequality on differentiable convex functions [30]:

Fn(zn) − Fn( z̃n) ≥ fn( z̃n)(zn − z̃n) ∀zn, z̃n ∈ R
(A· 3)

2. dn(zn, sn) = 0 if and only if sn = fn(zn).
(Proof) In Eq. (A· 3), the equality holds if and only if
fn(zn) = fn( z̃n). Therefore, we obtain

dn(zn, sn) = 0⇔ Fn(zn) − Fn( f −1
n (sn))

= sn(zn − f −1
n (sn))

⇔ fn(zn) = fn( f −1
n (sn))

⇔ fn(zn) = sn (A· 4)

The above properties immediately yield the properties of D f

provided in Sect. 3.1.

Appendix C: Coerciveness of Proposed Formulation

We define J : R→ R as

J (t) B
N∑
n=1

1
σ2
n

(Fn(Ln(tu0)) − snLn(tu0)) +
δ

2
‖tu0‖

2
U

(A· 5)

for arbitrary fixed u0 ∈ U \ {0}, and then we will prove that
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J is coercive, i.e., limt→−∞ J (t) = +∞ and limt→+∞ J (t) =
+∞. First, the derivative of J, denoted by J ′, is given by

J ′(t) =
N∑
n=1

1
σ2
n

( fn(tLnu0) − sn)Lnu0 + tδ‖u0‖
2
U
.

(A· 6)

Since fn(tLnu0)Lnu0 is monotonically increasing with re-
spect to t for each n ∈ {1, . . . , N }, J ′ is also monotonically
increasing, and moreover we obtain

lim
t→−∞

J ′(t) = −∞, (A· 7)

lim
t→+∞

J ′(t) = +∞. (A· 8)

Therefore, we obtain the coerciveness of J and also Qs

(where the constant C is omitted).

Appendix D: Derivation of Representation Vector Se-
quence and Gram Operator

Let u ∈ U be represented as Eq. (33) with a square-
integrable function ů : [0, 2π) → C and ϕθm be defined
as

ϕθm (x, y, t; θ) B
∂

∂d(θm)
ϕ(x, y, t; θ)

∀x, y, t ∈ R,m ∈ {1, . . . , M } . (A· 9)

Then, by interchanging the integral and partial derivative
(their interchangeability is proved later), we obtain

∂

∂d(θm)
u(x, y, t) =

∫
θ∈[0,2π)

Re
(
ů(θ)ϕθm (x, y, t; θ)

)
dµ

∀x, y, t ∈ R,m ∈ {1, . . . , M } .
(A· 10)

Here, for each n B (m, p) ∈ {(1, 1), . . . , (M, PM )}, let v̊n
and vn be respectively defined as

v̊n(θ) B Amϕθm (xm, ym, tp; θ)∗ ∀θ ∈ [0, 2π),
(A· 11)

vn = Hv̊n, (A· 12)

which immediately yield

〈vn, u〉U = Am

∫
θ∈[0,2π)

Re
(
ů(θ)ϕθm (xm, ym, tp; θ)

)
dµ

= Lnu. (A· 13)

Therefore, vn and Kn1,n2 can be obtained as

vn(x, y, t)

= Am

∫
θ∈[0,2π)

Re
(
ϕθm (xm, ym, tp; θ)∗ϕ(x, y, t; θ)

)
dµ

= 2πAm
ω0
c

J1

(
ω0
c

√
(x − xm)2 + (y − ym)2

)
· cos(∠(x − xm, y − ym) − θm) cos(ω0(t − tp))

∀x, y, t ∈ R, n B (m, p) ∈ {(1, 1), . . . , (M, PM )}
(A· 14)

and

Kn1,n2 = A2
m

∫
θ∈[0,2π)

Re
(
ϕθm2

(xm2, ym2, tp2 ; θ)∗

· ϕθm1
(xm1, ym1, tp1 ; θ)

)
dµ

= −π
(
Am

ω0
c

)2 [
J2

(
ω0
c

rm2,m1

)
· cos(2φm2,m1 − θm1 − θm2 )

− J0

(
ω0
c

rm2,m1

)
cos(θm2 − θm1 )

]

· cos(ω0(tp2 − tp1 ))
∀n1B (m1, p1), n2B (m2, p2) ∈ {(1, 1), . . . , (M, PM )} ,

(A· 15)

respectively, from the following properties for Bessel func-
tions of the first kind [37]:∫

θ∈[0,2π)
exp(iz cos θ + iνθ) dµ = 2πiν Jν (z) ∀z ∈ R,

(A· 16)
J−ν (z) = (−1)ν Jν (z) ∀z ∈ R, (A· 17)

where ν is an arbitrary integer.
Finally, the interchangeability of the integral and partial

derivative in Eq. (A· 10) is proved as follows. First, let u ∈ U
and ů : [0, 2π) → C satisfy u = Hů. Furthermore, for
arbitrary fixed y, t ∈ R, let ϕX, uX, ũX be respectively defined
as

ϕX (x, θ) B
∂

∂x
ϕ(x, y, t; θ) ∀x ∈ R, θ ∈ [0, 2π),

(A· 18)

uX (x) B
∂

∂x
u(x, y, t) ∀x ∈ R, (A· 19)

ũX (x) B
∫
θ∈[0,2π)

Re (ů(θ)ϕx (x, θ)) dµ ∀x ∈ R.

(A· 20)

Then, for arbitrary x ∈ R, Cauchy’s inequality yields the
following relation:

|ũX (x+h)−ũX (x) |

=
�����

∫
θ∈[0,2π)

Re (ů(θ)(ϕX (x + h, θ) − ϕX (x, θ)) dµ
�����

≤

(∫
θ∈[0,2π)

|ů(θ) |2 dµ

·

∫
θ∈[0,2π)

|ϕX (x + h, θ) − ϕX (x, θ) |2 dµ
) 1

2
.

(A· 21)

Since ϕX (x+h, θ) converges to ϕX (x, θ) as h → 0 uniformly
in θ ∈ [0, 2π), we obtain
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lim
h→0
|ũX (x + h) − ũX (x) | = 0 ∀x ∈ R. (A· 22)

On the other hand, from the mean value theorem, for any
h ∈ R \ {0}, there exists some ϑ(h) ∈ [0, 1] satisfying

ϕ(x + h, y, t; θ) − ϕ(x, y, t; θ)
h

= ϕX (x + ϑ(h)h, θ).

(A· 23)

Therefore, we obtain

uX (x, y, t)

= lim
h→0

1
h

∫
θ∈[0,2π)

Re(ů(θ)(ϕ(x + h, y, t; θ)

− ϕ(x, y, t; θ))) dµ

= lim
h→0

∫
θ∈[0,2π)

Re (ů(θ)ϕX (x + ϑ(h)h, θ)) dµ

= lim
h→0

ũX (x + ϑ(h)h)

= ũX (x) ∀x ∈ R. (A· 24)

The same property also holds for a partial derivative with
respect to y . Thus, we obtain the interchangeability of the
integral and partial derivative in Eq. (A· 10).
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