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PAPER
Statistical-Mechanical Analysis of Adaptive Volterra Filter with the
LMS Algorithm

Kimiko MOTONAKA†a), Member, Tomoya KOSEKI††, Nonmember, Yoshinobu KAJIKAWA†,
and Seiji MIYOSHI†, Senior Members

SUMMARY The Volterra filter is one of the digital filters that can
describe nonlinearity. In this paper, we analyze the dynamic behaviors
of an adaptive signal-processing system including the Volterra filter by a
statistical-mechanical method. On the basis of the self-averaging property
that holds when the tapped delay line is assumed to be infinitely long,
we derive simultaneous differential equations in a deterministic and closed
form, which describe the behaviors of macroscopic variables. We obtain
the exact solution by solving the equations analytically. In addition, the
validity of the theory derived is confirmed by comparison with numerical
simulations.
key words: Volterra filter, adaptive filter, statistical-mechanical informat-
ics, LMS algorithm

1. Introduction

Adaptive signal-processing techniques have been used in var-
ious fields, such as information communication and acoustic
systems [1], [2]. There have been many studies on such
techniques using a linear digital filter and also on theoret-
ical analysis [3]–[5]. On the other hand, there are analyt-
ical techniques using a statistical-mechanical method [6].
The statistical-mechanical method is producing significant
results in many fields, such as associative memory models
[7], [8], error-correcting codes [9], wireless communications
[10], image processing [11], statistical learning [12] and so
forth. Statistical-mechanical analysis assumes a large limit
of system size, and its merit is that it can describe the uni-
versal feature of problems macroscopically. This technique
has been applied to the analysis of the behaviors of digital
filters. As an example, a linear digital filter for active noise
control has been analyzed by a statistical-mechanical method
[13]–[17]. On the other hand, in an actual environment, the
target system is often nonlinear; thus, a digital filter that can
describe this nonlinearity is desirable. There are many non-
linear filters i.e. order statistics filters [18] or morphological
filters [19], [20] and so on. The Volterra filter is one of such
digital filters that can describe nonlinearity [21]. It can ef-
fectively describe weak nonlinearity with no hysteresis and
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has been applied to the modeling of loudspeaker systems
and other applications [22]–[25]. The second-order Volterra
filter has been analyzed in some previous studiess [26]–[28].
Takahama et al. [26] analyzed the error signal of the second-
order Volterra filter by decomposing it into the coefficient
errors of diagonal elements and off-diagonal elements and
transforming the Volterra filter into the first-order recursive
filter. Chao and Inomata [27] analyzed the geometric prop-
erty of the error surface and the convergence property of the
adaptive algorithm by eigenvalue analysis of the input auto-
correlation matrix of the second-order Volterra filter. Koh
and Powers [28] analyzed the steady state of the second-order
Volterra filter using the cross-bicorrelation function of the
input and output of the unknown system. However, analyzing
the third- or higher-order Volterra filter is also important, es-
pecially if we consider its actual applications. Moreover, an-
alyzing the Lth-order, that is, the generalized-order Volterra
filter is significant from the viewpoint of theoretical analysis.
Therefore, in this paper, we analyze the dynamic behavior
of an adaptive signal-processing system including the Lth-
order Volterra filter by a statistical-mechanical method and
obtain the exact solution regarding the behavior of the mean
square error (MSE). In the analysis of this paper, unlike in
Refs. [26]–[28], the MSE is derived explicitly as a function
of time, the order of the Volterra filter, the input signal size,
and the step size, as we shall see later. Thus, we can obtain
insights into the effects of these parameters on the behavior
of the system.

Although many update algorithms have been proposed
for the adaptive Volterra filter, here, we analyze the case of
using the least-mean-square (LMS) algorithm [1], [2], [29].
In this paper, on the basis of the self-averaging property [6]
that holds when the tapped delay line is assumed to be in-
finitely long, we derive simultaneous differential equations
in a deterministic and closed form, which describe the be-
haviors of the macroscopic variables. We obtain the exact
solution by solving the equations analytically. Then, we
verify the behavior of the Volterra filter while changing the
step size and background noise. Finally, we confirm that the
analytically obtained dynamic behavior of the mean square
error (learning curves) is in good agreement with numerical
simulations.

In this paper, the overview of the Volterra filter is de-
scribed in Sect. 2, and the analytical model is shown in
Sect. 3. In Sects. 4 and 5, the derivation of the differen-
tial equations for the second-order and Lth-order Volterra
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filter, respectively, and the exact solution obtained by solv-
ing the equations analytically are described. In Sect. 6, some
results are shown to confirm the appropriateness of the de-
rived solution by comparing with the computer experiments.
Finally, conclusions are presented in Sect. 7.

2. Volterra Filter

TheVolterra filter is one of the digital filters that can describe
nonlinearity, and it uses the Volterra kernel of the Volterra
series expansion. The discrete Volterra series expansion up
to the Lth-order Volterra kernel with tap length N is defined
as

y(n) =
N−1∑
k1=0

hk1 x(n − k1)

+

N−1∑
k1=0

N−1∑
k2=0

hk1 ,k2 x(n − k1)x(n − k2)

+ ...

+

N−1∑
k1=0

...

N−1∑
kL=0

hk1 ,...,kL

∏
k∈{k1 ,...,kL }

x(n − k). (1)

Here, x(n) and y(n) are the input and output signals in time
step n, respectively. hk1 ,...,kl is the l-th Volterra kernel. In
the adaptive Volterra filter, each Volterra kernel is updated.
Note that in the case of L = 1, it is equivalent to a simple
linear FIR filter. Without any loss of generality, one can
assume that the Volterra kernels are symmetric, i.e., hk1 ,...,kl
is left unchanged for any of the possible l! permutations of
the indices k1, ..., kl [21]. For example, in the case of the
second-order and third-order Volterra kernels,

hk1 ,k2 = hk2 ,k1,

hk1 ,k2 ,k3 = hk1 ,k3 ,k2 = hk2 ,k1 ,k3

= hk2 ,k3 ,k1 = hk3 ,k1 ,k2 = hk3 ,k2 ,k1

holds.

3. Analytical Model

The Volterra filter applied to adaptive signal processing is
called the adaptive Volterra filter. Various methods, which
are the same as those used with a simple linear adaptive filter,
such as the gradient method and the recursive least-squares
(RLS) method, can be used to update the adaptive Volterra
filter, and we analyze the case in which the LMS algorithm,
which is one of the gradient methods, is used for updating.
Figure 1 shows a block diagram of the adaptive system using
the LMS algorithm. In Fig. 1, P and H denote the unknown
system and the adaptive filter, respectively. Here, an error
signal e(n) is calculated by adding the background noise ξ(n)
to the difference between d(n) and u(n), which are the output
signals of P and H, respectively. Therefore, we obtain

e(n) = d(n) − u(n) + ξ(n). (2)

Fig. 1 Block diagram of the adaptive system using LMS algorithm.

Here, the background noise ξ(n) is generated independently
from a distribution with a mean of zero and a variance of σ2

ξ .

3.1 Second-Order Volterra Filter [21], [30]

To proceed step by step, we describe the case in which
P and H are constructed from the second-order Volterra
kernels with tap length N . Their coefficient matrices are
p = {pk1 ,k2 }, h(n) = {hk1 ,k2 (n)}, k1, k2 = 0, ...,N − 1. Here,
to converge the first-order Volterra kernel, O(N) updates are
required. On the other hand, to converge the second-order
Volterra kernel, O(N2) updates are required. Thus, if N
is large, the convergence time of the second-order Volterra
kernel is slower than that of the first-order Volterra kernel.
In other words, the second-order Volterra kernel is domi-
nant in the learning curve. Therefore, in the model of the
second-order Volterra filter, the first-order Volterra kernel
is omitted and the model includes only the second-order
Volterra kernel. Each element pk1 ,k2 , k1 ≤ k2, is generated
independently from a distribution with a mean of zero and
a variance of unity. In addition, the Volterra kernel p is
symmetric as described in Sect. 2. The initial matrix h(0) is
set to be a zero matrix. The input signal x(n) is generated
independently from a distribution with

〈x(n)〉 = 0, (3)〈
x2(n)

〉
= σ2. (4)

Here, the tap input vector x(n) in time step n is

x(n) = [x(n), x(n − 1), · · · , x(n − N + 1)]T . (5)

d(n) and u(n), which are the output signals of P and H,
respectively, in time step n are

d(n) =
N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 x(n − k1)x(n − k2), (6)

u(n) =
N−1∑
k1=0

N−1∑
k2=0

hk1 ,k2 (n)x(n − k1)x(n − k2). (7)

The update formula of each element of the second-order
adaptive Volterra filter using the LMS algorithm is

hk1 ,k2 (n + 1) = hk1 ,k2 (n) + µe(n)x(n − k1)x(n − k2),
(8)
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where µ denotes the step-size parameter [21].

3.2 Lth-Order Volterra Filter [21]

In this section, we describe the case in which P and H
are constructed from the Lth-order Volterra kernels, p =
{pk1 ,...,kL }, h(n) = {hk1 ,...,kL (n)}, k1, ..., kL = 0, ...,N − 1.
Here, to converge the lth-order Volterra kernel, O(N l) up-
dates are required. Thus, as in the second-order case,
the highest-order Volterra kernel converges slower than the
lower-order Volterra kernels and is dominant in the learning
curve. Therefore, as with the model of the second-order
Volterra filter, the Volterra kernels that are lower than the
Lth-order Volterra kernel are omitted, and the model in-
cludes only the Lth-order Volterra kernel. Each element
pk1 ,k2 ,...,kL , k1 ≤ k2 ≤ ... ≤ kL is generated independently
from a distribution with a mean of zero and a variance of
unity. In addition, the Volterra kernels p are symmetric as
described in Sect. 2. The input signal x(n) is generated in-
dependently from a distribution with a mean of zero and a
variance of σ2. Here, the tap input vector x(n) in time step
n is the same as that in the case of the second-order system
and written as Eq. (5).

d(n) and u(n), which are the output signals of P and H,
respectively, in time step n are

d(n) =
N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL

∏
k∈{k1 ,...,kL }

x(n − k), (9)

u(n) =
N−1∑
k1=0
· · ·

N−1∑
kL=0

hk1 ,...,kL (n)
∏

k∈{k1 ,...,kL }

x(n − k).

(10)

The update formula of each element of the Lth-order adaptive
Volterra filter using the LMS algorithm is

hk1 ,...,kL (n + 1) =hk1 ,...,kL (n) + µe(n)
∏

k∈{k1 ,...,kL }

x(n − k),

(11)

where µ denotes the step-size parameter [21]. Note that this
model becomes a linear filter when L = 1. Therefore, the
analytical result in the case of L = 1 exactly agrees with the
result reported by Ishibushi et al. [17].

4. Theory for the Second-Order Volterra Filter [30]

In this section, we theoretically analyze the behaviors of the
second-order adaptive Volterra filter by using a statistical-
mechanical method.

4.1 Mean Square Error (MSE)

The MSE of the model of the second-order Volterrra filter
can be calculated using Eq. (2) as follows:〈

e2(n)
〉
=

〈
(d(n) − u(n) + ξ(n))2

〉

=
〈
d2(n)

〉
+

〈
u2(n)

〉
+

〈
ξ2(n)

〉
− 2 〈d(n)u(n)〉

+ 2 〈d(n)ξ(n)〉 − 2 〈u(n)ξ(n)〉
=

〈
d2(n)

〉
+

〈
u2(n)

〉
− 2 〈d(n)u(n)〉 + σ2

ξ .

(12)

In this paper, 〈·〉 denotes the expectation with respect to the
tap input vector x(n). Note that the background noise ξ(n)
is independent of the other stochastic variables.

Next, we focus on each term of Eq. (12). From Eq. (6),
we obtain〈

d2(n)
〉
=

〈 (
N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 x(n − k1)x(n − k2)

)2〉
=

〈
N−1∑
k1=0

N−1∑
k2=0

N−1∑
k′1=0

N−1∑
k′2=0

pk1 ,k2 pk′1 ,k′2

x(n − k1)x(n − k2)x(n − k ′1)x(n − k ′2)

〉
. (13)

The right-hand side of Eq. (13) can be divided into the fol-
lowing four cases and others.

k1 = k2 = k ′1 = k ′2 (14)
k1 = k ′1, k2 = k ′2, k1 , k2 (15)
k1 = k2, k ′1 = k ′2, k1 , k ′1 (16)
k1 = k ′2, k2 = k ′1, k1 , k2 (17)

Note that we need not consider cases other than the above
four cases because their expectations are zero owing to the
products of independent components. The means of the
products of the input signals corresponding to Eqs. (14)–(17)
are as follows, respectively:〈

x4(n − k1)
〉
= O

(
σ4

)
, (18)〈

x2(n − k1)x2(n − k2)
〉
= σ4, (19)〈

x2(n − k1)x2(n − k ′1)
〉
= σ4, (20)〈

x2(n − k1)x2(n − k2)
〉
= σ4. (21)

The right-hand side of Eq. (18) depends on the distribution
that generates x(n). If x(n) is generated from the Gaussian
distribution, the right-hand side of Eq. (18) is 3σ4 because
the kurtosis of the Gaussian distribution is three. Now, we
can rewrite Eq. (13) as〈

d2(n)
〉
= O

(
r2

N2

) N−1∑
k1=0

p2
k1 ,k1

+
r2

N2

N−1∑
k1=0

N−1∑
k2=0
k2,k1

p2
k1 ,k2

+
r2

N2

N−1∑
k1=0

N−1∑
k′1=0
k′1,k1

pk1 ,k1 pk′1 ,k′1
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Summing N2dt equations


N2R(n + 1) = N2R(n) +µe(n)d(n)
N2R(n + 2) = N2R(n + 1) +µe(n + 1)d(n + 1)
...

...
...

N2R(n + N2dt) = N2R(n + N2dt − 1) +µe(n + N2dt − 1)d(n + N2dt − 1)

N2R(n + N2dt) = N2R(n) + µ

N2dt−1∑
i=0

e(n + i)d(n + i)

(31)

+
r2

N2

N−1∑
k1=0

N−1∑
k2=0
k2,k1

pk1 ,k2 pk2 ,k1 . (22)

Here, r = Nσ2. Note that when we set r = 1, it corresponds
to theNormalized LMS (NLMS) algorithm. Assuming N →
∞while keeping r constant in accordancewith the statistical-
mechanical method†, the first and third terms become zero
because the elements of p are assumed to be independently
generated from a distribution with a mean of zero and a
variance of unity, as described in Sect. 3. In addition, the
Volterra kernel has symmetricity, that is, pk1 ,k2 = pk2 ,k1 .
Therefore,

〈
d2(n)

〉
can be rewritten as

〈
d2(n)

〉
=

2r2

N2

N−1∑
k1=0

N−1∑
k2=0
k2,k1

p2
k1 ,k2
= 2r2 (23)

because pk1 ,k2 was generated independently from a distribu-
tion with a mean of zero and a variance of unity. We can
also obtain

〈
u2(n)

〉
and 〈d(n)u(n)〉 in Eq. (12) by the same

procedure as that for
〈
d2(n)

〉
:

〈
u2(n)

〉
=

2r2

N2

N−1∑
k1=0

N−1∑
k2=0
k2,k1

h2
k1 ,k2
(n), (24)

〈d(n)u(n)〉 =
2r2

N2

N−1∑
k1=0

N−1∑
k2=0
k2,k1

pk1 ,k2 hk1 ,k2 (n). (25)

Here, we assumed that there is little correlation between x(n)
and h(n) [3]–[5].

Next, we introduce the macroscopic variables R(n) and
Q(n) respectively defined as

R(n) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 hk1 ,k2 (n), (26)

Q(n) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

h2
k1 ,k2
(n). (27)

Intuitively, R(n) is the similarity between P and H and Q(n)
is the squared Frobenius norm of H. From Eqs. (12) and (23)
†This is called the thermodynamic limit in statisticalmechanics.

– (27), we obtain〈
e2(n)

〉
= 2r2 + 2r2Q(n) − 4r2R(n) + σ2

ξ . (28)

This equation shows that the mean square error (MSE) is a
function of the macroscopic variables R(n) and Q(n).

4.2 Differential Equations of R and Q

Now, we derive the simultaneous differential equations that
describe the dynamic behaviors of themacroscopic variables
R and Q. First, we derive the differential equation of R.
Multiplying both sides of Eq. (8) by pk1 ,k2 and summing
them over k1 and k2, we obtain

N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 hk1 ,k2 (n + 1)

=

N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 hk1 ,k2 (n)

+ µe(n)
N−1∑
k1=0

N−1∑
k2=0

pk1 ,k2 x(n − k1)x(n − k2). (29)

This can be rewritten as follows using Eqs. (6) and (26):

N2R(n + 1) = N2R(n) + µe(n)d(n). (30)

Note that the first terms on both sides of Eq. (30) are O(N2),
although the second term on the right-hand side is O(1).
Thus, to change R(n) by O(1), O(N2) updates are required.
Therefore, we use t, which is n normalized by N2, as the
time scale. By updating Eq. (30) N2dt times in an infinitely
small time dt, we can obtain N2dt equations. Summing
those N2dt equations, the terms in both sides cancel each
other as shown in Eq. (31). Therefore, we obtain

R(n + N2dt) = R(n) + dtµ 〈e(n)d(n)〉 . (32)

Assuming N → ∞, the second term on the right-hand side
of Eq. (32) is replaced by its mean††. We define the change
in R(t) by updating N2dt times as dR(t). From Eqs. (2), (23),
(25), and (26), we obtain

††This property is called self-averaging in statistical mechanics
[6].
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dR(t)
dt
= µ 〈e(n)d(n)〉

= µ 〈(d(n) − u(n) + ξ(n)) d(n)〉

= µ
(
〈d2(n)〉 − 〈u(n)d(n)〉

)
= 2r2µ(1 − R(t)). (33)

Secondly, we derive the differential equation for Q.
Squaring both sides of Eq. (8) and summing over k1 and
k2, we obtain

N−1∑
k1=0

N−1∑
k2=0

h2
k1 ,k2
(n + 1)

=

N−1∑
k1=0

N−1∑
k2=0

h2
k1 ,k2
(n)

+ 2µe(n)
N−1∑
k1=0

N−1∑
k2=0

hk1 ,k2 (n)x(n − k1)x(n − k2)

+ µ2e2(n)
N−1∑
k1=0

N−1∑
k2=0

x2(n − k1)x2(n − k2).

This can be rewritten as follows using Eqs. (7) and (27):

N2Q(n + 1) = N2Q(n) + 2µe(n)u(n)

+ µ2e2(n)
N−1∑
k1=0

N−1∑
k2=0

x2(n − k1)x2(n − k2).

Similarly to the case of R, by updating N2dt times in an
infinitely small time dt and summing those N2dt equations,
we obtain

N2Q(n + N2dt) = N2Q(n) + 2N2dtµ 〈e(n)u(n)〉

+N2dtr2µ2 〈
e2(n)

〉
. (34)

Then, from Eqs. (2) and (24)–(27), we obtain

dQ(t)
dt
= 2µ 〈e(n)u(n)〉 + r2µ2 〈

e2(n)
〉

= 2µ
(
〈d(n)u(n)〉 −

〈
u2(n)

〉)
+ r2µ2

(〈
d2(n)

〉
+

〈
u2(n)

〉
+

〈
ξ2(n)

〉
− 2 〈d(n)u(n)〉

)
= 2µ

(
2r2R(t) − 2r2Q(t)

)
+ r2µ2

(
2r2 + 2r2Q(t) + σ2

ξ − 4r2R(t)
)

= 4r2µ(R(t) −Q(t))

+ r4µ2

(
2 + 2Q(t) − 4R(t) +

σ2
ξ

r2

)
. (35)

4.3 Exact Solution of MSE

The derived differential equations for R and Q (Eqs. (33) and

(35), respectively) can be solved analytically, and we obtain

R(t) = 1 − e−2r2µt, (36)

Q(t) = 1 +

(
1 +

µσ2
ξ

2r2(r2µ − 2)

)
e2r2µ(r2µ−2)t

−
µσ2

ξ

2r2(r2µ − 2)
− 2e−2r2µt . (37)

Substituting these equations intoEq. (28), we obtain the exact
solution of the MSE as〈

e2(t)
〉
=

(
2r2 +

µσ2
ξ

r2µ − 2

)
e2r2µ(r2µ−2)t −

2σ2
ξ

r2µ − 2
.

(38)

5. Theory for the Lth-Order Volterra Filter

In this section, we theoretically analyze the behaviors of
the Lth-order adaptive Volterra filter by using a statistical-
mechanical method. The flow of analysis and the basic
technique are the same as those in the second-order case.

5.1 MSE

The MSE of the model of the Lth-order Volterra filter is also
written as Eq. (12), that is,〈

e2(n)
〉
=

〈
d2(n)

〉
+

〈
u2(n)

〉
− 2〈d(n)u(n)〉 + σ2

ξ . (39)

In the case of the Lth-order Volterra filter, the first term of
the right-hand side of Eq. (39) can be written as〈

d2(n)
〉

=

〈 (
N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL

∏
k∈{k1 ,...,kL }

x(n − k)

)2〉
=

〈
N−1∑
k1=0
· · ·

N−1∑
kL=0

N−1∑
k′1=0
· · ·

N−1∑
k′L=0

pk1 ,...,kL

pk′1 ,...,k′L
∏

k∈{k1 ,...,kL }

x(n − k)
∏

k′∈{k′1 ,...,k
′
L }

x(n − k ′)

〉
.

(40)

Here, the Volterra kernels p are symmetric as described in
Sect. 2. Additionally, as in Sect. 4, we introduce r = Nσ2.
Note that when we set r = 1, it corresponds to the NLMS
algorithm. Assuming N → ∞ while keeping r constant
in accordance with the statistical-mechanical method, we
obtain〈

d2(n)
〉
=L!

N−1∑
k1=0
· · ·

N−1∑
kL=0

p2
k1 ,...,kL

∏
k∈{k1 ,...,kL }

〈
x2(n − k)

〉
=

L!rL

NL

N−1∑
k1=0
· · ·

N−1∑
kL=0

p2
k1 ,...,kL
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=L!rL (41)

because pk1 ,...,kL was generated independently from a distri-
bution with a mean of zero and a variance of unity, and the
number of permutations of the set {k1, ..., kL} is L!. There-
fore, 2! = 2 in Eq. (23) is replaced by L! in Eq. (41). In
addition,

∏
k∈{k1 ,...,kL }

〈
x2(n − k)

〉
= rL/NL because x(n)

is generated independently from a distribution with a mean
of zero and a variance of σ2 = r/N . We can also obtain〈
u2(n)

〉
and 〈d(n)u(n)〉 in Eq. (39) by the same procedure as

that in the case of
〈
d2(n)

〉
:

〈
u2(n)

〉
=

L!rL

NL

N−1∑
k1=0
· · ·

N−1∑
kL=0

h2
k1 ,...,kL

(n), (42)

〈d(n)u(n)〉 =
L!rL

NL

N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL hk1 ,...,kL (n).

(43)

Here, we assumed that there is little correlation between x(n)
and h(n) [3]–[5].

Next, we introduce the macroscopic variables R(n) and
Q(n) defined as follows:

R(n) =
1

NL

N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL hk1 ,...,kL (n), (44)

Q(n) =
1

NL

N−1∑
k1=0
· · ·

N−1∑
kL=0

h2
k1 ,...,kL

(n). (45)

From Eqs. (39) and (41)–(45), we obtain〈
e2(n)

〉
= L!rL + L!rLQ(n) − 2L!rLR(n) + σ2

ξ . (46)

This equation shows that theMSE is a function of the macro-
scopic variables R(n) and Q(n).

5.2 Differential Equations of R and Q

Now, we derive the simultaneous differential equations that
describe the dynamic behaviors of the macroscopic variables
R and Q. First, we derive the differential equation of R.
Multiplying both sides of the update formula Eq. (11) by
pk1 ,...,kL and summing them over k1,...,kL , we obtain

N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL hk1 ,...,kL (n + 1)

=

N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL hk1 ,...,kL (n)

+ µe(n)
N−1∑
k1=0
· · ·

N−1∑
kL=0

pk1 ,...,kL

∏
k∈{k1 ,...,kL }

x(n − k).

This can be rewritten as follows using Eqs. (9) and (44),

NLR(n + 1) = NLR(n) + µe(n)d(n). (47)

Note that the first terms on both sides of Eq. (47) are O(NL),
although the second term on the right-hand side is O(1).
Thus, to change R(n) by O(1), O(NL) updates are required.
Therefore, we use t, which is n normalized by NL , as the
time scale. By updating Eq. (47) NLdt times in an infinitely
small time dt, we can obtain NLdt equations, similarly to
Eq. (31). Summing those NLdt equations as described in
Sect. 4.2, we obtain

R(n + NLdt) = R(n) + dtµ 〈e(n)d(n)〉 . (48)

Assuming N →∞, the second term on the right-hand side of
Eq. (48) is replaced by its mean based on the self-averaging
property. We define the change in R(n) by updating NLdt
times as dR(t). From Eqs. (2), (43), and (44), we obtain

dR(t)
dt
= µ 〈e(n)d(n)〉

= µ〈(d(n) − u(n) + ξ(n))d(n)〉

= µ
(
〈d2(n)〉 − 〈u(n)d(n)〉

)
= L!rLµ(1 − R(t)). (49)

Secondly, we derive the differential equation for Q.
Squaring both sides of Eq. (11) and summing over k1, ..., kL ,
we obtain

N−1∑
k1=0
· · ·

N−1∑
kL=0

h2
k1 ,...,kL

(n + 1)

=

N−1∑
k1=0
· · ·

N−1∑
kL=0

h2
k1 ,...,kL

(n)

+ 2µe(n)
N−1∑
k1=0
· · ·

N−1∑
kL=0

hk1 ,...,kL

∏
k∈{k1 ,...,kL }

x(n − k)

+ µ2e2(n)
N−1∑
k1=0
· · ·

N−1∑
kL=0

∏
k∈{k1 ,...,kL }

x2(n − k).

This can be rewritten as follows using Eqs. (10) and (45):

NLQ(n + 1) = NLQ(n) + 2µe(n)u(n)

+ µ2e2(n) ©«
N−1∑
k1=0
· · ·

N−1∑
kL=0

∏
k∈{k1 ,...,kL }

x2(n − k)ª®¬ .
Similarly to the case of R, by updating NLdt times in an
infinitely small time dt and summing those NLdt equations,
we obtain

NLQ(n + NLdt) =NLQ(n) + 2NLdtµ 〈e(n)u(n)〉

+ NLdt rLµ2 〈
e2(n)

〉
.

Then, from Eqs. (2) and (42)–(45), we obtain

dQ(t)
dt
= 2µ 〈e(n)u(n)〉 + rLµ2 〈

e2(n)
〉

= 2µ
〈
d(n)u(n) − u2(n) − u(n)ξ(n)

〉
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+ rLµ2 〈
d2(n) + u2(n) + ξ2(n) − 2d(n)u(n)

−2d(n)ξ(n) + 2u(n)ξ(n)
〉

= 2µ
(
〈d(n)u(n)〉 −

〈
u2(n)

〉)
+ rLµ2

(〈
d2(n)

〉
+

〈
u2(n)

〉
+

〈
ξ2(n)

〉
−2 〈d(n)u(n)〉

)
= 2µ

(
L!rLR(t) − L!rLQ(t)

)
+ rLµ2

(
L!rL + L!rLQ(t) + σ2

ξ − 2L!rLR(t)
)

= 2L!rLµ (R(t) −Q(t))

+ r2Lµ2

(
L! + L!Q(t) − 2L!R(t) +

σ2
ξ

rL

)
.

(50)

5.3 Exact Solution of MSE

The derived differential equations for R and Q (Eqs. (49) and
(50), respectively) can be solved analytically, and we obtain

R(t) = 1 − e−L!rLµt, (51)

Q(t) = 1 +

(
1 +

µσ2
ξ

L!rL(rLµ − 2)

)
eL!rLµ(rLµ−2)t

−
µσ2

ξ

L!rL(rLµ − 2)
− 2e−L!rLµt . (52)

By substituting these equations into Eq. (46), we obtain the
exact solution of the MSE as〈

e2(n)
〉
=

(
L!rL +

µσ2
ξ

rLµ − 2

)
eL!rLµ(rLµ−2)t −

2σ2
ξ

rLµ − 2
.

(53)

6. Results and Discussion

Using the statistical-mechanical method, we can discuss the
universal property of the assumed system deterministically,
regardless of its details, with a small number of macroscopic
variables. As a result, it provides not only a highly accurate
prediction of simulation results but also deep insight from
the results obtained analytically. For example, from the exact
solutions, Eqs. (38) and (53), we can obtain deep insight
into the behavior of the MSE. For example, the necessary
and sufficient condition for the convergence of the MSE
is 0 < µ < 2/rL . In this case, the steady-state MSE is
2σ2

ξ/(2 − rLµ). Additionally, if the background noise does
not exist, that is σ2

ξ = 0, the MSE is〈
e2(t)

〉
= L!rLeL!rLµ(rLµ−2)t

= L!rLe−L!rL (1−(rLµ−1)2)t .

Fig. 2 Learning curves (L = 2, r = 1, σ2
ξ = 0, µ = 0.1, 0.5, 1.0).

Fig. 3 Learning curves (L = 2, r = 1, σ2
ξ = 0, µ = 1.0, 1.7, 2.1).

Thus, the MSE is minimum at µ = 1/rL regardless of the
values of t.

We compare the theoretical and simulation results in
the case of the second-order Volterra filter. Note that, in all
of the simulations in this study, r was set to r = 1. Figures 2
and 3 show the learning curves with σ2

ξ = 0, i.e., there is
no background noise. In the figures, the solid lines denote
the theoretical results and the symbols denote the results of
numerical simulations. In the numerical simulations, the
tap length was set to N = 200,500 and the mean values of
100 trials are plotted. The open symbols show the results for
N = 200 and the filled symbols show the results for N = 500.
As shown in Figs. 2 and 3, the MSE becomes minimum
when µ = 1.0 regardless of the value of t. The systematic
difference between the theoretical and numerical simulation
results grows as µ increases. This is considered to be due
to the finite-size effects [6] of the tap length N . Indeed, as
shown in Figs. 2 and 3, the simulation results approach the
theoretical results as the tap length N increases.

Figure 4 shows the learning curves with σ2
ξ = 0.1,

i.e., background noise exists. In the figure, the solid lines
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Fig. 4 Learning curves (L = 2, r = 1, σ2
ξ = 0.1, µ = 0.1, 0.5, 1.0).

denote the theoretical results and the symbols denote the
results of the numerical simulations. In the numerical sim-
ulations, the tap length was set to N = 100 and the mean
values of 100 trials are plotted. From Fig. 4, we can confirm
that the rate of decrease in theMSE in the early stage is great-
est at µ = 1.0, but after sufficient time has elapsed, the MSE
becomes smaller as µ decreases; thus, the learning curves
intersect. This result is predicted from the observation that
Eqs. (38) and (53) converge to 2σ2

ξ/(2 − rLµ) as t →∞.
Next, we compare the theory and the simulation results

in the case of L = 3, which is the third-order Volterra filter.
In the case of L = 3 and r = 1, from Eq. (53), the theoretical
MSE is as follows:〈

e2(n)
〉
=

(
6 +

µσ2
ξ

µ − 2

)
e6µ(µ−2)t −

2σ2
ξ

µ − 2
.

Figure 5 shows the learning curves with σ2
ξ = 0,

i.e., there is no background noise. The solid lines denote
the theoretical results and the symbols denote the results of
numerical simulations. In the case of L = 3, the tap length
N and maximum time of simulation were set smaller than
those in the case of L = 2 because the calculation cost of
the simulation in the case of L = 3 is higher than that in the
case of L = 2. In the numerical simulations, the tap length
was set to N = 100 and the mean values of 100 trials are
plotted. The systematic difference between the theoretical
and numerical simulation results is larger than that in the
case of L = 2 owing to the finite-size effects. However, the
derived theoretical results are relatively in good agreement
with the simulation results.

Figure 6 shows the learning curves with σ2
ξ = 0.1, i.e.,

background noise exists. In the figure, the solid lines denote
the theoretical results and the symbols denote the results of
the numerical simulations. In the numerical simulations, the
tap length was set to N = 50 and the mean values of 100
trials are plotted. As shown in the figure, the behaviors are
almost the same as that in the case of L = 2.

From the above results, it was confirmed that the exact

Fig. 5 Learning curves (L = 3, r = 1, σ2
ξ = 0, µ = 0.1, 0.3, 0.5).

Fig. 6 Learning curves (L = 3, r = 1, σ2
ξ = 0.1, µ = 0.1, 0.3, 0.5).

solution of the MSE derived in this paper is in good agree-
ment with the results of the numerical simulations. The fact
that the exact solution of the learning curves could be de-
rived is significant from both standpoints of obtaining deep
insight into Volterra filtering and its applications. In the
statistical-mechanical analysis of the simple linear FIR filter,
t, which is the number of updates n normalized by the tap
length N , is used as the time scale [13]–[15]. However, in
the analysis in this paper, it was necessary to normalize the
number of updates n by the tap length NL as the time scale
t. This fact shows the essential slowness of the adaptation of
the higher-order Volterra filter.

7. Conclusions

In this paper, we analyzed the dynamic behaviors of an adap-
tive signal processing system including the Volterra filter by
a statistical-mechanical method. On the basis of the self-
averaging property that can be true when the tapped delay
line is assumed to be infinitely long, we derived simultane-
ous differential equations in a deterministic and closed form,
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which describe the behaviors of the macroscopic variables,
and we obtained the exact solution by solving them analyt-
ically. In addition, the validity of the derived theory was
confirmed by comparison with numerical simulations.
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