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PAPER
Constructions of `-Adic t-Deletion-Correcting Quantum Codes

Ryutaroh MATSUMOTO † ,††a), Senior Member and Manabu HAGIWARA†††, Member

SUMMARY We propose two systematic constructions of deletion-
correcting codes for protecting quantum inforomation. The first one works
with qudits of any dimension `, which is referred to as `-adic, but only one
deletion is corrected and the constructed codes are asymptotically bad. The
second one corrects multiple deletions and can construct asymptotically
good codes. The second one also allows conversion of stabilizer-based
quantum codes to deletion-correcting codes, and entanglement assistance.
key words: quantum code, quantum deletion, entanglement-assisted code,
stabilizer code

1. Introduction

In the context of conventional (classical) error correction,
deletion correction, which was introduced by Levenshtein
in 1966 [1], has attracted much attention recently (see, for
example, [2] and the references therein). In the correction
of erasures, the receiver is aware of positions of erasures
[3]–[5]. In contrast to this, the receiver is unaware of posi-
tions of deletions, which adds extra difficulty to correction
of deletions and code constructions suitable for deletion cor-
rection. Partly due to the combined difficulties of deletion
correction and quantum error correction, the study of quan-
tum deletion correction has begun very recently [6]–[8].
Those researches provided concrete examples of quantum
deletion-correcting codes. The first systematic construction
of 1-deletion-correcting binary quantum codeswas proposed
in [6], where ((2k+2 − 4, k))2 codes were constructed for
any positive integer k. Very recently, the first systematic
constructions of t-deletion-correcting binary quantum codes
were proposed [9], [10] for any positive integer t. There
are the following problems in the existing studies: (1) There
is no systematic construction for nonbinary quantum codes
correcting more than 1 deletions. (2) Existing studies of
stabilizer quantum error correction cannot be reused in an
obvious manner, while the permutation-invariant codes al-
low such reuse (see [10]).
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In this paper, we tackle these problems by proposing
two systematic constructions of nonbinary quantum codes.
The first one is based on the method of types in the in-
formation theory [11]. The constructed codes belong to
the class of permutation-invariant quantum codes [10], [12].
It can construct quantum codes for qudits of arbitrary di-
mension `, but the codes can correct only 1 deletion and
asymptotically bad. The second construction converts quan-
tum erasure-correcting codes to deletion-correcting ones.
The construction is asymptotically good, and can correct as
many deletions as the number of correctable erasures of the
underlying quantum codes. But the second construction has
severe limitations on the dimension ` of qudits. For example,
the second construction cannot construct binary or ternary
quantum codes.

This paper is organized as follows: Section 2 intro-
duces necessary notations and concepts. Section 3 proposes
the first construction. Section 4 proposes the second con-
struction. Section 5 concludes the paper.

2. Preliminaries

Let Z` = {0, 1, . . . , ` − 1}. A type P [11] of length n on the
alphabet Z` is a probability distribution on Z` such that each
probability in P is of the form m/n, where m is an integer.
The alphabet is fixed to Z` when we consider types. For
®x = (x1, . . . , xn) ∈ Zn

`
, the type P®x of ®x is the probability

distribution P®x(a) = ]{i | xi = a}/n, where ] denotes the
number of elements in a set. For a type P of length n, T(P)
denotes the set of all sequences with type P, that is,

T(P) = { ®x ∈ Zn
` | P®x = P}.

For types P1 and P2, we define P1 ∼ P2 if there exists a
permutation σ on ` numbers in a type such that σ(P1) = P2.
For example, when P1 = (1/3, 1/6, 1/2), σ(P1) can be (1/6,
1/2, 1/3). This ∼ is an equivalence relation in the standard
definition of equivalence, and we can consider equivalence
classes induced by ∼. We denote an equivalence class rep-
resented by P by [P]. We define T([P]) =

⋃
Q∈[P] T(Q).

Definition 1: For 0 ≤ t ≤ n− 1, we say a type P1 of length
n− t to be a type of P2 after t deletion, where P2 is a type of
length n, if

• For each a ∈ Z` , (n − t)P1(a) ≤ nP2(a),
• and

∑
a∈Z`
{nP2(a) − (n − t)P1(a)} = t.

We see that P®y is a type of P®x after t deletion if ®y is obtained
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by deleting t components in ®x.

Definition 2: Let S = {P0, . . . , PM−1} be a set of types of
length n. We call S to be suitable for t-deletion correction
if for any Q1 ∈ [Pi] and any Q2 ∈ [Pj] with Q1 , Q2 there
does not exist a type R of length n − t such that R is a type
of both Q1 and Q2 after t deletion.

Let H` be the complex linear space of dimension `.
By an ((n,M))` quantum code we mean an M-dimensional
complex linear subspace Q of H ⊗n

`
. An ((n,M))` code is

said to be `-adic. The information rate of Q is defined to
be (log` M)/n. A code construction is said to be asymp-
totically good if it can give a sequence of codes with which
lim infn→∞(log` M)/n > 0 [5], and said to be bad otherwise.

3. First Construction of Quantum Deletion Codes

3.1 Construction

With a given S suitable for t-deletion correction, we construct
((n,M))` quantum code as follows: An M-level quantum
state α0 |0〉 + · · · + αM−1 |M − 1〉 is encoded to a codeword
|ϕ〉 ∈ Q as

M−1∑
k=0

αk
1√

]T([Pk])

∑
®x∈T ([Pk ])

| ®x〉.

In the next subsection, we will prove this construction can
correct t = 1 deletion.

3.2 Proof of 1-Deletion Correction

We assume t = 1 in this subsection (see Remark 3). The
proof argument does not work for t > 1. Firstly, for any
codeword |ϕ〉 ∈ Q, any permutation of n qudits in |ϕ〉 does
not change |ϕ〉. Our constructed codes are instances of the
permutation-invariant quantum codes [10], [12]. So any t
deletion of |ϕ〉 is the same as deleting the first, the second,
. . . , the t-th qudits in |ϕ〉. Therefore, t deletion on |ϕ〉 ∈ Q
can be corrected by assuming t erasures in the first, the
second, . . . , the t-th qudits.

By using Ogawa et al.’s condition [13, Theorem 1], we
show that the code can correct one erasure at the first qudit
by computing the partial trace Tr

{1}[|ϕ〉〈ϕ|] of |ϕ〉〈ϕ| over
the second, the third, . . . , and the n-th qudits.

Let |ϕk〉 = 1√
]T ([Pk ])

∑
®x∈T ([Pk ])

| ®x〉. A general code-

word |ϕ〉 can be written as
∑M−1

k=0 αk |ϕk〉. We first compute
Tr
{1}[|ϕk〉〈ϕk |]. Let D1 be the deletion map from Zn

`
to

Zn−1
`

deleting the first component. For ®x ∈ Zn
`
, xi denotes

the i-component.

Tr
{1}[|ϕk〉〈ϕk |]

=
1

]T([Pk])

∑
a,b∈Z`

|a〉〈b| × ]{(®x, ®y) ∈ T([Pk]) × T([Pk])

| x1 = a, y1 = b,D1(®x) = D1(®y)}.

When a = x1 , b = y1 and D1(®x) = D1(®y) we have P®x ,
P®y . Since there does not exist a type R of length n − 1
such that R is P®x after 1 deletion and also R is P®y after 1
deletion, for any k there cannot exist ®x, ®y ∈ T([Pk]) such
that a = x1 , b = y1 and D1(®x) = D1(®y). On the other
hand, by the symmetry of the construction, for any a ∈ Z` ,
]{(®x, ®y) ∈ T([Pk]) ⊗ T([Pk]) | x1 = a = y1,D1(®x) = D1(®y)}
has the same size. Therefore, we see that

ρk = Tr
{1}[|ϕk〉〈ϕk |] =

1
`

∑
a∈Z`

|a〉〈a|.

On the other hand, by the construction, for k1 , k2,
®x ∈ T([Pk1 ]), ®y ∈ T([Pk2 ]), D1(®x) is always different from
D1(®y), which implies

Tr
{1}[|ϕ〉〈ϕ|] =

M−1∑
k=0
|αk |

2ρk = I`×`/`. (1)

By [13, Theorem 1], this implies that the constructed code
can correct one erasure at the first qudit, which in turn implies
one deletion correction by the symmetry of codewords with
respect to permutations.

Remark 3: When t > 1, Eq. (1) sometimes depends on the
encoded quantum information, and one cannot apply [13,
Theorem 1]. Since the number of types is polynomial in n
[11], the proposed construction is asymptotically bad.

3.3 Examples

3.3.1 Nakahara’s Code

Let ` = n = 3. Then P0 = (1,0,0) and P1 = (1/3,1/3,1/3)
are suitable for 1-deletion correction. This code was first
found by Dr. Mikio Nakahara at Kindai University. Since
1-deletion correcting quantum code of length 2 is prohib-
ited by the quantum no-cloning theorem [14], this code has
the shortest possible length among all 1-deletion-correcting
quantum codes.

3.3.2 Example 2

Let n = 7, ` = 3. Then P0 = (7/7,0,0), P1 = (5/7,1/7,1/7),
P2 = (3/7,2/7,2/7) are suitable for 1-deletion correction.

3.3.3 Example 3

Let n = 8, ` = 4. Then P0 = (8/8,0,0,0),
P1 = (6/8,1/8,1/8,0), P2 = (4/8,4/8,0,0), P3 =

(4/8,2/8,1/8,1/8) are suitable for 1-deletion correction.

4. Second Construction of Quantum Deletion Codes

4.1 Construction

The previous construction allows arbitrary `, but the informa-
tion rate (log` M)/n goes to zero as n→∞. In this section,
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we construct a t-deletion-correcting code over H(t+1)` , that
is, we assume that the qudit has (t + 1)` levels. The con-
struction in this section does not use the method of types.

We introduce an elementary lemma, which is known in
the conventional coding theory [8].

Lemma 4: Let ®x = (0, 1, . . . , t, 0, 1, . . . ) ∈ Zn
t+1. Let ®y be

a vector after deletions of at most t components in ®x. Then
one can determine all the deleted positions from ®y.

Proof: Let i = min{ j | yj > yj+1}. Then y1, . . . , yi
correspond to x1, . . . , xt+1. The set difference {x1, . . . ,
xt+1} \ {y1, . . . , yi} reveals the deleted positions among
x1, . . . , xt+1. Repeat the above procedure from yj+1 until
the rightmost component in ®y and one gets all the deleted
positions.

We will describe the construction in a general way, then
provide a concrete example of the construction procedure.
Let Q ⊂ Hn

`
be a t-erasure-correcting ((n,M))` quantum

code. A codeword |ψ1〉 ∈ Q can be converted to a codeword
|ψ〉 in the proposed t-deletion-correcting code as below. We
consider an injective linear isometry from H` to H(t+1)`
defined as ηi : | j〉 7→ | j(t + 1)+ i〉. Conversion from |ψ1〉 to
|ψ〉 is defined as application of the mapping ηi−1 mod t+1 to
the i-th physical system of |ψ1〉 for i = 1, . . . , n.

When ` is a prime power and t is fixed relative to n,
limn→∞(log` M)/n can attain 1 [21], and by the above con-
struction the information rate limn→∞(log(t+1)` M)/n can at-
tain log(t+1)` `, which means that the proposed construction
in Sect. 4 is asymptotocally good.

4.2 Example: 2-Deletion-Correcting Code from Shor’s 9-
Qubit Code

Shor proposed the first quantum error-correcting code [22].
It encodes 1 qubit to 9 qubits and can correct two erasures.
As an example, we show how this code can be converted to
a quantum 2-deletion-correcting code.

By the Shor code, a qubit α |0〉 + β |1〉 is encoded to
α |0S〉 + β |1S〉, where

2
√

2|0S〉 = (|000〉 + |111〉) ⊗ (|000〉 + |111〉)
⊗(|000〉 + |111〉),

2
√

2|1S〉 = (|000〉 − |111〉) ⊗ (|000〉 − |111〉)
⊗(|000〉 − |111〉).

In this example, we have n = 9 and t = 2, so the mapping ηi
is ηi(| j〉) = |3 j + i〉 for i = 0,1,2 and j = 0,1. Application
of ηi−1 mod 3 to the i-th qubit of | jS〉, we have

2
√

2|0D〉 = (|012〉 + |345〉) ⊗ (|012〉 + |345〉)
⊗(|012〉 + |345〉),

2
√

2|1D〉 = (|012〉 − |345〉) ⊗ (|012〉 − |345〉)
⊗(|012〉 − |345〉).

By the converted code, a qubit α |0〉 + β |1〉 is encoded to
α |0D〉 + β |1D〉.

4.3 Deletion Correction Procedure

Suppose that the receiver receives a density matrix ρ on
H ⊗n

′

`(t+1), where n − t ≤ n′ ≤ n − 1. Let Pi =
∑`−1

j=0 | j(t +
1) + i〉〈 j(t + 1) + i | for i = 0, . . . , t, and we have P0 +
· · · + Pt = I(`(t+1))×(`(t+1)). So, we can perform a projective
measurement corresponding to {P0, . . . , Pt } on each qudit in
of the received quantum system. Treating n′ measurement
outcomes as ®y in Lemma 4, the receiver determines the
n − n′ deleted positions. After that, the receiver applies
the erasure correction procedure of Q, for example, [15] for
quantum stabilizer codes [16]–[20]. It should be clear that
the deletion correctability relies on the erasure correctability
of the underlying code Q. Reconstruction of the encoded
quantum information from an error-free quantum codeword
is straightforward.

4.4 Example: 2-Deletion-Correction by Shor’s 9-Qubit
Code

Suppose that the leftmost and the second leftmost qubits are
deleted from the quantum codeword α |0S〉+ β |1S〉. There is
no change in the 4th, the 5th, . . . , the 9th qubits in α |0S〉 +
β |1S〉. The density matrix of the 3rd qubit in α |0S〉 + β |1S〉
is

1
2
(|2〉〈2| + |5〉〈5| − |2〉〈5| − |5〉〈2|) .

The projection matrices are P0 = |0〉〈0| + |3〉〈3|, P1 =
|1〉〈1| + |4〉〈4|, and P2 = |2〉〈2| + |5〉〈5|. The measurement
outcome is 2 with probability 1. Measuring the 4th to the
9th qubits gives the outcomes 0,1,2,0,1,2. Therefore, ®y in
Lemma 4 is (2,0,1,2,0,1,2). From this ®y = (2,0,1,2,0,1,2)
the decoder can understand the deleted positions to be the
1st and the 2nd qubits. After knowing the deleted positions,
one can apply any erasure correction procedure, for example
[15], onto the physical system corresponding toH ⊗n

`
.

4.5 Remark on the Entanglement-AssistedQuantumError-
Correcting Codes

Suppose that we have an entanglement-assisted quantum
error-correcting code (EAQECC) of length n with c max-
imally entangled state shared between the sender and the
receiver. Then, it is well-known that an EAQECC codeword
ρ ∈ S(H ⊗n

`
) is obtained by deleting c qudits in a codeword

|ϕ1〉 in some stabilizer code of length n+c, and the deleted c
qudits are received by the receiver before encoding of quan-
tum information by the sender takes place (see e.g. [23]). In
an EAQECC, only n qudits in |ϕ1〉 of length n+c suffer from
the quantum errors and erasures. In this study, we also fol-
low this convention and assume that only n qudits in |ϕ1〉 of
length n+ c can suffer from at most t deletions, and c qudits
kept by the receiver do not suffer from deletion. It should
be clear that by using |ϕ1〉 in place of |ψ1〉 in Sect. 4.1, the
proposal in Sect. 4 is also applicable to EAQECCs.
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5. Conclusion

This paper proposes two systematic constructions of quan-
tum deletion-correcting codes. The first one has advantage
of supporting arbitrary dimension of qudits. The second one
has advantages of multiple deletion correction and asymp-
totic goodness. It is a future research agenda to find a con-
struction of having all the above stated advantages.
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