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PAPER
Complex Frequency Domain Analysis of Memristor Based on
Volterra Series

Qinghua WANG† and Shiying JIA†a), Nonmembers

SUMMARY At present, the application of different types of memristors
in electronics is being deeply studied. Given the nonlinearity characterizing
memristors, a circuit with memristors cannot be treated by classical circuit
analysis. In this paper, memristor is equivalent to a nonlinear dynamic
system composed of linear dynamic system and nonlinear static system by
Volterra series. The nonlinear transfer function of memristor is derived. In
the complex frequency domain, the n-order complex frequency response of
memristor is established by multiple Laplace transform, and the response of
MLC parallel circuit is taken as an example to verify. Theoretical analysis
shows that the complex frequency domain analysis method of memristor
transforms the problem of solving nonlinear circuit in time domain into n
times complex frequency domain analysis of linear circuit, which provides
an idea for nonlinear dynamic system analysis.
key words: Volterra series, memristor, complex frequency domain analysis,
Laplace transform

1. Introduction

The concept of memristor was first proposed by Mr. Cai
Shaotang based on the completeness of the combination of
basic variables in the circuit [1]. The characteristic of mem-
ristor is defined as the relationship between charge and flux.
In 2008, with the implementation of memristor devices in
HP lab [2], the research and application of memristors have
rapidly become the research focus of scholars. At present,
there are two aspects in the research of memristor: one is
to research and manufacture devices with memristor char-
acteristics; the other is to study its potential applications in
various fields. A nanoscale silicon-based memristor device
was demonstrated, which could support important synaptic
functions such as spike timing dependent plasticity [3]. A
drift type three terminal gated memristor device was estab-
lished, which has the same memory characteristics, current
characteristics and hysteresis effect as the two terminal de-
vice. The device can be used to realize various novel digital
and analog circuits [4]. In the aspect of simulation experi-
ment and device design, many researchers have also focused
on SPICE circuit simulation model of memristor [5], [6] and
have made some achievements. In application, memristor
is used in intelligent computing, secure communication and
other fields. Chaos is a special phenomenon widely existing
in nonlinear circuits. A novel simple chaotic circuit with a
memristor, a memcapacitor and a linear inductor in parallel
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is proposed. Nineteen types of different chaotic attractors
and rich dynamical characteristics are found in the circuit
[7]. A chaotic circuit based on the mathematical realistic
model of the HP memristor was introduced. The circuit
made use of two HP memristors in antiparallel [8]. Some
of the chaotic attractors generated by this circuit and the be-
havior with respect to changes in its component values are
described in the circuit. The convolutional neural network
based on memristor cross array is reported in reference [9],
which successfully realizes the complex computation with
low power consumption and low cost in the form of hard-
ware. Memristors are used as synapses in a spiking neural
network performing unsupervised learning [10]. The system
can retain functionality with extreme variations of various
memristors’ parameters and adjust to stimuli presented with
different coding schemes.

Memristor is a nonlinear element with memory char-
acteristics, and the system is a nonlinear dynamic system.
The nonlinear system is described by nonlinear differential
equations or nonlinear operators, which does not meet the
superposition principle. Therefore, it is necessary to find an
effective method to analyze the nonlinear circuit with mem-
ristor. Volterra series uses multiple convolutions to describe
the input-output relationship of nonlinear dynamic systems.
Using this method, the nonlinear transfer function can be
derived, which makes it possible to analyze the nonlinear
system in frequency domain. Many scholars have made
great contributions in this regard. The piecewise Volterra
series macromodeling method was proposed for the mem-
ristor [11]. This approach that combines the piecewise idea
with the Volterra series method aims at significantly reduc-
ing the complexity of the traditional Volterra series model.
In literature [12], the part other than the power andmemristor
is regarded as a two port, then the Volterra series was used
to the general case of a single memristor which is coupled
to an arbitrary linear circuit. The aim was to model each el-
ement as a Volterra system. On the basis, the reference [13]
is extended to multiple memristor circuits. The literature
presented the applicability of the Volterra series paradigm
to model the nonlinear dynamics of a class of circuits with
ideal generic memristors [14].

Complex frequency domain analysis is an important
method for solving high-order complex linear dynamic cir-
cuits. The concept of transfer function is introduced by
using Fourier transform and Laplace transform. The time
domain analysis of linear dynamic circuit is transformed
into frequency domain, which provides convenience for ana-
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lyzing system characteristics. In this paper, the combination
of Volterra series and complex frequency domain analysis
method is proposed to describe and analyze the memristor
circuit. The purpose is to establish a complex frequency do-
main analysis method for nonlinear circuits with memristors.
According toVolterra seriesmethod, memristor elements are
first decomposed into equivalent systems composed of linear
dynamic systems and nonlinear static systems. Then the non-
linear transfer function of memristor is derived by multiple
Laplace transform. The time domain analysis is transformed
into the complex frequency domain analysis, and the com-
plex frequency domain response characteristics ofmemristor
are obtained. This method can transform the time domain
problem of the nonlinear system into the nth-order linear
complex frequency domain analysis problem.

2. Nonlinear Characteristics of Memristor

Memristor is defined as a two terminal element. If at any time
t, the relationship between the charge q and the flux ψ can
be determined by a curve on the plane, then the two-terminal
element is called memristor, and the functional relationship
is as follows:

f (q,ψ) = 0 (1)

Take the memristor as the fiux-controled as an example,
if the relationship between the charge and the flux is linear,
the Eq. (1) can be expressed as follows:

q = Wψ (2)

W is a constant, calledmemductance. TheVCRofmemristor
is:

i(t) =
dq
dt
=

dq
dψ

dψ
dt
= W(ψ)u (t) = Wu (t) (3)

At this time, the volt-ampere characteristic ofmemristor
is a straight line passing through the origin. That is, it is a
linear resistance. When the charge q and fluxψ are nonlinear,
memristor becomes nonlinear. There are many definitions
about the mathematical relationship between the charge and
the flux of memristor [15]. In this paper, the common third-
order nonlinear function is used to express [16] (in Fig. 1).

q (ψ) = αψ + βψ3 (4)

Where α, β is a constant, this function represents the math-
ematical model of the nonlinear relationship between the
charge q and the flux ψ. Then the formula of the memduc-
tance is as follows:

W (ψ) = dq (ψ) /dψ
= α + 3βψ2

= α + 3β(
∫

u(t)dt)2 (5)

In Eq. (5), the memductance W (ψ) depends on the inte-
gration of voltage u(t), indicating that the memristor has

Fig. 1 Relationship between charge and flux of memristor.

Fig. 2 The curve between memductance and flux.

memory characteristics. The relation curve between the
memductance and the flux is shown in Fig. 2. If the voltage
and current of memristor is taken as the associated reference
direction, the VCR is obtained.

i (t) = W (ψ (t)) u (t) =
(
α + 3βψ2

)
u (t) (6)

If a sinusoidal voltage u = Um cos(ωt + φu) is applied to the
memristor, the response current can be obtained as follows:

i =
(
k1 +

1
2

k2

)
Um cos (ωt + φu)

+
1
2

k2Um cos 3 (ωt + φu) (7)

Where k1 = α + 3
2 β

(
Um

ω

)2
, k2 = −

3
2 β

(
Um

ω

)2
. It can be

seen from Eq. (7) that when the input signal added to the
memristor only contains the fundamental component, the
output signal contains not only the fundamental component,
but also the second harmonic component. Therefore, for
nonlinear systems, the output signal usually produces new
harmonic components, and the time domain analysis is very
complex.
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3. Nonlinear Transfer Function of Memristor

The complex frequency domain analysis method based on
Laplace transform is used to describe the relationship be-
tween input and output of linear system, which simplifies
the analysis of linear system. The memristor can be re-
garded as a nonlinear dynamic system. According to the law
of electromagnetic induction, the combination formula (4)
takes voltage u(t) as input, current i(t) as output, and the
input-output relationship of the memristor is expressed as:

ψ =
∫

udt
q (ψ) = αψ + βψ3

i = dq/dt
(8)

When the input voltage ‖u(t)‖ = [
∞∫
0

u2 (t)dt]
1
2 < ∞ is sat-

isfied, the memristor can be cascaded by a linear integrator,
a nonlinear static system and a linear differentiator (Fig. 3).
The solution of the transfer function of memristor can be
transformed into the problem of solving the transfer function
of simple nonlinear system and linear system.

The input voltage u(t) is taken as the image function
U(s) after Laplace transformation. For subsystem F1, the
output flux Ψ(s) in complex frequency domain can be ex-
pressed as:

Ψ(s) = L [ψ (t)] = L
[∫

udt
]
=

1
s

U (s) (9)

The subsystem F2 is a nonlinear static system. The out-put
charge q by Volterra series expansion is expressed as:

q(t) = q0(t) + q1(t) + q2(t) + ... + qn(t) + ...

=

∞∑
n=0

qn(t) (10)

Where, qn(t) =
∞∫
−∞

∞∫
−∞

· · ·

∞∫
−∞

hn (τ1, τ2, · · · , τn)ψ (t− −τ1)

ψ (t − τ2) · · ·ψ (t − τn) dτ1dτ2 · · · dτn, hn (τ1, τ2, · · · , τn) is
the kernel function of Volterra series, which can also be
called n-order impulse response of subsystem F2. In sub-
system F2, the relation (4) can be regarded as the first three
terms of power series expanded at ψ0 = 0 Therefore, when
q0 (t) = 0 in formula (10), the first three terms of kernel func-
tion of Volterra series take multidimensional Dirac function
(as formula 11)) [17], and the kernel function of other terms
is zero.

h1(τ1) = αδ (τ1)
h2(τ1, τ2) = 0
h3(τ1, τ2, τ3) = βδ (τ1) δ (τ2) δ (τ3)

(11)

The Eq. (10) can be expressed as:

q(t) =

∞∫
−∞

αδ (τ1)ψ (t − τ1)dτ1

Fig. 3 Memristor Cascade System.

+

∞∫
−∞

∞∫
−∞

∞∫
−∞

βδ (τ1) δ (τ2) δ (τ3)

3∏
i=1

ψ (t − τi)dτi

= αψ (t) + βψ3 (t) (12)

Obviously, the subsystem F2 can be represented by Volterra
series. Therefore, the n-fold Laplace transformation of n-
order output charge of subsystem F2 is:

Qn (s1, s2, ..., sn) = L[q(t)]

= Hn(s1, s2, ..., sn)
n∏
i=1
Ψ(si) (13)

After n-fold Laplace transformation, the n-order transfer
function of subsystem F2 is Hn(s1, s2, . . . , sn), Therefore, by
takingmultiple Laplace transforms in Eq. (11), the frequency
domain kernel of Volterra series of memristor is:

H1(s1) = α
H2(s1, s2) = 0
H3(s1, s2, s3) = β

(14)

The input of subsystem F3 is charge q and the output is
current i(t). In the zero state, the output I(s) obtained by
Laplace transformation can be expressed as:

I(s) = L [i (t)] = L
[

dq
dt

]
= sQ (s) (15)

According to the cascade connection mode in Fig. 3, subsys-
tems F1 and F3 are linear systems with only one order term.
In the complex frequency domain, the transfer function of
memristor is obtained.
First order term: Y1(s1) = H1(s1) ×

1
s1
× s1 = α

Second order term: Y2(s1, s2) = 0
Third order term:

Y3(s1, s2, s3) = H3(s1, s2, s3) ×
1
s1
×

1
s2
×

1
s3

×(s1 + s2 + s3)

= β(s1 + s2 + s3)/(s1s2s3)

Since the input signal is voltage U (s) and the output signal
is current I(s), the transfer function of memristor element
is also called nonlinear operational admittance, expressed as
Eq. (16)

Y1(s1) = α
Y2(s1, s2) = 0
Y3(s1, s2, s3) = β(s1 + s2 + s3)/(s1s2s3)

(16)

4. Complex Frequency Response Analysis of Memristor

When analyzing the complex frequency domain response of
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memristor by using the operation method of linearsystem,
the input signal can be transformed into the corresponding
image function. Combining with the nonlinear operational
admittance in the previous section, the problem can be trans-
formed into an n-order linear equation with the image func-
tion as the variable. After the complex frequency-domain
response is obtained, the inverse Laplace transform is per-
formed to return to the time domain. Let the input signal
be a sinusoidal voltage u(t) = Um cos (ωt + φu). According
to Euler’s formula, the sinusoidal voltage is expressed as a
complex exponential function (as Eq. (17))

u(t) =
Um

2
[e j(ωt+φu ) + e−j(ωt+φu )]

Um

2
e jφu e jωt

+
Um

2
e−jφu e−jωt (17)

Where A1 =
Um

2 e jφu , A2 =
Um

2 e−jφu , ω1 = ω, ω2 = −ω,
A1, A2 is obviously a pair of conjugate complex numbers.
Then the sinusoidal voltage can be expressed as:

u(t) =
2∑
l=1

Ale jωl t (18)

Taking Laplace transform, the image function is obtained as
follows:

Us(s) = A1
1

s − jω1
+ A2

1
s − jω2

(19)

For weakly nonlinear systems, the higher-order term of
Volterra series decays rapidly, and the requirements can be
satisfied only by calculating the second or third-order transfer
function [18]. In this section, considering the nonlinear
admittance of memristor, Volterra series of output signal
current expansion is calculated by tak-ing the third order.
First order output term:

I1(s1) = Y1(s1)Us(s1) = α(A1
1

s1 − jω1
+ A2

1
s1 − jω2

)

Second order output term:

I2(s1, s2) = Y2(s1, s2)Us(s1)Us(s2) = 0

Third order output term:

I3(s1, s2, s3) = Y3(s1, s2, s3)Us(s1)Us(s2)Us(s3)

= Y3(s1, s2, s3)(A1
1

s1 − jω1
+ A2

1
s1 − jω2

)

(A1
1

s2 − jω1
+ A2

1
s2 − jω2

)(A1
1

s3 − jω1

+A2
1

s3 − jω2
)

= Y3(s1, s2, s3)

{A3
1

1
(s1 − jω1)(s2 − jω1)(s3 − jω1)

+A2
1 A2[

1
(s1 − jω1)(s2 − jω1)(s3 − jω2)

Fig. 4 Memristor inductor and capacitor parallel circuit.

+
1

(s1 − jω1)(s2 − jω2)(s3 − jω1)

+
1

(s1 − jω2)(s2 − jω1)(s3 − jω1)
]

+A1 A2
2[

1
(s1 − jω1)(s2 − jω2)(s3 − jω2)

+
1

(s1 − jω2)(s2 − jω1)(s3 − jω2)

+
1

(s1 − jω2)(s2 − jω2)(s3 − jω1)
]

+A3
2

1
(s1 − jω2)(s2 − jω2)(s3 − jω2)

}

The time domain forms of the output current can be obtained
by using the inverse Laplace transform.
Corresponding first-order output in time domain:

i1(t) = α(A1e jω1t + A2e jω2t ) = αUm cos(ωt + φu)

Corresponding second-order output in time domain:

i2(t) = 0

Corresponding third-order output in time domain:

i3(t) = Y3(s1, s2, s3)
��
s1 ,s2 ,s3=jω1 A3

1e j3ω1t

+Y3(s1, s2, s3)
��
s1 ,s2 ,s3=jω2 A3

2e j3ω2t

+A2
1 A2(Y3(s1, s2, s3)

��
s1 ,s2=jω1 ,s3=jω2 e j(2ω1+ω2)t

+Y3(s1, s2, s3)
��
s1=jω2 ,s2 ,s3=jω1 e j(2ω1+ω2)t )

+A1 A2
2(Y3(s1, s2, s3)

���s1=jω1 ,s2 ,s3=jω2 e j(ω1+2ω2)t

+Y3(s1, s2, s3)
��
s1 ,s3=jω2 ,s2=jω1 e j(ω1+2ω2)t
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Fig. 5 Pspice simulation circuit of MLC parallel circuit.

Fig. 6 MLC parallel circuit response current curve.

+Y3(s1, s2, s3)
��
s1 ,s2=jω2 ,s3=jω1 e j(ω1+2ω2)t )]

=
3β
−4
(
Um

ω
)2Um cos 3(ωt + φu)

+
3β
4
(
Um

ω
)2Um cos(ωt + φu)

Finally, the time domain response of the current is obtained
as follows:

i(t) = i1(t) + i2(t) + i3(t)

= (α +
3β
4
(
Um

ω
)2)Um cos(ωt + φu)

−
3β
4
(
Um

ω
)2Um cos 3(ωt + φu) (20)

It can be seen from Eq. (20) that the results obtained by
the complex frequency domain analysis method of nonlinear
systems are consistent with the results of Eq. (7) of time do-
main analysis, which proves that this method is feasible. In
this process, Volterra series and multiple Laplace transform
are applied to transform the time domain analysis of non-
linear system to n-order linear frequency domain analysis
in complex frequency domain, which simplifies the analysis
pro-cess.

5. Application Example

Taking the parallel circuit of memristor, linear inductor and
linear capacitor (MLC) as an example, this circuit is a nonlin-
ear circuit (Fig. 4(a)), and the characteristics of each element
are as follows:


L : i = Lψ
C : q = Cu
M : q (ψ) = αψ + βψ3

Assuming that the initial state of each element is zero,
the input signalUs (t) = 100 cos (314t)V , the corresponding
image function is Us(s) = a1

1
s−jω1

+ a2
1

s−jω2
, where, a1 =

50e j0◦ , a2 = 50e−j0
◦ , ω1 = −ω2 = 314rad/s, L=100mH,

C=1 µF. The operation circuit is shown in Fig. 4(b). Because
the inductance and capacitance are linear elements, there is
only one order admittance and the higher order admittance
is zero, so the equivalent admittance of each order of the
parallel circuit is:

Y1(s1) = α + s1C + 1/s1L
Y2(s1, s2) = 0
Y3(s1, s2, s3) = β(s1 + s2 + s3)/(s1s2s3)

The current of each order can be calculated from the excita-
tion voltage and admittance.
First order term:

I1 (s1) = Y1 (s1)Us (s1)

= (α+s1C + 1/s1L)
(
a1

1
s1 − jω1

+ a2
1

s1 − jω2

)
Second order term:

I2(s1, s2) = Y2(s1, s2)Us(s1)Us(s2) = 0

Third order output term:

I3 (s1, s2, s3) = Y3 (s1, s2, s3)Us (s1)Us (s2)Us (s3)

The response current in time domain can be obtained bymul-
tiple Laplace Inverse Transform and bringing the parameters
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Table 1 Comparison of current calculation value and simulation value.
Time (ms) 0 2 4 6 8 10 12 14 16 18

caculation value (A) −0.061 1.81 2.99 3.03 1.91 0.066 -1.81 −2.99 −3.03 −1.92
simulation value (A) −0.059 2.24 3.03 3.06 1.93 0.057 −1.84 −3.03 −3.07 −1.93

error −0.002 −0.43 −0.04 −0.03 −0.02 0.009 0.03 0.04 0.04 0.01

into time domain.

i (t) = L−1 [I1 (s1) + I2 (s1, s2) + I3 (s1, s2, s3)]

= (3.166 cos (314t − 1.59) + 0.5 × 10−3 cos (314t)

−0.5 × 10−3 cos (942t)
)

A

Figure 5 shows the Pspice simulation circuit of MLC
parallel circuit, in which the memristor circuit is realized
by the integrator, multiplier, square operation, controlled
voltage source and resistance in ABM (analog behavioral
modeling) library. In order to avoid short circuit and not
affect the performance of the circuit, a small resistance is
connected in series on the inductor L1 branch. Setting the
circuit simulation type as transient analysis, the response
current i(t) of the parallel circuit can be obtained as the curve
in Fig. 6. The figure indicates the corresponding current
values at 0ms, 5ms, 10ms, 15ms and 20ms respectively.

Table 1 lists the current calculation values and simula-
tion values of 10 points between 0∼20ms. It can be seen
that the errors are between (−0.5,0.5). The error indicates
that the complex frequency domain analysis method based
on Volterra series for nonlinear system is feasible. It can be
seen from the above examples that the complex frequency do-
main analysis method of nonlinear circuit based on Volterra
series and multiple Laplace transform transforms the nonlin-
ear analysis in time domain into the analysis of n-order linear
circuit in complex frequency domain, which simplifies the
analysis process and provides ideas for complex nonlinear
circuit analysis.

6. Conclusion

With the emergence of more and more new nonlinear elec-
tronic devices, the nonlinear phenomena in electronic cir-
cuits are difficult to explain by traditional circuit theory.
Taking nonlinear memristor as an example, the nonlinear
transfer function of memristor is derived by volterra series
and multiple Laplace transform. The time domain problem
is transformed into complex frequency domain, and the com-
plex frequency domain analysis method of nonlinear circuit
is obtained. The characteristics of this method are: (1) Al-
though the third-order nonlinear function of memristor is de-
rived as an example, themethod can be extended to the circuit
analysis of a class of memristor whose memristor derivative
is polynomial W(ψ) =

∞∑
k=1

mkψ
k ; (2) If the characteristics of

nonlinear components can be expanded by Volterra series,
the nonlinear transfer function can be obtained, then the time
domain problem of nonlinear circuit can be transformed into
the frequency domain problem of n-order linear circuit in
complex frequency domain; (3) The nonlinear differential

equation in time domain can be transformed into n-order lin-
ear algebraic equation in complex frequency domain. The
nonlinear transfer function and frequency response of any
order can be obtained, which simplifies the analysis of non-
linear system. This transformation method can be applied
to solve high-order complex nonlinear systems and become
an effective method to analyze nonlinear dynamic circuit
systems.
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