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PAPER
Bayesian Optimization Methods for Inventory Control with
Agent-Based Supply-Chain Simulator

Takahiro OGURA† ,††a), Haiyan WANG†††, Qiyao WANG†††, Atsuki KIUCHI†††,
Chetan GUPTA†††, Nonmembers, and Naoshi UCHIHIRA††, Senior Member

SUMMARY We propose a penalty-based and constraint Bayesian opti-
mizationmethods with an agent-based supply-chain (SC) simulator as a new
Monte Carlo optimization approach for multi-echelon inventory manage-
ment to improve key performance indicators such as inventory cost and sales
opportunity loss. First, we formulate the multi-echelon inventory problem
and introduce an agent-based SC simulator architecture for the optimiza-
tion. Second, we define the optimization framework for the formulation.
Finally, we discuss the evaluation of the effectiveness of the proposed meth-
ods by benchmarking it against the most commonly used genetic algorithm
(GA) in simulation-based inventory optimization. Our results indicate that
the constraint Bayesian optimization can minimize SC inventory cost with
lower sales opportunity loss rates and converge to the optimal solution 22
times faster than GA in the best case.
key words: Bayesian optimization, inventory management, simulation-
based optimization, agent-based simulator

1. Introduction

Manufacturers with global supply chains (SCs) have been
faced with increasing challenges due to furious competition
and dynamically changing global markets. These SCs com-
monly use multiple tiers, or echelons, of stocking locations
to minimize logistics costs, inventory costs, and sales op-
portunity loss. Besides the complex multi-tier SC structure,
other factors have further complicated SC optimization, for
example, the highly uncertain and rapidly changing market
demand, uncertain lead time between tiers, tremendous vari-
ety of product types, and much shortened product lifecycles.

In practice, the aforementioned factors must be consid-
ered when optimizing SC inventory to ensure SC efficiency
and increase customer satisfaction. The goal of inventory
optimization is to determine a replenishment policy (i.e.,
when and how much to order) that can achieve the best SC
efficiency with balanced inventory costs and service levels.

To help address the difficult challenge of SC inventory
optimization, there is a large body of academic research and
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excellent textbooks on inventory management ([1], [2], and
references therein). In these classical inventory management
theories [3], [4], to facilitate analytical tractability, simpli-
fying assumptions, such as pre-defined analytically solvable
demand distribution, lead time distribution, stationary de-
mand pattern over time, and fixed SC structure, are usually
necessary to derive managerial insights.

However, these assumptions are easily violated in prac-
tice. For example, in many situations, the periodical demand
curve will not follow a stationary distribution, especially
when different strategies (e.g., price discount) are often used
to stimulate demand. Therefore, it is difficult to express per-
formance measures such as the total expected inventory cost
and service level in closed-form mathematically.

To solve analytically intractable real world SC inventory
optimization problem, researchers and practitioners turned
to simulation-based optimization approaches decades ago.
In a typical simulation-based optimization method, a simu-
lation model is used to estimate the relationship between SC
configurations and performance measures. An optimization
procedure is developed on top of the simulation model to
find the optimal set of decision variables in terms of a pre-
defined objective function. Meta-heuristic search algorithms
such as genetic algorithm (GA) have been popularly used to
determine the optimal SC configurations.

In this paper, we propose two Bayesian optimization
methods as a Monte Carlo optimization approach to deter-
mine the optimal SC configuration and evaluate its efficiency
through computational experiments. The rest of the paper
proceeds as follows. In Sect. 2, we review relevant literature
on simulation-based optimization approaches in inventory
control. In Sect. 3, we first formulate the multi-echelon in-
ventory optimization problem. We then introduce the pro-
posed Monte Carlo optimization approach that consists of
an agent-based SC simulator and the Bayesian optimization
methods. In Sect. 4, we compare the performance of the
proposed methods with the most widely used meta-heuristic
method, a genetic algorithm (GA) through numerical exper-
iments. Finally, we conclude the paper in Sect. 5.

2. Literature Review

In this chapter, we survey literature on the simulation-based
optimization approaches developed and adopted in inventory
optimization.

Simulation-based optimization methods can be clas-
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sified into four categories [5]: 1) gradient-based methods
that often utilize a gradient-estimation technique, such as
infinitesimal perturbation analysis and finite difference esti-
mation; 2)meta-model-basedmethods that usemeta-models,
such as response surface methodology and artificial neural
networks, to approximate the objective function; 3) statis-
tical methods, such as multiple comparison procedure; and
4) meta-heuristic methods, including GAs, simulated an-
nealing, and particle swarm optimization. Jalali [6] uses a
slightly different terminology. However, the resulting tax-
onomy is consistent with that of Abo-Hamad and Arisha’s
[5]. It is noteworthy that both survey papers consider the
meta-heuristics methods, especially GA, as the most com-
mon optimization approach.

In most simulation-based inventory-optimization re-
search, simulators are usually developed to solve the specific
problem under consideration and are not flexible or com-
prehensive enough to introduce new dynamics such as SC
structure changes mandated by the highly dynamic global
market and increasing competition.

Recently, the concept of digital SC twins (DSCTs) has
gained attention and holds promise to revolutionize sup-
ply chain management (SCM) thanks to the advancement
of Internet-of-things technology and machine learning al-
gorithms [7]. A DSCT is a virtual model of the physical
SC that includes a digital counterpart of every step of the
process and simulates complex dynamics and characteristics
in a real-world SC that cannot be fully captured by analyti-
cal model assumptions. By running simulations and what-if
scenarios within the digital twin, a SC manager can make
optimized proactive decisions to improve SC efficiency and
reduce risks. For example, Kiuchi et al. [8] developed an
agent-basedSC simulator that has the flexibility to accommo-
date situations when the SC structure changes, when the SC
managers change the inventory-policy structure (e.g., from a
single-echelon to a multi-echelon inventory-control policy),
when the market-demand pattern changes, etc. However,
Kiuchi et al. [8] has proposed just simulation model and has
not proposed simulation-based-optimization methods. In
this paper, we use the simulator developed by Kiuchi et al.
[8] as the DSCT in our proposed simulation-based optimiza-
tion methods.

While meta-heuristic simulation-based optimization
methods may be effective for solving analytically intractable
real-world multi-echelon inventory problems, they are usu-
ally computationally expensive. This is because for each set
of parameters, to evaluate the objective function (i.e., a cer-
tain SC performance measure such as expected total inven-
tory cost), we need to run the SC simulator for many scenar-
ios to account for the uncertainties. The objective function
is often required to be evaluated under a large number of
parameter settings, especially when the decision variables
are continuous, if using the traditional meta-heuristic meth-
ods. Therefore, when the SC is large and involves multiple
sources of stochasticity, the computational inefficiency may
hinder the applicability of the DSCT to assist real-time crit-
ical decision making in SCM, although it has the capability

to accurately replicate the real SC process.
On the other hand, a Bayesian optimization approach

has been successfully applied to different areas such as hyper-
parameter tuning in machine learning algorithms ([9]–[11])
and industrial experimental design that requires expensive
resources (materials, money, time, etc.) to evaluate each
parameter setting [12].

Bayesian optimization is a powerful global optimization
framework for optimizing expensive and black-box objective
functions. Compared with other general optimization frame-
works, Bayesian optimization often significantly reduces the
number of function evaluations.

The fundamental idea of Bayesian optimization is to
approximate the objective function by using a surrogate
model that can not only accurately approximate the objective
function but also be relatively and inexpensively evaluated
at a sample parameter setting. Bayesian optimization re-
lies on a surrogate model, hence, falls into the category of
meta-model-based methods in accordance with the above
taxonomies [5] and [6].

In terms of application of Bayesian optimization to
SCM, Kiuchi et al. [13] proposed a Bayesian optimization
framework for inventory control problem and verified that
the methodology can get optimal solution faster than GA
with serial 3-echelon SC model.

Therefore, this study is intended to extend the Bayesian
optimization framework [13] to apply it to more general
real-world scale of multi-echelon SC and to verify its ef-
fectiveness. In order to achieve the purpose, we introduce
multi-echelon distribution SC model in the next chapter and
formulate an inventory control problem with the SC model.

3. Proposed Method for Supply Chain Inventory Con-
trol

Inmulti-echelon inventory control, in addition tominimizing
the total system cost, a certain service level is usually im-
posed. For example, it is often required that the cumulative
demand-fulfill rate over a planning horizon must be greater
than a pre-defined threshold. Note that, like the objective
function on the inventory-related cost, the service level can-
not be analytically expressed and has to be evaluated with the
SC simulator. That is, we need to solve a constrained opti-
mization problemwhere the constraint is similarly expensive
to evaluate as the objective function.

The two proposed methods for handling such a con-
straint are as follows [13]. One involves introducing a high
penalty cost whenever the parameter setting falls into an in-
feasible region (i.e., the constraint is violated). This is called
penalty-based Bayesian optimization. The other method in-
volves approximating the constraint function using another
surrogate model such as a Gaussian process (GP) model.
This method is called constraint Bayesian optimization.

3.1 Problem Setting and Formulation

We consider a finite planning horizon multi-echelon
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Fig. 1 Example of multi-echelon distribution supply chain (SC).

inventory-optimization problem under uncertainty. The un-
certainty may come from the demand in each period during
the planning horizon, order-fulfillment lead time from an
upstream tier to the next, or both. To take advantage of the
agent-based SC simulator, we do not need to specify any
probability distribution for the uncertain factors upfront. In-
stead, we rely on a scenario generator that is independent
of the agent-based SC simulator to account for the uncer-
tainties, which significantly improves the flexibility of the
simulator. Ideally, the scenario generator can learn from
historical data then generate different scenarios that serve as
input to the simulator to facilitate optimal and robust plan-
ning decisions.

We consider a typical tree structured distribution SC, as
illustrated in Fig. 1. We assume that the Supplier has enough
supply inventory against any order from the Distribution
Center (DC) and solve for the inventory control problems
at the DC, all Local Warehouses and Retailers. Also, we
assume that there is no order-placement cost and focus on
minimizing the total system-inventory-holding cost during
the planning horizonwhile maintaining aminimum demand-
fulfill rate at each retailer site.

In practice, a variety of inventory policies are used.
For example, a continuous review (R,Q) policy replenishes
inventory by ordering Q quantities whenever the inventory
position falls below the reorder point R. A periodic review
base-stock or order-up-to policy that replenishes the inven-
tory position up to the base-stock level during each review
period is also common because it is simple to understand and
implement. For the base-stock policy, depending on whether
the relevant information is centrally available, and whether
the decisions can be centrally made, there are independent
single-echelon and multi-echelon inventory policies. Note
that the agent-based SC simulator we used [8] has the flexi-
bility to model all these inventory policies.

For a given inventory policy, we need to optimize
the corresponding parameters to minimize the total system-
inventory cost while maintaining a minimum demand-fulfill
rate. For instance, for the single-echelon base-stock policy
considered in [9], people optimize the base-stock level at
each local echelon. Since both the agent-based SC simula-
tor and our proposed Bayesian optimization methods are not
restricted to a particular policy, we use a generic vector α to
represent the parameters to be optimized in a policy.

Suppose the scenario generator generates N scenarios
in total and let si denote scenario i ∈ {1, . . . ,N}. Let

Inv (α, si) ,Frj(α, si) be the total system-inventory cost and
cumulative demand-fulfill rate at market site j when the in-
ventory policy parameter is α and the scenario is si . Note
that Inv(α, si) and Frj(α, si) are the output of the agent-
based SC simulator when we set the input to the simulator
as α and si . Let β be the minimum demand-fulfill rate re-
quired at each j. We take the commonly used Monte Carlo
approach to estimate the expected inventory cost under un-
certainty. The inventory-optimization problem for a given
policy is then formulated as

min.
1
N

N∑
i=1

Inv (α, si) (1)

s.t. min
i, j

Frj (α, si) ≥ β (2)

Constraint (2) is to ensure that the demand-fulfill rate at any
market site is not lower than β for any scenario. That is, we
aim to maintain a robust service level at all the retailer sites.

The formulation in (1) and (2) show that for a given
α, the simulator needs to run N times to evaluate the corre-
sponding objective function value and constraint feasibility,
which is computationally expensive. When the parameters
are in a continuous multi-dimensional space, naive search
methods, such as grid search or random search, will be in-
effective. To increase optimization efficiency, evolutionary
algorithms, such as GAs, have been commonly used in solv-
ing practical inventory-optimization problems via simulation
([5], [6], [14]). A GA searches the parameter space by mim-
icking the natural-selection process where the fittest individ-
uals are selected for reproduction to produce offspring of the
next generation. While a GA is used to reduce the number
of search iterations by selecting the fittest candidates in each
iteration, Bayesian optimization approximates the objective
function by using a surrogate model using a few sample
points then proposes the most promising next candidate for
evaluation by optimizing the surrogate model. Hence, it has
the potential to reduce the number of function evaluations.
Our experimental results in Chapter 4 indicate that one of
the proposed Bayesian optimization methods outperform a
GA in both effectiveness (i.e., optimality of the solution) and
efficiency (i.e., computational time).

3.2 Bayesian Optimization for Multi-Echelon Inventory
Optimization

Bayesian optimization is a framework to solve the optimiza-
tion problem

min
x

f (x) (3)

where x is a vector and f (x) is the objective function that is
expensive to evaluate.

Bayesian optimization uses a surrogate model that can
be evaluated relatively inexpensively to approximate the
objective function f (x). A common surrogate model for
Bayesian optimization is a Gaussian Process (GP). A GP
is an extension of the multivariate Gaussian distribution
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to an infinite-dimensional stochastic process for which any
finite sub-collection of random variables has a multivari-
ate Gaussian distribution. For a GP model with a prior
distribution of the objective function, denoted as f̃ (x) ∼
GP(µ(·),

∑
(·, ·)), given a set of evaluated function values

D f = {(x1, f (x1)), . . . , (xt, f (xt ))}, we can update the pos-
terior belief on the function using linear algebra thanks to the
nice properties of the Gaussian distribution. Details on a GP
and its use for machine learning can be found in a previous
study [15].

At each iteration, the updated GP model f̃ (x) is used
to select the next most promising candidate x∗ in the search
space to be evaluated by the expensive function f (x). Subse-
quently, the new data pair (x∗, f (x∗)) is added to the known
data set D f and the GP posterior belief is updated. This iter-
ative procedure continues until a stopping criterion is met.

The selection of the next most promising candidate is
done via an acquisition function. There are a few com-
mon acquisition functions such as maximum probability of
improvement, expected improvement (EI), and upper con-
fidence bound [11]. These acquisition functions are used
to attempt to strike a balance between exploitation and ex-
ploration: exploitation means sampling where the surrogate
model predicts a good objective value and explorationmeans
sampling at locations where the prediction uncertainty is
high. Among these acquisition functions, EI is the most
widely used [16]; we briefly introduce it as follows.

Let x̂ be a candidate point and let f̃ (x̂) be the GP
posterior distribution for f (x̂). Let Xf be the set of data
points that have been evaluated and x+ be the best point thus
far,

x+ = argmin
x∈X f

f (x) (4)

Then the improvement of x̂ is defined as the potential de-
crease of f (x̂) against f (x+), which is a random variable
[9], [10]:

Ĩ (x̂) = max
{
0, f

(
x+

)
− f̃ (x̂)

}
(5)

Then the expected improvement acquisition function is the
expectation of the random improvement:

EI (x̂) = E
[
Ĩ (x̂) | x̂

]
. (6)

Jones et al. [16] derived an easy-to-compute closed form for
the EI acquisition function:

EI (x̂) ={
(µ (x̂) − f (x+))Φ(Z) + σ (x̂) φ(Z), if σ (x̂) > 0
0, if σ (x̂) = 0

(7)

where

f̃ (x̂) ∼ N
(
µ (x̂) , σ2 (x̂)

)
, (8)

Z =
µ (x̂) − f (x+)

σ (x̂)
(9)

Fig. 2 Bayesian optimization framework.

and Φ and φ are the distribution function and density func-
tion of the standard normal distribution, respectively.

We then select the set of parameters that maximizes
the above EI acquisition function as the next most promising
candidate. To find the maximum of EI, one may apply any
general-purpose non-linear optimization methods such as
various quasi-Newton methods, conjugate gradient methods
[18]. We used L-BFGS-B in our experiments, which belongs
to the family of quasi-Newton methods and is efficient and
popularly used.

The overall procedure of the general Bayesian optimiza-
tion framework is summarized in Fig. 2. A commonly used
stopping criterion is to run a certain number of iterations.

3.3 Bayesian Optimization with Constraints

In our problem setting, let f (α) = 1
N

∑N
i=1 Inv (α, si), and

g(α) = mini, j Frj(α, si), then the formulation of (1) and (2)
becomes the following problem

min
α

f (α) (10)

s.t. g(α) ≥ β (11)

That is, in addition to expensive evaluations of the objective
function f (α), we have an additional constraint function
g(α). Note that both f (α) and g(α) can be evaluated in the
same run of the simulator [8].

One of our proposed methods for dealing with the con-
strained optimization problem is to impose a large penalty to
the objective function values in the parameter region where
the constraint is violated, then applying the general Bayesian
optimization framework in Fig. 2. We call this the penalty-
based Bayesian optimization method (PBO). More specifi-
cally, let M be a large number and define a new objective
function h(α) as
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h(α) =

{
f (α), if g(α) ≥ β
f (α) + M, if g(α) < β

(12)

Note that M should be selected large enough relative to
the optimal value of the objective function. One practical
method may be that we first estimate the upper bound of the
optimal value and then multiply this upper bound by a power
of 10 factor (e.g., 1e2). Note that, any feasible solution
can serve as an upper bound. Hence, we can come up with
an upper bound by setting a high inventory level at each
location. (In our experiment, we used M = 1e7.)

Then, we apply the Bayesian optimization framework
to the following optimization problem

min
α

h(α) (13)

Our second method is motivated by the effectiveness of us-
ing a GP to approximate the objective function in Bayesian
optimization. We approximate the constraint function using
another GP then adapt the acquisition function to handle the
constraint, as proposed Gardner et al. [13].

Suppose we use another GP model g̃(x) ∼

GP
(
µg(·),Σg(·, ·)

)
to approximate g(x). During the

optimization procedure, we also maintain a set of
evaluated values for the constraint function Dg =

{(x1, g(x1)), . . . , (xt, g(xt ))} to update the posterior of g̃(x),
in addition to the set of values for the objective function D f .

The expected improvement acquisition function is then
adapted in the following two ways. First, the best point thus
far x+ is defined as the best in D f that is feasible. Second,
a constrained improvement function for an x̂ is defined as
follows:

ĨC (x̂) = 1{g̃(x̂)≥β } max
{
0, f

(
x+

)
− f̃ (x̂)

}
= 1{g̃(x̂)≥β } Ĩ (x̂) , (14)

where 1{g(x̂)≥β } = 1 if g (x̂) ≥ β and 0 otherwise is the in-
dicator function of feasibility. That is, with the constrained
improvement function, zero improvement is assigned if the
candidate point x̂ is infeasible. The next promising can-
didate is then selected based on the expected constrained
improvement

E ĨC (x̂) = E
[
ĨC (x̂) | x̂

]
= E

[
1{g̃(x̂)≥β } Ĩ (x̂) | x̂

]
= E

[
1{g̃(x̂)≥β } | x̂

]
E

[
Ĩ (x̂) | x̂

]
= Pr (g̃ (x̂) ≥ β | x̂) EI(x̂). (15)

Note that, Pr(g̃ (x̂) ≥ β| x̂) is a univariate Gaussian comple-
mentary cumulative distribution function that can be analyt-
ically calculated due the marginal Gaussianity of the GP.

As Gardner et al. pointed out [13], while infeasible
points are never considered the best points, they are still
useful to add to the already evaluated data sets D f and Dg to
improve the GP posteriors to help estimate the shape of f (α)
and g (α). This is because both of them are smooth functions
and more data points will improve the estimation of the

function shape. We call this second method the constrained
Bayesian optimization method (CBO).

3.4 Agent-Based SC Simulator

In this section, we introduce our agent-based simulator [8]
that gives us the flexibility to model complex dynamics in
a SC. In a SC system, there are physical, capital, and in-
formation flows. Physical and capital flows are triggered by
information flows. For instance, the ordering-information
flow in inventory control moves products and/or cash along
the chain. Information flows are determined by the status of
physical objects and cash at relevant sites in accordance with
certain rules. We define each decision maker that executes
such rules to determine the information flow as an agent.
Each agent is specialized in accordance with its intended
role in the SC (procurement agent, inventory-control agent,
etc.) and consumes information relevant to its role to take
action. The behavior of individual agents, as well as the
interactions between them, render the behavior of the whole
SC.

Figure 3 shows a sample model at a warehouse site
to illustrate how different agents coordinate their activities
in one business-process instance. The various symbols for
nodes and arcs are listed in Table 1 and Table 2, respectively.
We use those nodes and arcs to represent the relationship
between information, product, and cash flows in the agent-
based SC simulator. Let T be the simulation days and K
be a set of customer sites to be fulfilled by this warehouse.
On each day t ∈ T, the shipping-order agent issues ship-
ping instruction SI ti , where i ∈ K , for each received order
Ot
i and calculates the backlog quantity Ot

i − SI ti if there is
a shortage in the stock. Next, the demand-forecast agent
works out a demand-forecast plan DFt

it̄
, where DF is the

demand–forecast value on each date t̄(> t) to destination site
i using its logic. Then the inventory-control agent calculates
the target inventory level T I t considering DFt

it̄
. Next, the

procurement-plan agent refers to the target inventory level,
stock level, backlog quantities, as well as the lead time to
come up with a procurement plan that specifies when and

Fig. 3 Example of warehouse site model.
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Table 1 Node types

Table 2 Arcs and their symbols.

how much the warehouse site should procure. Finally, the
purchase-order agent executes the procurement plan and is-
sues an order for the warehouse.

To represent a real-world SC, the agents should be able
to mimic the decision-making rules adopted either by the
personnel or local decision-support systems in the physical
world. This is accomplished by defining a set of properties
for each agent including decision logic, working priority, and
working cycle. The ability to model individual styles and
attributes gives us the flexibility to replicate any complex
dynamics in the real SC.

4. Computational Experiments

We applied the proposed Bayesian optimization methods to
the inventory-optimization problem defined in Eq. (10) and
Eq. (11), and compare the performance with widely used
baselines, GA.

The considered SC structures, environment, and inven-
tory policies as well as the corresponding parameters to be
optimized are presented in Sect. 4.1.

In our experiments, we considered multi-period uncer-
tain non-stationary demand. A scenario generator as de-
scribed in Sect. 4.2 was used to generate different demand
scenarios. Note that besides the optimization algorithms,
how well the scenario generator can predict the real demand
also affects the optimality of the output solution. To remove
the impact of the distributional gap between the demand
scenarios and actual demand on performance and focus on
the impact of optimization algorithms, we assumed that the
underlying stochastic process of the multi-period demand is
known.

Section 4.3 briefly discusses the implementation of our
two proposed Bayesian optimization methods. Section 4.4
describes the employment of our benchmarking method GA
and the corresponding settings. Section 4.5 presents the ex-
perimental results. All experiments were run on a Windows
server with Intel Xeon E3-1230 v5 3.4GHz 4 cores 8 threads

Fig. 4 Experimental simple SC model.

CPU and 64.0GB RAM.

4.1 SC Structures and Variable Settings

We started with a simpler SC structure as shown in Fig. 4 in
our experiments. The purpose is twofold: 1) we first eval-
uate the performances of our proposed methods in solving
relatively simpler inventory control problems; 2) we use the
simpler SC structure setting to select some hyper parameters
of our experiments. For instance, we selected L-BFGS-B
over other optimization methods to propose the next most
promising candidate based on our initial experiment with
the simpler SC structure. We also tested and tuned the pa-
rameter of our baseline GA algorithms using the simpler SC
structure.

In the simple and complex SC structures shown respec-
tively in Fig. 4 and Fig. 1, the distribution center orders from
the supplier, and local warehouse orders from the distribu-
tion center to fulfill the demand from the retailer. We assume
a deterministic procurement lead time from an upper stage to
a lower stage, which can be flexibly set in the agent-based SC
simulator. In our experiments, we assumed the procurement
lead time for both the distribution center and local warehouse
is one week. Due to the uncertain demand and lead time,
both the distribution center and local warehouse maintain
inventories. We also assumed that the supplier has sufficient
supply.

In most of the following experiments if not explicitly
specified, we set β = 0.95, i.e., the demand fill rate must be
greater than or equal 95% for all markets.

For inventory replenishment, we assumed weekly re-
view cycle. We assume downstream inventory and market
demand information are available to upstream stages and
hence use multi-echelon inventory policies for both SCmod-
els to achieve higher SC efficiency. In the multi-echelon
base-stock policy, inventory decisions are made at the up-
per stages based on echelon demand and echelon inventory-
position information [1]. We implemented the policies to the
agent-based SC simulator based on inventory theory derived
from stationary stochastic demand due to the elegance of the
formula. That is, the base stock is calculated by the average
demand during the lead time plus safety stock. Safety stock
is calculated by multiplying the standard deviation of lead
time demand with a safety stock coefficient. Let Ip denote
the base stock inventory-position at a site implemented in
our simulator, then

Ip = µLT + α
√

LTσ (16)

where µ, σ are the average demand quantity and standard
deviation of all the markets related to each site, respectively.
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LT is procurement lead time in each site. α is the safety-
stock coefficient, the variable to be optimized in the inventory
control problem.

The safety-stock coefficients at the distribution centers,
local warehouses, and retailers α, were the parameters to
optimize in our experiments.

The goal was to select the optimal safety-stock coeffi-
cients at the distribution center, local warehouses, and re-
tailers to minimize the total SC-inventory cost while main-
taining a minimum cumulative demand-fulfill rate at all the
market sites. We assumed that the unit inventory-holding
cost rate is the same at each site.

4.2 Demand-Scenario Generation

We assumed the planning horizon is 30weeks and theweekly
demand follows a GP X(t) ∼ 4000 × Gaussian(µ(t),Σ(t, t ′))
and for t ∈ [0,30], the mean function is

µ(t) = 10 +
4∑

p=1
γpφp(t) (17)

with φp(t) =
√

2 sin(2pπt/30) for p = 1, . . . ,4, γ =
[γ1, . . . , γ4]

T = [2.133,1.8,−1.067,−0.267]T , and the co-
variance function is

Σ(t, t ′) =
4∑

p=1
λpφp(t)φp(t ′) (18)

where λ = [λ1, . . . , λ4]
T = [0.5,0.275,0.125,0.05]T .

The scenario generator uses the defined GP to gen-
erate N demand scenarios for each market. To make the
demand bounded, we added a cap value at 60,000. For a
given market j, the demand scenarios

{
si, j

}N
i=1 were a set

of 30-dimensional random vectors achieved by drawing i.i.d
random samples from the specified GP at 30 equally spaced
times. Figure 5 shows five simulated scenarios for market
j = 1 as an example. Demand scenarios si consists of
generated demands from all markets. Each si represents a
projected actual demand across markets and serves as an in-
put to the simulator. As we discussed in Sect. 3, for a given
parameter vector α, the expected inventory cost is estimated
as 1

N

∑N
i=1 Inv (α, si). That is, for each parameter setting,

the simulator will run N times to evaluate the corresponding
inventory cost.

4.3 Implementation of Proposed Bayesian Optimization
Methods

To implement our PBO, we used a well-developed R package
called ‘rBayesianOptimization’ to solve the transformed op-
timization problem (Eq. (12) and Eq. (13)). We modified the
source code of ‘rBayesianOptimization’ by adding a module
to conduct GP fitting for the constraint function to implement
our CBO [13]. In our experiments, the number of initializa-
tions was 10 and the maximum number of iterations was 30;

Fig. 5 Example of simulated demand.

in total, 40 parameter combinations were evaluated with the
agent-based SC simulator. For the kernel function used in
the GP, we found that the default exponential function with
a power of 2 worked well in our problem setting.

For both PBO and CBO, we identify the optimal param-
eter setting as the one that produces the smallest inventory
cost among all feasible solutions. This means that the solu-
tion is not necessarily obtained in the last iteration.

4.4 GA Method Settings

The general framework of the GA is designed for uncon-
strained optimization problems. To handle the demand-
fulfill-rate constraint in our inventory-optimization problem
(Eq. (10) and Eq. (11)), we use the penalty-based strategy
we discussed in Sect. 3.3. That is, we use GA to solve the
transformed unconstrained optimization problem in Eq. (12)
and Eq. (13).

We used the R package ‘GA’ to implement the opti-
mal parameter search procedure along with the simulator
[8]. We set the number of iterations to 30. In each itera-
tion, ten offspring (i.e., 10 combinations of parameters) were
produced by selecting and manipulating the most promising
candidates in the parent population. In total, 300 parameter
combinations were evaluated with the simulator. The pa-
rameter combination at the last iteration is the final output,
if it is a feasible solution. Otherwise, no valid solutions have
been achieved.

4.5 Experimental Results

The experimental results of the simple and complex SC using
the multi-echelon policy are summarized as follows.

1) Applying multi-echelon policy for simple SC (Fig. 4):

Table 3 and Table 4 show the achieved objective func-
tion value and corresponding computational time of CBO,
PBO, and GA, under the simple SC andmulti-echelon policy
setting. The number of demand scenarios is N = 5, 20, 50.
Large values of N mitigate the impact of randomness to a
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Table 3 Objective function value (inventory cost) with simple SC
(Fig. 4).

Table 4 Computational time (sec) comparison with simple SC (Fig. 4).

Table 5 Hyperparameter of GA.

larger degree, however, the associated running time is longer.
As shown in these Table 3 and Table 4, CBO outper-

formed PBO in terms of optimality while they have simi-
lar computational efficiency. This is because the Bayesian
optimization method in PBO cannot approximate the non-
smooth penalized cost function h(α) as effectively as it ap-
proximates the smooth functions f (α) and g(α) with CBO.

CBO also achieved smaller inventory costs than GA.
From the computational efficiency point of view, CBO is
after than PBO and GA. And the gain was even more sig-
nificant when the number of scenarios increased. Remark-
ably when N = 50 case, CBO converged to optimal so-
lution 22 times faster than GA. Note that we considered
three different settings for the permutation probability in GA
(ppermutate = 0.2,0.3,0.4). The results in Table 3 and Table 4
correspond to the hyperparameter that yielded the best re-
sults in terms of optimality. The detailed results are given
in a Table 5. It can be seen that although the objective func-
tion value and the computational time vary slightly due to the
randomness, they are in the same level of magnitude and will
not change the conclusion. To save time, in the following
experiments, we use ppermutate = 0.3.

Table 6 Objective function value (inventory cost) with complex SC
(Fig. 1), β = 0.95.

Table 7 Computational time (sec) comparison with complex SC (Fig. 1),
β = 0.95.

2) Applying multi-echelon policy for complex SC (Fig. 1):

Next, we conduct an experiment with the complex SC
structure. Table 6 and Table 7 present the achieved objective
function values and the computational time. It can be ob-
served that GA can get optimal solutions relatively faster than
the previous experiment. However, CBO can get around 1.7
less inventory cost than GA using less computational time.

In this experiment, PBO cannot find a solution in all
patterns. To investigate why it is, we show PBO’s initial 10
iterations results in Table 8. There are only 2 times PBO
got a feasible solution within the initial 10 iterations. This
results in a significantly non-smooth penalized cost function
h(α), which raises challenges in fitting a valid GP and voting
for the next promising candidates. Therefore, the R program
generates an error and stops. Hence, it is difficult to find
the optimized solution by PBO if the feasible area is small.
On the contrary, CBO can solve the optimization problem in
such situations by approximation f (α) and g(α) at the same
time.

To further investigatewhether PBOcan produce compa-
rable or even better results than CBO in terms of optimality,
we reduced the fulfill rate requirement to 90%. As shown
in the last column of Table 8, there are 4 feasible solutions
during the initialization phase and PBO was able to solve the
optimization problem. The corresponding results are given
in Table 9 and Table 10 respectively. It can be seen that,
in terms of optimality, CBO still significantly outperforms
PBO. As for computational time, we observe that PBO is in
general slightly faster than CBO. The gap between these two
methods is smaller when there are more scenarios.

5. Conclusion

We proposed two Bayesian optimization methods that use
the agent-based supply-chain simulator developed by Kiuchi
et al. [8] as the DSCT tool to solve a constrained supply-
chain inventory-control problem. Our experimental results
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Table 8 Mid-term results of the penalty-based Bayesian optimization with complex SC (Fig. 1).

Table 9 Objective function value (inventory cost) with complex SC
(Fig. 1), β = 0.90.

Table 10 Computational time (sec) comparison with complex SC
(Fig. 1), β = 0.90.

indicate that our constrained Bayesian optimization (CBO)
outperformed the most widely used optimization algorithm
in supply-chain inventory control (i.e., a genetic algorithm
(GA)) in terms of both optimality and computational effi-
ciency. CBO achieved lower inventory costs than GA under
all settings. And the computational time was 22 times faster
than GA in the best case.

As future research, wewill improve simulator efficiency
and apply our proposed Bayesian optimization methods with
the agent-based supply-chain simulator to solve supply-chain
optimization problems that do not only for numerical param-
eters but also non-numerical parameters, such as inventory
policy combination, at each site. There is a large amount of
searching space if the problem contains non-numerical pa-
rameters, andmore complex SCnetwork; thus, more samples
will be needed to have a good surrogate model approxima-
tion and problem formulation. At the same time, optimizing
the surrogate model to propose the next most promising sam-
ple will also become more challenging. It will be valuable
to explore the limit of CBO and the applicability of more
advanced Bayesian optimization methods, such as Bayesian
optimization with knowledge gradients [17], as the supply-

chain optimization problem becomes more complex.
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