
1298
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

PAPER
A Satisfiability Algorithm for Deterministic Width-2 Branching
Programs

Tomu MAKITA†, Nonmember, Atsuki NAGAO††a), Member, Tatsuki OKADA†, Nonmember,
Kazuhisa SETO†††b), and Junichi TERUYAMA††††c), Members

SUMMARY A branching program is a well-studied model of compu-
tation and a representation for Boolean functions. It is a directed acyclic
graph with a unique root node, some accepting nodes, and some rejecting
nodes. Except for the accepting and rejecting nodes, each node has a label
with a variable and each outgoing edge of the node has a label with a 0/1 as-
signment of the variable. The satisfiability problem for branching programs
is, given a branching program with n variables and m nodes, to determine
if there exists some assignment that activates a consistent path from the
root to an accepting node. The width of a branching program is the maxi-
mum number of nodes at any level. The satisfiability problem for width-2
branching programs is known to be NP-complete. In this paper, we present
a satisfiability algorithm for width-2 branching programs with n variables
and cn nodes, and show that its running time is poly(n) · 2(1−µ(c))n , where
µ(c) = 1/2O(c log c). Our algorithm consists of two phases. First, we
transform a given width-2 branching program to a set of some structured
formulas that consist of AND and Exclusive-OR gates. Then, we check the
satisfiability of these formulas by a greedy restriction method depending on
the frequency of the occurrence of variables.
key words: satisfiability, width-k branching program, greedy restriction,
moderately exponential time, exact algorithm

1. Introduction

A branching program (BP) is a directed acyclic graph with
a unique root node and some sink nodes. Each node except
for the sink nodes is labeled by a variable, and each edge
is labeled either 0 or 1 corresponding to a variable’s value.
Depending on the value of the output, each sink node is
labeled either 0 or 1. A BP is deterministic if any node
excluding the sink nodes has two edges: one edge is labeled
0, and the other edge is labeled 1. A BP computes a Boolean
function naturally in the following way: it traces edges from
the root node to a sink node corresponding to the value
of the input. The bounded width BP is well studied. A
width-k BP is a leveled BP and each level has at most k

Manuscript received September 21, 2021.
Manuscript revised December 28, 2021.
Manuscript publicized March 8, 2022.
†The authors are with Seikei University, Musashino-shi, 180-

8633 Japan.
††The author is with Ochanomizu University, Tokyo, 112-8610

Japan.
†††The author is with Hokkaido University, Sapporo-shi, 060-

0814 Japan.
††††The author is with University of Hyogo, Kobe-shi, 651-2197
Japan.

a) E-mail: a-nagao@is.ocha.ac.jp
b) E-mail: seto@ist.hokudai.ac.jp
c) E-mail: junichi.teruyama@gsis.u-hyogo.ac.jp
DOI: 10.1587/transfun.2021EAP1120

nodes. Barrington [2] showed that any function in NC1 can
be computed by width-5 BPs of polynomial length. Thus,
it suffices to show that some explicit function in NP has
a super-polynomial lower bound on the length of width-
5 BPs to prove NP * NC1. Borodin, Dolev, Fich, and
Paul [5] showed Ω(n2/log n) lower bounds for the half-exact
function that outputs 1 if half of input is assigned 1. A
first exponential lower bound of width-2 BPs for an explicit
function in NP (actually in NC1) was shown by Yao [13].
Pseudorandom generators are known for width-2 and width-
3 BPs. Bogdanov, Dvir, Verbin, and Yehudayoff [3] showed
pseudorandomgenerators againstwidth-2BPs of polynomial
length that read k bits of input at a time. A construction of
pseudorandom generators against ordered read-once width-3
BPs of length n was shown by Meka, Reingold, and Tal [7].

In this paper, we study the satisfiability problem for
bounded width BPs. The satisfiability problem for BPs (BP-
SAT) is to determine whether there exists a consistent path
from the root to a 1-sink. If any variable appears at most
once in any path of a BP (called a read-once BP), by checking
the reachability from the root to each 1-sink, we can easily
check its satisfiability. However, when somevariable appears
twice, we cannot determine the satisfiability in the sameway.
Assume that, by solving the reachability of a given BP B, we
get a path from the root to 1-sink that includes the edges x1 =
0 and x1 = 1. The assignment corresponding to this path
does not satisfy B because x1 = 0 and x1 = 1 are inconsistent.
In this way, the reachability for a given BP does not imply
its satisfiability. Even if the width of a BP is bounded by 2,
deciding its satisfiability becomes NP-complete. BP-SAT is
a variant of Circuit Satisfiability (Circuit-SAT). The Circuit-
SAT is, given a Boolean circuit, to determine whether there
exists some assignment to the input variables such that the
circuit outputs 1. The satisfiability problem for Boolean
circuits in a class C (e.g. AC0, ACC0, NC1) is called C-
SAT. Williams [12] showed that building an algorithm for
C-SAT that is super-polynomially faster than the brute-force
search implies NEXP * C. By combining Barrington’s
theorem with this result, to prove that NEXP * NC1, it
is sufficient to develop an O(2n−ω(log n)) time algorithm for
width-5 BP-SAT.

As a first step toward this goal, we present the satisfiabil-
ity algorithm for deterministic width-2 BPs with n variables
and cn nodes.

Theorem 1. There exists a deterministic satisfiability algo-

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

MAKITA et al.: A SATISFIABILITY ALGORITHM FOR DETERMINISTIC WIDTH-2 BRANCHING PROGRAMS
1299

rithm for deterministic width-2 branching programs with n
variables and cn nodes, and it runs in time poly(n) ·2(1−µ(c))n
for µ(c) = 1/2O(c log c).

An overview of our algorithm is as follows: First, we
decompose a given width-2 BP into a family of sets of strict
width-2 BPs (which contain exactly one 0-sink and one 1-
sink) by the breadth-first search. Then, we transform each
set of strict width-2 BPs to a formula with some structural
properties such that it is satisfiable if and only if the given
BP is satisfiable. Finally, we check the satisfiability of
each formula by a greedy restriction algorithm depending
on the frequency of the occurrence of the variables in a for-
mula. Similar algorithms appear in the satisfiability of De
Morgan formulas [10] and formulas over the full binary ba-
sis [11]. The analysis of our algorithm is based on a variant
of Azuma’s inequality in [6].

Related Work

There exist polynomial or moderately exponential time sat-
isfiability algorithms for some restricted BPs. An ordered
binary decision diagram (OBDD) is a BP that has the same
permutation of variables in all paths from the root to any sink.
Its satisfiability can be easily solved by checking the reach-
ability from the root to 1-sink. A k-OBDD is a k-layered
OBDD and all layers are OBDDs with the same permuta-
tion of variables. For any constant k, its satisfiability can be
decided in polynomial time shown byBollig, Sauerhoff, Siel-
ing, and Wegener [4]. A k-indexed binary decision diagram
(k-IBDD) is the same as a k-OBDD, except that each layer
may have a different permutation of variables. A k-IBDD-
SAT is known to be NP-complete when k ≥ 2 [4]. Nagao,
Seto, andTeruyama [8] proposed a satisfiability algorithm for
k-IBDDwith cn edges, and its running time isO(2(1−µk (c))n),
where µk(c) = 1/O((log c)2

k−1−1). They [9] also presented
O(2(1−1/4k−1)n) time satisfiability algorithm for syntactic
read-k-times BPs. Chen, Kabanets, Kolokolova, Shaltiel,
and Zuckerman [6] presented O(2n−ω(log n)) satisfiability al-
gorithm for general BPs with o(n2) nodes. In addition, the
hardness of BP-SAT implies the hardness of the Edit Dis-
tance and Longest Common Subsequence problem [1].

Paper Organization

The remainder of this paper is organized as follows. In
Sect. 2, we provide the notation and definitions. In Sect. 3,
we provide a transforming algorithm from a width-2 BP to
a set of formulas over AND and Exclusive-OR operations
with some structural properties and a satisfiability algorithm
for its formula.

2. Preliminaries

For a set S, |S | denotes the cardinality of S. Let X =
{x1, . . . , xn} be a set of Boolean variables.

A branching program (BP), denoted by B = (V,E), is

Fig. 1 General, leveled, and strict BPs.

a rooted directed acyclic multigraph. The length of BP B is
the length of the longest path in BP, denoted by `(B). A BP
has a unique root node r , and sink nodes without outgoing
edges. We call a sink node labeled by 0 (resp. 1) 0-sink
(resp. 1-sink). A BP has at least one 0-sink, and at least one
1-sink. Each node except for the sink nodes is labeled from
X . We call node v an xi-nodewhen v’s label is xi . Each edge
e ∈ E has a label 0 (0-edge) or 1 (1-edge). Figure 1(a)–(c)
are examples of BPs.

A BP is leveled if, for any node v, all paths from the root
r to v have the same length. For a leveled BP, we say that a
node v is at level d if the length of the shortest path from r
to v is d. Note that, at least one sink node appears at level
`(B) and the other sink nodes can appear at any level except
the root node. For all i (0 ≤ i < `(B)), an edge leaving a
node at level i except for the sink nodes ends at a node at
level i + 1. Figure 1(b) and (c) are leveled BPs, but Fig. 1(a)
is not. A leveled BP is strict if it has exactly one 1-sink and
one 0-sink. Figure 1(c) is a strict BP, but Fig. 1(b) is not.
The width of a leveled BP is the maximum number of nodes
at any level. If the width of BP is k, we call it width-k BP.
Figure 1(b) is a width-2 BP and Fig. 1(c) is a width-3 BP.
For a width-2 BP B, when B contains two nodes u and v at
the same level, we call u (v, resp.) the sibling of v (u, resp.).
A BP B is deterministic if the outgoing edges of each node
except for the sink nodes in B are exactly one 0-edge and one
1-edge. Otherwise, B is nondeterministic. In this paper, any
BP is a deterministic width-2 BP unless otherwise stated.

For a BP B on X , each input α = (α1, . . . , αn) ∈ {0,1}n
activates all αi-edges leaving the xi-nodes in B, where
1 ≤ i ≤ n. A computation path is a path from the root r to a
0-sink or a 1-sink using only activated edges. Note that, for
each input α ∈ {0,1}n, the computation path of a determin-
istic BP exists uniquely. A BP B outputs 0 (resp. 1) if the
computation path reaches a 0-sink (resp. 1-sink). In this way,
a BP represents a Boolean function {0,1}n → {0,1}. For
example, all three BPs in Fig. 1 represent the same Boolean
function. A BP is satisfiable if there exists an assignment
α such that B outputs 1. The task of BP-SAT is, given a
BP, to determine if it is satisfiable. Any CNF formula can be
represented by a width-2 BP as follows. Let F be a CNFwith
s clauses C1,C2, . . . ,Cs , respectively. First, we construct the
strict width-2 BP Bi for each Ci (1 ≤ i ≤ s) (see the left

1300
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Fig. 2 Clauses and a CNF to width-2 BPs.

side in Fig. 2). Next, for each i (1 ≤ i < s), we concatenate
Bi with Bi+1 replacing the 1-sink of Bi with the root of Bi+1
(see the right side in Fig. 2). Then, we obtain the width-2
BP B corresponding to F. As this fact and CNF-SAT is
NP-complete, the satisfiability problem for width-2 BPs is
also NP-complete.

ABoolean function {0,1}n → {0,1} can be represented
as a formula. A formula is a rooted binary tree in which
each leaf is labeled by a literal (which is either a variable
x, or its negation x̄), or a constant from {0,1}. We also
use x1 and x0 as a positive literal x and a negative literal x̄,
respectively. Each internal node in a formula is called a gate,
and is labeled by a binary function. The size of a formula
f , denoted by L(f), is defined as the number of literals in
its leaves. It is known that formulas of polynomial size and
width-5 branching programs with a polynomial number of
nodes compute the same class of Boolean functions [2]. For
a formula f , a subformula of f is defined as a formula which
is a subtree in f . The frequency of a variable x in f , denoted
by freq(f , x), is the total number of positive literal x and
negative literal x̄ appearing in the leaves of f . Let var(f)
denote the set of variables in f . For any formula f , any set of
variables {xi1, . . . , xik } and any constant a1, . . . ,ak ∈ {0,1},
we denote by f |xi1=a1 ,...,xik =ak

the formula obtained from f
by assigning the value aj to each xi j . In this paper, we use
only AND (∧) and Exclusive-OR (⊕) gates in a formula.

3. Algorithm and Analysis

In this section, we give an algorithm for solving width-2
BP-SAT. Our algorithm consists mainly of two phases: (1)
Transforming a given width-2 BP to a set of formulas with ∧
and ⊕ gates. (2) Checking the satisfiability of each formula
in the set obtained in phase 1.

3.1 Transformation of Width-2 BPs

We present an algorithm to transform a given width-2 BP B

Algorithm 1: Decomposition(B)
Input: A width-2 BP B
Output: A set of strict width-2 BPs T
Let s be the number of 1-sinks in B.
Compute levels `1, `2, . . . , `s of 1-sinks in B by breadth-first
search.

Let S = ∅ and `0 = 0.
for i = 1, . . . , s do

Let ui be the sibling of the 1-sink at level `i .
Let Bi be a copy of B from level `i−1 to level `i except for
the 1-sink at level `i−1.

if i < s then
Create new 0-sink node w.
Change all incoming edges to ui of Bi to connect to w.

Add Bi to the set S.

Let T = ∅
for each Bi ∈ S do

Let si be the number of 0-sinks in Bi .
Compute levels `i , j (j = 1, . . . , si) of 0-sinks in Bi by
breadth-first search.

Let Ti = ∅ and `i ,0 = 0.
for j = 1, . . . , si do

Let ui , j be the sibling of the 0-sink at level `i , j .
Let Bi , j be a copy of Bi from level `i , j−1 to level `i , j
except for the 0-sink at level `i , j−1.

if j < si then
Create new 1-sink node w.
Change all incoming edges to ui , j of Bi , j to
connect to w.

Add Bi , j to the set Tj .

Add Ti to T .

return T

to a set of formula F. Let s be the number of 1-sink nodes in
B. First, we decompose B into s BPs B1,B2, . . . ,Bs . Let the
levels of s 1-sink nodes be `1, `2, . . . , `s (`1 < `2 < · · · < `s),
respectively. For each i (1 ≤ i ≤ s), let ui be the sibling of
1-sink at `i and let u0 be the root node of B. Note that ui
must be neither 0-sink nor 1-sink except for us . For each i, Bi

consists of node ui−1 as the root node and all nodes at level
from `i−1 +1 to `i except ui , and all incoming edges to ui are
changed to connect a new 0-sink node. Thus, we have the
set S of BPs {B1,B2, . . . ,Bs}, and B is satisfiable if and only
if some Bi is satisfiable. Then, we decompose each width-2
BP Bi ∈ S to a set of strict width-2 BPs in a similar way
by considering the levels of 0-sink nodes in Bi . For each i,
we obtain the set of strict width-2 BPs {Bi,1,Bi,2, . . . ,Bi,si },
where si is the number of 0-sinks of Bi , and Bi is satisfiable
if and only if all Bi, j are satisfiable. These operations are
done by Decomposition as Algorithm 1.

Finally, we transform each strict width-2 BP to a for-
mula that consists of ∧ and ⊕ gates. The idea of transforma-
tion is based on the proof of Theorem 1 shown by Borodin
et al. [5]. Let us suppose that `(Bi, j) = ` > 1. The last two
levels (` − 1 and `) of Bi, j should fit one of three cases in
Fig. 3. We create a part of the formula from Bi, j correspond-
ing to the case in Fig. 3 and a new strict width-2 BP with
length `− 1 by removing the nodes at ` level and replacing u
and v with 0-sink and 1-sink, respectively. We continue this

MAKITA et al.: A SATISFIABILITY ALGORITHM FOR DETERMINISTIC WIDTH-2 BRANCHING PROGRAMS
1301

Fig. 3 Case analysis.

Algorithm 2: MakeFormula(B)
Input: A strict width-2 BP B
Output: A formula f which represents the same function as B
if `(B) = 1 then

return a pos/neg literal for the label with the root node of
B.

Set u, v, t, α and β such that they correspond to one of three
cases in Fig. 3.

Remove from B all outgoing edge of u and v.
Replace u and v with 0-sink and 1-sink, respectively.
f ← MakeFormula(B).
if Case (a) holds then

return f
else if Case (b) holds then

return (f ∧ vα) ⊕ t
else # Case (c) holds

return (f ∧ (vβ ⊕ uᾱ)) ⊕ uᾱ

Algorithm 3: Transformation(B)
Input: A width-2 BP B
Output: A set of formulas F
Let T = ∅.
T ← Decomposition(B)
Let F = ∅.
for i = 1, . . . , |T | do

Let fi = 1.
for each Bi , j ∈ Ti do

gi , j ←MakeFormula(Bi , j)
fi ← fi ∧ gi , j

Add fi to F .
return F

operation recursively until we have a BP of length one, which
corresponds to a formula with one literal. MakeFormula
as Algorithm 2 shows the detail of the transformation from
a strict width-2 BP to a structured formula.

Combining Decomposition and MakeFormula, we
obtain Transformation as Algorithm 3 that can transform
a given width-2 BP to a set of some structured formulas. We
claim as follows.

Lemma 1. Given a width-2 BP with n variables and m
nodes, Transformation runs in time O(m) and outputs a set
of formulas. The total size of the output formulas is at most
1.5m.

Proof. Case (c) in Fig. 3 produces three leaves of a formula
from two nodes of a width-2 branching program. Thus, the
size of the formula is 1.5 times as large as the number of
nodes of a given width-2 BP. The other cases do not increase
the size of the formula. Therefore, the total size of the
output formulas is at most 1.5m. The rest of the proof is
to estimate the running time of Transformation. Letting
` be the length of a given BP, Decomposition runs in time
O(`) = O(m) since ` < m holds. For each strict width-2 BP
with length `′, MakeFormula runs in time O(`′). Because
the sum of length of all strict width-2 BPs is ` < m, the
total running time of MakeFormula is also O(m). Thus,
Transfomation runs in time O(m) and this completes the
proof. �

3.2 Satisfiability Checking of Formulas

The rest of our task is to check the satisfiability of each
formula f in set F obtained by Transformation in the pre-
vious section. The basic operation of checking is the greedy
restriction which picks up the most frequently appearing
variable x in formula f and checking the satisfiability of two
formulas f |x=0 and f |x=1.

After the assignment to variable x, we call the procedure
Simplify to reduce the size of a formula by applying rules
to eliminate constants, redundant literals, and gates. See
Algorithm 4. This procedure is almost the same one in [11],
but we skip the operation of replacing 1 ⊕ f ′ by a negation
of a subformula f ′. The reason is that De Morgan’s laws for
a negation of f ′ replaces an AND gate with an OR gate and
it does not preserve the formula that consists of AND and
Exclusive-OR gates. For any formula g, it is easy to see that
Simplify runs in time polynomial in the size of g and the
resulting formula computes the same function as g.

From MakeFormula and Simplify, we obtain the fol-
lowing structural lemma about formulas.

Lemma2. Let f be a formula in the set created by Transfor-
mation. For any set of variables {xi1, . . . , xik } and any con-
stant a1, . . . ,ak ∈ {0,1}, g = Simplify(f |xi1=a1 ,...,xik =ak

)

satisfies one of the following cases.

1. There exists a variable x such that freq(g, x) ≥
L(g)/|var(g)| + 1/4.

2. There exists a variable x whose parent is ∧, and
freq(g, x) ≥ L(g)/|var(g)|.

3. There exists an x⊕y and its parent is∧, and freq(g, x) =
freq(g, y) ≥ L(g)/|var(g)|. Let v be the sibling of x ⊕ y
and gv be a subformula with root v.

a. There exists a variable z other than x and y in gv .
b. There exist no variable except x and y in gv .

4. The number of variables that connect ∧ whose parent

1302
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Algorithm 4: Simplify(f)
Input: A formula f
Output: A formula f which represents the same function as the

input formula
while Until there is no decrease in size of f do

if 0 ∧ f ′ (1 ∧ f ′, resp.) occurs as a subformula, where f ′ is
any formula then

Replace this subformula by 0 (f ′, resp.)
if y ∧ f ′ occurs as a subformula, where f ′ is a formula and
y is a literal then

Replace all occurrences of y in f ′ by 1 and all
occurrences of ȳ by 0.

if 0 ⊕ f ′ occurs as a subformula, where f ′ is any formula
then

Replace this subformula by f ′

if 1 ⊕ y occurs as a subformula, where y is a literal or a
constant then

Replace this subformula by ȳ
if y ⊕ y (y ⊕ ȳ, resp.) occurs as a subformula, where y is
a literal then

Replace this subformula by 0 (1, resp.)

return f

⊕, or consist of x ⊕ y whose parent is ∧ is at most
|var(g)|/2.

5. g is a conjunction of formulas that consist of only ⊕
gates.

Proof. Note that the average frequency of g is L(g)/|var(g)|.
Let us assume that cases 1–3 are false. Since case 1 is false,
all the variable appears less than L(g)/|var(g)|+1/4 times in
the formula. Let an integer γ be dL(g)/|var(g)|e and we have
L(g)/|var(g)| ≤ γ < L(g)/|var(g)| + 1/4. This inequality
is led by the assumption that case 1 is false. We divide the
variable set var(g) into two sets X1 = {x | freq(g, x) = γ}
and X2 = {x | freq(g, x) ≤ γ − 1}.

Next we discuss the structural property of g. Cases (b)
and (c) in Fig. 3 imply that if there exist some ⊕s that have
an ∧ as their child, then at least one child of such ∧ must
be a literal or x ⊕ y. Since cases 2 and 3 are false, (i) all
variables that connect ∧-gate belong to X2 and (ii) for each
x ⊕ y whose parent is ∧-gate, at least one of variables (x,
y) belong to X2. This implies that the number of variables
that connect ∧ whose parent is ⊕, or consist of x ⊕ y whose
parent is ∧ is at most 2|X2 |. We show that |X2 | ≤ |var(g)|/4
holds. Since the size of g is the sum of the frequencies of
all variables, L(g) ≤ γ |X1 | + (γ − 1)|X2 | = γ |var(g)| − |X2 |
holds. By the definition of γ, γ < L(g)/|var(g)| + 1/4, that
is, L(g) > (γ − 1/4)|var(g)|. Thus, we have

|X2 | ≤ γ |var(g)| − L(g)

< γ |var(g)| −
(
γ −

1
4

)
|var(g)| =

|var(g)|
4

.

Therefore, if there exist some ⊕s that have an∧ as their child,
case 4 occurs.

Otherwise, there exists no ⊕ that has an ∧ as its child.
This means that any child of every ⊕ is an ⊕ or a literal, or
a constant. Thus, g is a conjunction of ⊕s. �

Algorithm 5: EvalFormula(f , k)
Input: A formula f and a constant k
Output: True (if f is satisfiable) or False (otherwise)
Simplify(f)
if Case 5 in Lemma 2 holds, then

Check the satisfiability of f by Gaussian Elimination.
if f is satisfiable then

return True
else

return False

if |var(f) | < k/2, then
Check the satisfiability of f by brute-force search.
if f is satisfiable then

return True
else

return False

if Case 4 in Lemma 2 holds, then
Let X′ be a set of variables that connect ∧ whose parent ⊕,
or consist of x ⊕ y whose parent is ∧.

Check the satisfiability of f by brute-force search on X′ and
Gaussian Elimination.

if f is satisfiable then
return True

else
return False

Let x be the most frequent variable in f .
if Case 1 or Case 2 in Lemma 2 holds, then

val0 ← EvalFormula(f |x=0, k)
val1 ← EvalFormula(f |x=1, k)
return val0 or val1

else # Case 3 in Lemma 2 holds
Let y be the sibling of x.
Let v be the sibling of x ⊕ y.
Let f v be the subformula of f with the root v.
if Case 3(a) holds, then

g← f |x=0
val00 ← EvalFormula(g |y=0, k)
val01 ← EvalFormula(g |y=1, k)
h ← f |x=1
val10 ← EvalFormula(h |y=0, k)
val11 ← EvalFormula(h |y=1, k)
return val00 or val01 or val10 or val11

else if y appears in f v then
val0 ← EvalFormula(f |x=0, k)
val1 ← EvalFormula(f |x=1, k)
return val0 or val1

else
val0 ← EvalFormula(f |y=0, k)
val1 ← EvalFormula(f |y=1, k)
return val0 or val1

We propose the satisfiability algorithm EvalFormula
as Algorithm 5 that determines the satisfiability of formulas
created by Transformation and the satisfiability algorithm
W2BP-Sat as Algorithm 6 which determines the satisfiabil-
ity of deterministic width-2 BP-SAT. It is easy to see the
correctness of EvalFormula. Our algorithm is a simple
branch and bound, thus it can check the satisfiability of g
correctly.

Let g be a formula satisfying Lemma 2. EvalFormula
terminates the branching in the following three cases: (1)
If g satisfies case 5 in Lemma 2, we solve a system of at

MAKITA et al.: A SATISFIABILITY ALGORITHM FOR DETERMINISTIC WIDTH-2 BRANCHING PROGRAMS
1303

Algorithm 6: W2BP-Sat(B)
Input: A width-2 BP B
Output: Yes (if B is satisfiable) or No (otherwise)
Let F = ∅.
F ← Transformation(B)
for each fi ∈ F do

Let c = L(fi)/ |var(fi) |.
Let k = |var(fi) |/2(2

√
2c)10c .

if EvalFormula(fi , k) then
return Yes (Satisfiable)

return No (Unsatisfiable)

most cn linear equations using the Gaussian Elimination.
Because theGaussian Elimination solves a systemofm linear
equations in time O(m3), the time complexity of this case is
bounded by O(c3n3). (2) If g has at most k/2 variables (k
is a parameter fixed in Algorithm 6), by a brute-force search
for all variables, we can compute the satisfiability of g in
time O(2k/2). (3) If g satisfies case 4, we select a set X ′ of
variables that connect ∧ whose parent ⊕, or consist of x ⊕ y
whose parent is ∧. By a brute-force search on X ′, we have a
system of at most cn linear equations. Thus, we can compute
the satisfiability of g in time O(c3n32 |var(g) |/2).

If the above cases do not occur, cases 1–3 must happen
by Lemma 2. For these cases, the algorithm restricts one
variable or two variables step-by-step and reduces the size of
the formula non-trivially at each step. EvalFormula picks
up a variable x which is the most frequent variable in g. For
case 1, when we restrict variable x, EvalFormula always
eliminates at least L(g)/|var(g)| + 1/4 leaves.

For case 2, when we restrict variable x, EvalFormula
always eliminates at least L(g)/|var(g)| leaves. Furthermore,
if x takes value 0 (1, resp.) and the parent of a literal x0 (x1,
resp.) is an ∧ gate, the sibling node of x is eliminated. Thus,
the size of the formula are reduced by at least L(g)/|var(g)|+1
with a probability of at least 1/2 if we randomly restrict
variable x.

For case 3(a), there exists a variable z in f v other than x
and y. In this case, we randomly restrict the variables x and
y. Since x and y appear at least L(g)/|var(g)| times, we al-
ways eliminate at least 2L(g)/|var(g)| leaves. Furthermore,
since x ⊕ y takes value 0 with a probability of 1/2, and the
parent of ⊕ is an ∧ gate, the sibling node of ⊕ can be elimi-
nated with probability 1/2. Then, by eliminating at least one
extra variable z, we can eliminate at least 2L(g)/|var(g)| + 1
leaves with probability 1/2.

For case 3(b), there is no variable other than x and y in
f v . In this case, if there exists y in f v , we randomly restrict
the variable x. Then, both f v |x=0 and f v |x=1 have only the
variable y. By Simplify, EvalFormula eliminates at least
one y. Thus, we can eliminate at least L(g)/|var(g)| + 1
leaves with probability 1/2. Otherwise, (if there does not
exist y in f v ,) we can eliminate at least L(g)/|var(g)| + 1
leaves with probability 1/2 by interchanging x and y in the
above argument.

To analyze the running time of EvalFormula, wemake

Fig. 4 Example of a computation tree.

a computation tree for a process of adaptive restriction in
EvalFormula. A computation tree is a rooted binary tree
and each node is labeled by a pair of a formula g and a
symbol s in {1,2,3aI,3aII,3b,4,5, <k/2} that corresponds to
which case happens on g, denoted by 〈g, s〉. See Fig. 4.
The formula for the label of the root is the original input
formula f . Let p be a node in the computation tree and
g be a formula in the label of p. If g satisfies cases 1,
2, or 3(b), then p is labeled with 〈g,1〉, 〈g,2〉, or 〈g,3b〉,
respectively. Node p has two children: One is labeled with
the formula Simplify(g |x=0) and the other is labeled with
Simplify(g |x=1), where x is the restricted variable assigned
by EvalFormula.

If g satisfies 3(a), then p is labeled with 〈g,3aI〉 and has
also two children p0 and p1: p0 has the label 〈g |x=0,3aII〉
and p1 has 〈g |x=1,3aII〉, where x is the first restricted
variable assigned by EvalFormula. Moreover, p0 (p1,
resp.) has two children: One child has the formula Sim-
plify(g |x=0,y=0) (Simplify(g |x=1,y=0), resp.) and the other
has Simplify(g |x=0,y=1) (Simplify(g |x=1,y=1), resp.), where
y is the second restricted variable. If g satisfies cases 4 or
5, or var(g) < k/2 holds, then p is a leaf and labeled with
〈g,4〉 or 〈g,5〉, or 〈g,<k/2〉.

We can see that any path from the root to a leaf repre-
sents a sequence of restrictions in cases 1–3. For a node p in
the computational tree, we call the depth of p the length of
a path from the root to p. Note that, if a formula g exists in
the node of the depth d, then |var(g)| ≤ |var(f)| − d holds.

Consider the computation tree divided virtually into
layers of height 2, which means that at each layer, there are
exactly two variables being restricted. Consider a node at
the top of one layer; let g be the formula labeling the node,
and suppose g is over var(g) variables with size L(g). Let g′
be the new formula after adaptively restricting two variables
(at the bottom of the layer). Then, we have the following
bounds on the size of g′.

1304
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Lemma 3. It holds that L(g′) ≤ L(g)
(
1 − 2

|var(g) |

)
. More-

over, if |var(g)| ≥ 11, with probability at least 1/2,

L(g′) ≤ L(g)
(
1 −

2
|var(g)|

)1+ |var(g)|
5L(g)

.

Proof. For any layer, without loss of generality, we assume
that we assign two variables x and y in this order. Let g′′ be
a formula after restricting variable x.

First, we prove the first inequality. If g satisfies case
3(a), then freq(g, x) = freq(g, y) ≥ L(g)/|var(g)| holds. By
restricting variables x and y, we reduce the size of formula
g by at least freq(g, x) + freq(g, y). Thus, we have

L(g) − L(g′) ≥ 2L(g)/|var(g)|.

This implies that the first inequality holds. Next, let us
suppose that g satisfies cases 1, 2 or 3(b). By restricting
variable y, we can reduce the size of the formula by at least
freq(g′′, y), then we have

L(g) − L(g′) ≥ L(g) − L(g′′) + freq(g′′, y).

By the behavior of EvalFormula, we have

L(g) − L(g′′) ≥ freq(g, x) ≥
L(g)
|var(g)|

(1)

and

freq(g′′, y) ≥
L(g′′)

|var(g)| − 1
. (2)

Therefore,

L(g) − L(g′′) + freq(g′′, y)

≥L(g) − L(g′′) +
L(g′′)

|var(g)| − 1

=
|var(g)| − 2
|var(g)| − 1

· (L(g) − L(g′′)) +
L(g)

|var(g)| − 1

≥
|var(g)| − 2
|var(g)| − 1

·
L(g)
|var(g)|

+
L(g)

|var(g)| − 1

=
L(g)

|var(g)| − 1

(
|var(g)| − 2
|var(g)|

+ 1
)
=

2L(g)
|var(g)|

. (3)

Thus, the first inequality holds. The rest of the proof is the
case that g is a formula h|z=0 or h|z=1, where h is a formula
that satisfies case 3(a), and z and x are variables picked
up for restriction. Becasue EvalFormula does not apply
Simplify to g, we have |var(h)| = |var(g)| + 1 and

L(g) ≤ L(h) −
L(h)
|var(h)|

.

Therefore,

L(h)
|var(h)|

≥
L(g)

|var(h)| − 1
=

L(g)
|var(g)|

holds. Sincewe have freq(g, x) = freq(h, x) ≥ L(h)/|var(h)|,

freq(g, x) ≥
L(g)
|var(g)|

holds and this means Eq. (1) holds, too. Eq. (2) also holds
and then Eq. (3) occurs the same way as the above case.
Thus, the proof for the first inequality is complete.

To prove the second inequality holds with a probability
of at least 1/2, it suffices to show the following lemma.

Lemma 4. EvalFormula reduces the size of the formula by
at least 2L(g)/|var(g)| + 2/5 with a probability of at least
1/2 by restricting two variables.

Lemma 4 implies that

L(g′) ≤ L(g) −
(
2

L(g)
|var(g)|

+
2
5

)
= L(g)

[
1 −

2
|var(g)|

(
1 +
|var(g)|
5L(g)

)]
≤ L(g)

(
1 −

2
|var(g)|

)1+ |var(g)|
5L(g)

holds with the probability at least 1/2. The last inequality is
led by the fact that 1 − ax ≤ (1 − x)a holds for any a ≥ 1
and 0 ≤ x ≤ 1.

The rest of the proof is to prove Lemma 4. If formula g
satisfies case 3(a), then the size of the formula is reduced by
at least 2L(g)/|var(g)| + 1 with the probability of at least 1/2
by assigning two variables x and y. If case 2 or case 3(b)
appears to assign y, then we can eliminate one additional
literal with a probability of at least 1/2. Thus, in such a case,
the size of the formula reduced by assigning two variables is
at least 2L(g)/|var(g)| + 1.

If case 2 or case 3(b) appears for to assign x, then
L(g)− L(g′′) ≥ L(g)/|var(g)|+1 holds with a probability of
at least 1/2. In such a case, the size of the formula reduced
by assigning two variables is at least

|var(g)| − 2
|var(g)| − 1

· (L(g) − L(g′′)) +
L(g)

|var(g)| − 1

≥
|var(g)| − 2
|var(g)| − 1

·

(
L(g)
|var(g)|

+ 1
)
+

L(g)
|var(g)| − 1

=
2L(g)
|var(g)|

+ 1 −
1

|var(g)| − 1
≥

2L(g)
|var(g)|

+
9

10
,

where the last inequality is obtained by |var(g)| ≥ 11.
In the rest of the proof is when case 1 appears twice.

In this case, L(g) − L(g′′) and L(g′′) − L(g′) should be at
least L(g)/|var(g)| + 1/4 and L(g′′)/(|var(g)| − 1) + 1/4.
Therefore,

L(g) − L(g′)
=L(g) − L(g′′) + L(g′′) − L(g′)

≥L(g) − L(g′′) +
L(g′′)

|var(g)| − 1
+

1
4

=
|var(g)| − 2
|var(g)| − 1

· (L(g) − L(g′′)) +
L(g)

|var(g)| − 1
+

1
4

MAKITA et al.: A SATISFIABILITY ALGORITHM FOR DETERMINISTIC WIDTH-2 BRANCHING PROGRAMS
1305

≥
|var(g)| − 2
|var(g)| − 1

·

(
L(g)
|var(g)|

+
1
4

)
+

L(g)
|var(g)| − 1

+
1
4

=
2L(g)
|var(g)|

+
1
2
−

1
|var(g)| − 1

≥
2L(g)
|var(g)|

+
2
5
,

where the last inequality is obtained by |var(g)| ≥ 11.
Therefore, we complete the proof of Lemma 4, and then

the second inequality holds with probability at least 1/2. �

Since |var(g′)| ≤ |var(g)| − 2, the following corollary
is obtained from Lemma 3.

Corollary 1.

L(g′)
|var(g′)|

≤
L(g)
|var(g)|

.

Next, we prove Lemma 6 by using Lemma 3 and the
following lemma.

Lemma 5 (Lemma 4.2 [6]). Let {Xi}
n
i=0 and {Ri}

n−1
i=1 be

sequences of random variables and Yi = Xi − Xi−1. If E[Xi |

Ri−1, . . . ,R1] ≤ Xi−1 for 1 ≤ i ≤ n, and for every 1 ≤
i ≤ n, the random variables Yi (conditioned on Ri−1, . . . ,R1)
assumes two values with equal probability, and there exists
a constant ci ≥ 0 such that Yi ≤ ci , then, for any λ, we have

Pr[Xn − X0 ≥ λ] ≤ exp

(
−

λ2

2
∑n

i=1 c2
i

)
Lemma 6. Let fn−k be the formula after restricting n − k
variables.

Pr
L (fn−k) ≥

√
2 · L(f) ·

(
k
n

)1+ |var(f)|
10L(f)

 ≤ 2 · 2−k/2.

Proof. Consider the node in the computation tree at depth 2 j
for j = 1, . . . , (n−k)/2. Let R1,R2, . . . ,R2(j−1) be the random
value that takes the assignment to the restricted variable at
each step in EvalFormula. We define a sequence of random
variables Z1, Z2, . . . , Z j as follows:

Z j = log L(f2j) − log L(f2(j−1))

−

(
1 +
|var(f)|
10L(f)

)
log

(
n − 2 j

n − 2 j + 2

)
.

First, we show that

Z j ≤ −
|var(f)|
10L(f)

log
(

n − 2 j
n − 2 j + 2

)
.

Since L(f2j) ≤ L(f2(j−1))
(
1 − 2

n−2j+2

)
byLemma 3, we have

log L(f2j) − log L(f2(j−1)) ≤ log
(
1 −

2
n − 2 j + 2

)
.

Therefore,

Z j ≤ log
(
1 −

2
n − 2 j + 2

)

−

(
1 +
|var(f)|
10L(f)

)
log

(
n − 2 j

n − 2 j + 2

)
= −
|var(f)|
10L(f)

log
(
1 −

2
n − 2 j + 2

)
holds. Let cj be as follows:

cj = −
|var(f)|
10L(f)

log
(
1 −

2
n − 2 j + 2

)
≥ 0.

Thus, Z j ≤ cj holds. By Lemma 3, Corollary 1 and
|var(f2(j−1))| ≤ n−2 j+2, conditioned on R1,R2, . . . ,R2(j−1),
with a probability of at least 1/2, we have

log L(f2j) − log L(f2(j−1))

≤

(
1 +
|var(f2(j−1))|

5L(f2(j−1))

)
log

(
1 −

2
|var(f2(j−1))|

)
≤

(
1 +
|var(f)|
5L(f)

)
log

(
1 −

2
n − 2 j + 2

)
.

Then,

Z j ≤

(
1 +
|var(f)|
5L(f)

)
log

(
1 −

2
n − 2 j + 2

)
−

(
1 +
|var(f)|
10L(f)

)
log

(
1 −

2
n − 2 j + 2

)
=
|var(f)|
10L(f)

log
(
1 −

2
n − 2 j + 2

)
= −cj .

Thus, Z j ≤ −cj holds with a probability of at least 1/2.
LetY1,Y2, . . . ,Yj be a sequence of randomvariables such

that each Yj takes −cj and cj with equal probability. Since
Z j ≤ cj always holds, and Z j ≤ −cj holds with a prob-
ability of at least 1/2, Pr[Z j ≥ λ] ≤ Pr[Yj ≥ λ] holds
for any λ. Moreover, letting X0,X1, . . . ,Xj be a sequence
of random variables X0 = 0 and Xj =

∑j
`=1 Ỳ , we have

E[Xj | R2(j−1), . . . ,R1] = Xj−1. Thus, random variables Xi

satisfy the conditions of Lemma 5. Applying Lemma 5, we
have for any λ > 0 and positive integer i,

Pr [Xi − X0 ≥ λ] =Pr


i∑
j=1

Yj ≥ λ


≤ exp

(
−

λ2

2
∑i

j=1 cj

)
.

Let i = (n − k)/2. For simplicity, we assume n − k can be
divided by 2.

First, we estimate the sum of c2
j . Since |var(f)| ≤ L(f)

holds and log(1 + x) ≤ x holds for any x > −1, we have

cj =
|var(f)|
10L(f)

log
(
1 +

2
n − 2 j

)
≤

1
2(n − 2 j)

.

Then, by elementary calculation, we have

(n−k)/2∑
j=1

c2
j ≤

1
10

(n−k)/2∑
j=1

(
1

n − 2 j

)2

1306
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

≤
1

10

(n−k)/2∑
j=1

1
(n − 2 j − 2)(n − 2 j)

≤
1

10

(n−k)/2∑
j=1

1
2

(
1

n − 2 j − 2
−

1
n − 2 j

)
=

1
20

(
1

k − 2
−

1
n − 2

)
≤

1
20(k − 2)

.

Therefore, we have

exp ©­«− λ2

2
∑(n−k)/2

j=1 c2
j

ª®¬ ≤ exp(−10λ2(k − 2)).

By setting λ = log 2
2 > 0.346 · · · > 1

10 , we have λ2 >
log 2
20

and then

exp
(
−10λ2(k − 2)

)
< exp

(
−

log 2
2
(k − 2)

)
= 2 · 2−k/2.

Then, we have

Pr


i∑
j=1

Z j ≥
log 2

2

 ≤ Pr


i∑
j=1

Yj ≥
log 2

2

 ≤ 2 · 2−k/2.

The rest of the proof shows that

exp

(
(n−k)/2∑
i=1

Z j

)
=

L(fn−k)

L(f)
(
k
n

)1+ |var(f)|
10L(f)

(4)

holds. Eq. (4) implies that

Pr

(n−k)/2∑

j=1
Z j ≥

log 2
2

 = Pr
exp ©­«

(n−k)/2∑
j=1

Z j
ª®¬ ≥
√

2


=Pr
L (fn−k) ≥

√
2 · L(f)

(
k
n

)1+ |var(f)|
10L(f)

 ≤ 2 · 2−k/2.

Recalling that

Z j = log L(f2j) − log L(f2(j−1))

−

(
1 +
|var(f)|
10L(f)

)
log

(
n − 2 j

n − 2 j + 2

)
,

we have

(n−k)/2∑
j=1

Z j

=

(n−k)/2∑
j=1

[
log L(f2j) − log L(f2(j−1))

]
−

(
1 +
|var(f)|
10L(f)

) (n−k)/2∑
j=1

log
(

n − 2 j
n − 2 j + 2

)

= log L(fn−k) − log (L(f))

−

(
1 +
|var(f)|
10L(f)

)
log

(
n − 2

n
·

n − 4
n − 2

· · · · ·
k

k + 2

)
= log L(fn−k) − log L(f) −

(
1 +
|var(f)|
10L(f)

)
log

(
k
n

)
= log L(fn−k) − log L(f) − log

(
k
n

)1+ |var(f)|
10L(f)

.

Hence, Eq. (4) holds and it completes the proof. �

Now, we estimate the running time of EvalFormula.

Lemma 7. Let f be a formula with n variables and cn size
satisfying Lemma 2. EvalFormula determines the satisfia-
bility of f in time poly(n) · 2(1−µ(c))n for µ(c) = 1

2·(2
√

2c)
10c .

Proof. Let p = (2
√

2c)−10c and k = pn. We build a compu-
tation tree based on adaptive restriction variables according
to the cases in Lemma 2, and continue the process until there
are at most k variables left.

We assume that neither constants nor formulas that sat-
isfy cases 4 and 5 in Lemma 2 appear in this process. That is,
let us consider the situation in which only cases 1–3 happen.
(We will deal with the situation where case 4 or 5 happens
later.) Since c = L(f)/|var(f)|, we have(

k
n

)1+ |var(f)|
10L(f)

= p1+ 1
10c = p · (2

√
2c)−10c · 1

10c =
p

2
√

2c
.

This implies that

√
2 · L(f) ·

(
k
n

)1+ |var(f)|
10L(f)

=
√

2 · cn ·
p

2
√

2c
=

pn
2
=

k
2

holds since L(f) = cn. Therefore, by Lemma 6, we have

Pr
[
L (fn−k) ≥

k
2

]
≤ 2 · 2−k/2.

This means that at most 2 ·2−k/2 fraction of the branches end
with a formula size at least k/2 after assigning n−k variables.
We check the satisfiability of such formulas by the brute-
force search for the remaining k variables. The running time
for these branches is bounded by O(2n−k · 2 · 2−k/2 · 2k) =
O(2n−k/2).

For the other branches that are at least 1 − 2 · 2−k/2
fraction of the branches, the size of formulas of their end is
less than k/2. This means that the number of the remaining
variables is less than k/2, thus we can check the satisfiability
of such formulas by the brute-force search for the remain-
ing k/2 variables. For these branches, the running time is
bounded by O(2n−k · 2k/2) = O(2n−k/2).

For the rest of analysis of the running time, let us con-
sider all leaves at higher than the depth of n − k and denote
by S the set of these leaves. We show that the total of the run-
ning time over S is at most poly(n) ·2n−k/2. By the definition
of the computation tree, any formula f in the label of leaves

MAKITA et al.: A SATISFIABILITY ALGORITHM FOR DETERMINISTIC WIDTH-2 BRANCHING PROGRAMS
1307

satisfies cases 4 or 5, or |var(f)| < k/2. If case 5 happens,
we determine the satisfiability of the formula in polynomial
time by the Gaussian Elimination. If |var(f)| < k/2, we
check the satisfiability of f in time O(2k/2) by the brute-
force search for the remaining at most k/2 variables. As-
sume that case 4 happens at depth d, where d < n− k holds.
We determine the satisfiability of f in time poly(n) · 2(n−d)/2
by a brute-force search and the Gaussian Elimination as de-
scribed in Sect. 3.2 since |var(f)| ≤ n − d holds. Therefore,
for any d with d < n − k, the running time for any leaf of
depth d is at most poly(n) · 2(n−d)/2. Moreover, we have
(n − d)/2 < n − d − k/2 since d < n − k holds. Thus, the
total of the running time over S is at most∑

s∈S

poly(n) · 2n−depth(s)− k
2

< poly(n) · 2n−
k
2
∑
s∈S

2−depth(s) ≤ poly(n) · 2n−
k
2 .

The last inequality is due to the binary tree as shown by the
Kraft–McMillan inequality†.

Therefore, the overall running time is bounded by
poly(n) · 2n−k/2, and then its exponent is

n −
k
2
=

(
1 −

p
2

)
n =

(
1 −

1

2 · (2
√

2c)
10c

)
n.

This completes the proof. �

Combining Lemmas 1 and 7, we give the following
theorem that leads immediately to Theorem 1.

Theorem 2. W2BP-Sat determines the satisfiability of a
deterministic width-2 branching program with n variables
and cn nodes, and it runs in time poly(n) · 2(1−µ(c))n for
µ(c) = 1/2O(c log c).

Proof. Let B be a width-2 branching program with n vari-
ables and cn nodes. By Lemma 1, Transformation trans-
forms B to formula f with n variables and at most 1.5cn
leaves in time O(n) and |F | is bounded by O(n). Then,
Lemma 7 implies that EvalFormula determines the satis-
fiability of each fi ∈ F in time

poly(n) · 2

(
1− 1

2·(2
√

2·(1.5c))10·(1.5c)

)
n

= poly(n) · 2

(
1− 1

2·(3
√

2c)15c

)
n
.

Thus, the time complexity of W2BP-Sat is

O(n) + O(n) · poly(n) · 2

(
1− 1

2·(3
√

2c)15c

)
n

= poly(n) · 2

(
1− 1

215c log(3
√

2c)+1

)
n
.

�

†For any binary tree and any set L of leaves in the tree,∑
s∈L 2−depth(s) ≤ 1 holds.

Acknowledgments

This research was partially supported by JSPS KAKENHI
Grant Numbers JP18K11170, JP18K18003, JP20K19741,
JP20H05794, and JP21K11743.

References

[1] A. Abboud, T.D. Hansen, V.V. Williams, and R. Williams, “Simulat-
ing branching programs with edit distance and friends: or: A polylog
shaved is a lower bound made,” Proc. 48th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp.375–388, 2016.

[2] D.A. Barrington, “Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1,” J. Comput. Syst.
Sci., vol.38, no.1, pp.150–164, 1989.

[3] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff,” “Pseudo-
randomness for width-2 branching programs,” Theory of Comput.,
vol.9, pp.283–293, 2013.

[4] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, “Hierarchy
theorems for kOBDDs and kIBDDs,” Theoretical Computer Science,
vol.205, no.1-2, pp.45–60, 1998.

[5] A. Borodin, D. Dolev, F.E. Fich, and W.J. Paul, “Bounds for width
two branching programs,” SIAM J. Comput., vol.15, no.2, pp.549–
560, 1986.

[6] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zucker-
man, “Mining circuit lower bound proofs for meta-algorithms,” Proc.
21st Annual IEEEConference on Computational Complexity (CCC),
pp.262–273, 2014.

[7] R. Meka, O. Reingold, and A. Tal, “Pseudorandom generators for
width-3 branching programs,” Proc. 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp.626–637, 2019.

[8] A. Nagao, K. Seto, and J. Teruyama, “A moderately exponential time
algorithm for k-IBDD satisfiability,” Algorithmica, vol.80, no.10,
pp.2725–2741, 2018.

[9] A. Nagao, K. Seto, and J. Teruyama, “Satisfiability algorithm for
syntactic read-k-times branching programs,” Theory of Computing
Systems, vol.64, no.8, pp.1392–1407, 2020.

[10] R. Santhanam, “Fighting perebor: New and improved algorithms for
formula and QBF satisfiability,” 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp.183–192, 2010.

[11] K. Seto and S. Tamaki, “A satisfiability algorithm and average-case
hardness for formulas over the full binary basis,” Comput. Complex.,
vol.22, no.2, pp.245–274, 2013.

[12] R. Williams, “Improving exhaustive search implies superpolynomial
lower bounds,” SIAM J. Comput., vol.42, no.3, pp.1218–1244, 2013.

[13] A.C.-C. Yao, “Lower bounds by probabilistic arguments (extended
abstract),” Proc. 24th Annual Symposium on Foundations of Com-
puter Science (STOC), pp.420–428, 1983.

Tomu Makita received B.Sci. degree from
Seikei University in 2020.

http://dx.doi.org/10.1145/2897518.2897653
http://dx.doi.org/10.1145/2897518.2897653
http://dx.doi.org/10.1145/2897518.2897653
http://dx.doi.org/10.1145/2897518.2897653
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.4086/toc.2013.v009a007
http://dx.doi.org/10.4086/toc.2013.v009a007
http://dx.doi.org/10.4086/toc.2013.v009a007
http://dx.doi.org/10.1016/s0304-3975(97)00034-0
http://dx.doi.org/10.1016/s0304-3975(97)00034-0
http://dx.doi.org/10.1016/s0304-3975(97)00034-0
http://dx.doi.org/10.1137/0215040
http://dx.doi.org/10.1137/0215040
http://dx.doi.org/10.1137/0215040
http://dx.doi.org/10.1109/ccc.2014.34
http://dx.doi.org/10.1109/ccc.2014.34
http://dx.doi.org/10.1109/ccc.2014.34
http://dx.doi.org/10.1109/ccc.2014.34
http://dx.doi.org/10.1145/3313276.3316319
http://dx.doi.org/10.1145/3313276.3316319
http://dx.doi.org/10.1145/3313276.3316319
http://dx.doi.org/10.1007/s00453-017-0332-2
http://dx.doi.org/10.1007/s00453-017-0332-2
http://dx.doi.org/10.1007/s00453-017-0332-2
http://dx.doi.org/10.1007/s00224-020-09996-3
http://dx.doi.org/10.1007/s00224-020-09996-3
http://dx.doi.org/10.1007/s00224-020-09996-3
http://dx.doi.org/10.1109/focs.2010.25
http://dx.doi.org/10.1109/focs.2010.25
http://dx.doi.org/10.1109/focs.2010.25
http://dx.doi.org/10.1007/s00037-013-0067-7
http://dx.doi.org/10.1007/s00037-013-0067-7
http://dx.doi.org/10.1007/s00037-013-0067-7
http://dx.doi.org/10.1137/10080703x
http://dx.doi.org/10.1137/10080703x
http://dx.doi.org/10.1109/sfcs.1983.30
http://dx.doi.org/10.1109/sfcs.1983.30
http://dx.doi.org/10.1109/sfcs.1983.30

1308
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Atsuki Nagao received B.Eng., M.Info., and
Ph.D. degrees in Informatics in 2010, 2012, and
2015, respectively. He is now an assistant profes-
sor in Faculty of Core Research Natural Science
Division Ochanomizu University. He has ma-
jored in computational complexity, log-spaced
algorithms, combinatorial games, and puzzles.

Tatsuki Okada received B.Sci. and M.Sci.
degrees from Seikei University in 2019 and
2021, respectively.

KazuhisaSeto receivedB.Eng.,M.Info., and
Ph.D. degrees in Informatics fromKyoto Univer-
sity in 2008, 2010, and 2013, respectively. He is
now an associate professor at Hokkaido Univer-
sity. His research interests include satisfiability
problems and circuit complexity.

Junichi Teruyama received B.Eng.,
M.Info., and Ph.D. degrees in Informatics in
2008, 2010, and 2013, respectively. He is now an
assistant professor at University of Hyogo. His
research interests include satisfiability problems,
sorting algorithms, and query complexity.

