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PAPER
The Lower Bound of Second-Order Nonlinearity of a Class of
Boolean Functions∗

Luozhong GONG†a) and Shangzhao LI††b), Nonmembers

SUMMARY The r-th nonlinearity of Boolean functions is an important
cryptographic criterion associated with higher order linearity attacks on
stream and block ciphers. In this paper, we tighten the lower bound of the
second-order nonlinearity of a class of Boolean function over finite field
F2n , fλ(x) = Tr(λxd ), where λ ∈ F∗2r , d = 22r + 2r + 1 and n = 7r .
This bound is much better than the lower bound of Iwata-Kurosawa.
key words: Boolean function, higher-order nonlinearity, higher-order
derivative

1. Introduction

To resist the many kinds of crypt analysis, Boolean functions
used in stream ciphers should havemany good cryptographic
properties: high algebraic degree, balancedness, high al-
gebraic immunity and high nonlinearity etc. Now, many
classes of Boolean functions with some good cryptographic
properties have been constructed. In [1], [7], [10], [12]–
[14], [19], [26], many classes of Boolean functions achiev-
ing optimum algebraic immunity have been introduced. The
Carlet-Feng functions have optimum algebraic degree, opti-
mum algebraic immunity and higher nonlinearity [10], but
it is not enough to resistance to fast correlation attacks
[23], [25]. In [26], the Tu-Ding fuctions are another class
Boolean functions with optimum algebraic degree, optimum
algebraic immunity and a provable good nonlinearity. How-
ever, they are also weak against fast algebraic attacks.

A characteristic of Boolean functions, called their non-
linearity profile, plays an important role with respect to the
linear approximation attack of the cryptosystems in which
they are involved. For every nonnegative integer r ≤ n, we
denote the nlr ( f ) the minimum distance of f and all func-
tions of algebraic degrees at most r . The nonlinearity profile
of a function f is the sequence of those values nlr ( f ) for
r(1 ≤ r ≤ n − 1). In the case r = 1, we simply write nl( f ).
Clearly, it is the minimum Hamming distance between the
function f and all affine functions over F2n , called the non-
linearity of f . Attributed to the nl( f )’s relation with Walsh
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transform, most research work so far has been theoretically
and practically focused on nl( f ) (see [2], [8]). However,
computing the nlr ( f ) of a given function with algebraic de-
gree strictly greater than r is a hard task for r > 1, and, so far,
few acdemic result has been achieved. Even proving lover
bounds on the nl2( f ) of functions is also a quite difficult task.
In recently, Wang et al. in [20] give an upper bound on the
second-order of the hidden weighted bit function and Carlet
(see [4]) introduce a new method for lower bounding the
nonlinearity of a given function, which tell us how to derive
a lower bound on the r-th order nonlinearity of a function f
from a lower bound on the (r − 1)-th nonlinearity of at least
one of the derivatives of f . Using this approach, G. Sun and
C. Wu in [16], S. Gangopadhyay et al. in [22] and L. Gong
and G. Fan in [18] recently also obtained the lower bounds of
the second-order nonlinearity of several classes of Boolean
functions.

Let f (x) = x22r+2r+1 be a function defined on F2n ,
then f has a low differential uniformity of four and higher
nl(tr(b f )). So, it is an interesting problem whether its
second-order nonlinearity is also high so that it can with-
stand the second-order affine approximation attack. When
n = 3r,4r,6r , the lower bounder of nl(tr(b f )) has been ob-
tained (see [11], [16], [17]). The present paper is engaged in
deducing the lower bound of the second-order of nonlinearity
of the above function with n = 7r .

2. Notation and Preliminaries

Let F2 = {0,1} be the prime field of characteristic 2, Fn
2

be an n-dimensional vector space over F2. Any mapping
from Fn

2 to F2 is called a Boolean function on n-variables.
They play the core role in cryptography and error-correction
coding. We denote by Bn the set of the Boolean functions
on n-vavriables. Any Boolean function is defined as

f (x1, x2, ..., xn) =
⊕

a=(a1 ,...,an)∈F
n
2

µa(

n∏
i=1

xai

i ),

where µa ∈ F2 for all a ∈ Fn
2 , which is called it’s algebraic

normal form (ANF). Define wt(a) the numbers of nozero
components of vector a. The maximum value of wt(a) such
that µa , 0 is called the algebraic degree of f which is
denoted by deg( f ). Every Boolean function f over Fn

2 also
can be written as the univariate polynomials over F2n :
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f (x) =
2n−1∑
i=0

ai xi,

where a0,a2n−1 ∈ F2, and a2i( mod 2n−1) = a2
i ∈ F2,1 ≤ i ≤

2n − 2. So the algebraic degree of the Boolean function

deg( f ) = max{w2( j)|aj , 0,0 ≤ j ≤ 2n − 1},

where, given the 2-adic expansion j = j0 + j12 + · · · +
jn−12n−1, js ∈ F2,0 ≤ s ≤ n − 1 and w2( j) denotes the
number of all nonzero js,0 ≤ s ≤ n−1. A Boolean function
is affine if it has algebraic degree at most 1. The set of all
affine functions is denoted by An.

Let m|n,E = F2m and L = F2n . The function

trL/E (x) =

n
m−1∑
i=0

x2mi

is called a trace function from L to E . If m = 1, namely
E = F2, we denote trL/E simply by tr which is called the
absolute trace function. The trace function has the following
properties [21]:

(i) trL/E (ax+by) = atrL/E (x)+btrL/E (y) for all x, y ∈
L and a, b ∈ E .

(ii) trL/E (xq) = trL/E (x) for all x ∈ L and q = 2m.
(iii) Let K be a finite field, F be a finite extension of K ,

and E be a finite extension of F, that is K ⊂ F ⊂ E . Then
trE/K (x) = trF/K (trE/F (x)) for all x ∈ E .

Difinition 2.1: Let f ⊂ Bn and a ∈ L = F2n , we called

W f (a) =
∑
x∈L

(−1) f (x) χ(ax),a ∈ L,

the Walsh transform of f , where χ(x) = (−1)tr(x) is the
canonical additive character on L. The set {W f (a)|a ∈ F2n }
is said to be the Walsh spectrum of f .

It is trivial to deduce that the relation between the non-
linearity and the Walsh spectrum is

nl( f ) = 2n−1 −
1
2

maxa∈F2n |W f (a)|. (1)

By Parseval’s equality,
∑

a∈F2n W f (a)2 = 22n, we have
nl( f ) ≤ 2n−1 − 2 n

2 −1.When nl( f ) = 2n−1 − 2 n
2 −1, f is called

a bent function. Obviously, it is possible for a bent function
to exist when n is even. Since the nonlinearity of bent
functions reaches the maximum value, it can withstand the
linear attack (to be more precise, linear approximation or
affine approximation attack) to the most extent ([15]), and
can also well withstand the correlation attack ([2], [9]).
Difinition 2.2: We call the Boolean function Da f (x) =
f (x) + f (x + a) for any x ∈ F2n as the derivative of f ∈ Bn

with respect to a ∈ F2n , which is denoted by Da f . Let V be
a k dimensional subspace of F2n generated by α1, α2, · · · , αk,
the k-th order derivative of f ∈ Bn is defined by

DV f (x) = Dα1 · · ·Dαk
f (x) =

∑
u∈F2k

f (x +
k∑
i=1

uiαi).

Table 1 Walsh spectrum.
Wf (α) Number of α
0 2n − 2n−k

2
n+k

2 2
n−k−1

2 + (−1) f (0)2
n−k−2

2

−2
n+k

2 2
n−k−1

2 − (−1) f (0)2
n−k−2

2

for any x ∈ F2n ,which u =
∑k

i=1 uiαi .

It is to be noted that when α1, α2, · · · , αk, are not linearly
independent, then Dα1 · · ·Dαk

f is zero; otherwise, the set
{x +

∑k
i=1 uiαi |u ∈ F2k } is a k-dimensional flat. Also, the

k-th order derivative of f depends only on the choice of the k
dimensional subspace V and is independent of the choice of
the basis ofV . On the Galois field F2n , a cyclotomic cosetCs

is defined by Cs = {s,2s,22s, · · · ,2ns−1s}, where ns is the
smallest positive integer such that s ≡ 2ns s (mod 2n − 1).
The subscript s is chosen as the smallest integer in Cs , and s
is called the coset leader of Cs .

Difinition 2.3: Let q be a power of 2 and V be an n-
dimensional vector space over Fq . A map Q : V → Fq

is called a quadratic form on V if
(a) Q(cx) = c2Q(x) for any c ∈ Fq and x ∈ V ;
(b) B(x, y) := Q(x + y)+Q(x)+Q(y) is bilinear on V .
The kernel K of a bilinear form Q is the subspace of V

defined by K = {x ∈ V |B(x, y) = 0,∀y ∈ V}.

The following lemmas are obtained from the definitions.

Lemma 2.4: ([3]) Let V be a vector space over a field Fq

of characteristic 2 and Q : V → Fq be a quadratic form.
Then the dimension of V and the dimension of the kernel of
Q have the same parity

Lemma 2.5: ([3]) If f : F2n → F2 is a quadratic Boolean
function, then the Walsh spectrum of f depends only on the
dimension k of the kernel of f . More precisely, the Walsh
spectrum of f is shown in Table 1.

Lemma 2.6: ([3]) Let f be any quadratic Boolean function.
The kernel of f is the subspace of those b such that the
derivative Db f is constant. That is

E f = {b ∈ F2n |Db f = constant}

3. Main Results

Lemma 3.1: ([4]) Let f be any n-variable function and r
be a positive integer smaller than n. Then we have

nlr ( f ) ≥ 2n−1 −
1
2

√
22n − 2

∑
a∈F2n

nlr−1(Da f ). (2)

Lemma 3.2: Let fλ(x) = Tr(λxp)with p = 22r+2r+1, λ ∈
F∗2r and n = 7r . Then the dimension of the kernel of bilinear
form associated to Da( fλ(x)) is either 3r or 5r .

Proof The derivative of fλ(x) = Tr(λxp) with respect to
a ∈ F∗2n is
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Da( fλ(x)) = fλ(x) + fλ(x + a)

= Tr(λx22r+2r+1) + Tr(λ(x + a)2
2r+2r+1)

= Tr(λx22r+2r+1) + Tr(λ(x + a)(x22r+2r

+ x22r
a2r + a22r

x2r + a22r+2r )

= Tr(λ(x22r+2r a + x22r+1a2r + x22r
a2r+1

+ x2r+1a22r
+ x2r a22r+1

+ xa22r+2r + a22r+2r+1)).

Since the Walsh spectrum is affine invariant, the Walsh
spectrum of the function Da( fλ(x)) is equal to the one of the
function

G(x) = Tr(λ(x22r+2r a + x22r+1a2r + x2r+1a22r
))

= Tr(λx22r+1a2r + (λa22r
+ λ26r

a26r
)x2r+1)

Noticed that 2r +1 and 22r +1 are not in the same cyclotomic
coset, so G(x) , 0 and G(x) is a quadratic Boolean function.
By Lemma 2.5, the Walsh spectrum of G(x) only depends
on the dimension k of the kernel of G(x). By lemma 2.6,
the kernel of G(x) is the subspace of those b such that the
derivative of Db(G(x)) is constant. Since

Db(G(x))
= G(x) + G(x + b)

= Tr(λ(x22r+2r a + x22r+1a2r + x2r+1a22r
))

+Tr(λ((x + b)2
2r+2r a + (x + b)2

2r+1a2r

+(x + b)2
r+1a22r

))

= Tr(λ((ab2r + a2r b)x22r
+ (ab22r

+ a22r
b)x2r

+(a2r b22r
+ a22r

b2r )x))

+Tr(λ(ab22r+2r + a2r b22r+1 + a22r
b2r+1))

= Tr(λ(a25r
b26r
+ a26r

b25r
+ a26r

b2r + a2r b26r

+a2r b22r
+ a22r

b2r )x)

+Tr(λ(ab22r+2r + a2r b22r+1 + a22r
b2r+1)) (3)

Clearly, Db(G(x)) is constant if an only if

(a25r
b26r
+a26r

b25r
)+(a26r

b2r+a2r b26r
)+(a2r b22r

+a22r
b2r )=0

That is

(a25r
+a2r )b26r

+a26r
b25r
+a2r b22r

+(a26r
+a22r

)b2r =0

Raising 2−r -th power to the both sides of above equation
gives the following equation

(a24r
+ a)b25r

+ a25r
b24r
+ ab2r + (a25r

+ a2r )b = 0 (4)

If a ∈ F24r , Eq. (4) is equivalent to the equation
a2r b24r

+ ab2r = 0. This follows b ∈ aF23r , and so
k = 3r . Hence, we only consider the case when a < F24r .
In this case, Eq. (4) is a 2r -polynomial. Write P(b) :=
(a24r

+ a)b25r
+ a25r

b24r
+ ab2r + (a25r

+ a2r )b. We are all
know, the dimension of the kernel of P(b) is lr, l = 0,1,2,3,4,

or 5. Because a < F24r , l , 0,1.
Nowconsider the quadratic form fromFq7 to Fq(q = 2r )

Q(x) = TrL/E (λ(ax22r+2r + a2r x22r+1 + a22r
x2r+1)),

where L = Fq7 and E = Fq .
In fact, the kernel of Q(x) is the set of those b such that

B(x, b) = 0 for all x, where

B(x, b) = Q(x) +Q(b) +Q(x + b) = TrL/E (x(P(b))2
r

.

Since
B(x, b)

= TrL/E (λ(ax22r+2r + a2r x22r+1 + a22r
x2r+1))

+ TrL/E (λ(ab22r+2r + a2r b22r+1 + a22r
b2r+1))

+ TrL/E (λ(a(x+b)2
2r+2r +a2r (x+b)2

2r+1+a22r
(x+b)2

r+1))

= TrL/E (λ(a(x22r
b2r+x2r b22r

)+a2r (x22r
b+b22r

x)+a22r
(x2r b+

b2r x)))
= TrL/E (λ(a25r

b26r
+a26r

b2r + a26r
b25r
+a2r b22r

+a2r b26r
+

a22r
b2r )x)

= TrL/E (λ(a24r
b25r
+ a25r

b + a25r
b24r
+ ab2r + ab25r

+

a2r b)2
r

x)
= TrL/E ((P(b))2

r
x).

Therefore the set of roots of P(b) is also the kernel of
Q(x). By lemma 2.4, the kernel of Q(x) must have the same
parity 7, so it is odd. Hence the dimension of the kernel of
Q(x) is 3 or 5, which implies the one of roots space of P(b)
is 3r or 5r , that is the dimension of the kernel of the bilinear
form associated to Da( fλ(x)) is either 3r or 5r .

Theorem 3.3: Let fλ(x) = Tr(λxp) with p = 22r + 2r +
1, λ ∈ F∗2r and n = 7r . Then

nl2( fλ(x)) ≥ 27r−1 − 24r−1
√

25r + 2r .

Proof From Lemma 3.2, the dimension of the kernel of
the bilinear form associated to Da( fλ(x)) is either 3r or
5r .Thus the Waksh transform of Da( fλ(x)) at any point α is
|WDa ( fλ(α)) | = 2 n+3r

2 or 2 n+5r
2 . And then by Eq. (1), we get

nl(Da( fλ(x)) = 2n−1 −
1
2

2
n+3r

2 = 2n−1 − 25r−1,

if a ∈ F24r .

nl(Da( fλ(x)) ≥ 2n−1 −
1
2

2
n+5r

2 = 2n−1 − 26r−1,

if a < F24r . Therefore,∑
a∈F2n

nl(Da f ) =
∑

a∈F24r

nl(Da f )+
∑

a<F24r

nl(Da f )

≥ 214r−1 + 210r−1 − 213r−1 − 29r−1

By lemma 3.1, we have

nl2( f ) ≥ 2n−1 −
1
2

√
22n − 2

∑
a∈F2n

nl(Da f )



1320
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.9 SEPTEMBER 2022

Table 2 The second-order nonlinearity.
r 2 3 4 6
Bound 4088 677803 1.0066304 1.92414
obtained ×108 ×1012

in Theorem 3.3
Iwata- 3072 393216 5.0332 8.42633
Kurosawa’s ×107 ×1011

bound

≥ 27r−1 −
1
2

√
213r + 29r

= 27r−1 − 24r−1
√

25r + 2r .

4. Conclusion Remarks

By studying the lower bound of the nonlinearity of the deriva-
tives of the functions, the present paper obtains the lower
bound of the second-order nonlinearity of a class of Boolean
functions. Results show that the second-order nonlinearity
of the class of Boolean functions with high nonlinearity is
also high (Table 2). We compare our lower bound obtained
in Theorem 3.3 with the lower bound obtained by Iwata-
Kurosawa [24] in the following table. It is seen from the
following table that our lower bound is much better than
the lower bound of Iwata-Kurosawa. In this case, the lower
bounds can- not be obtained by the relation between alge-
braic immunity and the r-th order nonlinearity as studied in
[5], [6].
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