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Upper Bound on Privacy-Utility Tradeoff Allowing Positive Excess
Distortion Probability

Shota SAITO†a), Member and Toshiyasu MATSUSHIMA††, Fellow

SUMMARY This letter investigates the information-theoretic privacy-
utility tradeoff. We analyze the minimum information leakage ( f -leakage)
under the utility constraint that the excess distortion probability is allowed
up to ε ∈ [0, 1). The derived upper bound is characterized by the ε -cutoff
random transformation and a distortion ball.
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1. Introduction

Information-theoretic analysis of privacy-utility tradeoff is
one of the research topics in Shannon theory. Many studies
have investigated privacy-utility tradeoffs in various settings
(see, e.g., Section I of [2] and references therein.) Among
these studies, Liao et al. [2] considered the following setup.

Let X denote a private original data, where X is a
random variable taking values in a finite set X. The proba-
bility distribution of X is denoted by PX . A released data
is denoted by Y , which takes values in a finite set Y. A
privacy mechanism PY |X : X → Y is a random mapping
which transforms X to Y . As a utility measure, Liao et al.
[2] adopted a distortion function between X and Y , i.e., a
function d : X × Y → [0,+∞) which measures differences
between X and Y . On the other hand, as a privacy measure,
they considered the following f -leakage:

Definition 1 ([2]): Given a joint distribution PX ,Y =

PXPY |X and a convex function f : R+ → R such that
f (1) = 0, the f -leakage is defined as

L f (X → Y ) := inf
QY

D f (PX ,Y ‖PX ×QY ),

where the infimum is taken over all probability distributions
on Y and D f (PX ,Y ‖PX ×QY ) is the f -divergence given by

D f (PX ,Y ‖PX ×QY )

:=
∑

x∈X,y∈Y

PX (x)QY (y) f
(

PX ,Y (x, y)
PX (x)QY (y)

)
.

Setting f (t) = t log t∗, we have L f (X → Y ) = I(X;Y ),
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where I(X;Y ) is the mutual information between X and Y .
Hence, the f -leakage L f (X → Y ) can be seen as a gener-
alized notion of the mutual information between an original
data X and a released data Y .

As an analysis of privacy-utility tradeoff, Liao et al. [2]
investigated the quantity

inf
PY |X :

P[d(X ,Y)>D]=0

L f (X → Y ),

where D ≥ 0 is a maximal permitted distortion. In other
words, they analyzed the minimum information leakage un-
der the utility constraint d(X,Y ) ≤ D with probability one.

In this letter, we consider generalization of [2] and in-
vestigate the quantity

inf
PY |X :

P[d(X ,Y)>D]≤ε

L f (X → Y ) for ε ∈ [0,1), (1)

i.e., the minimum information leakage under the utility con-
straint that the excess distortion probability is allowed up to
ε ∈ [0,1). As our main result, we derive an upper bound
of (1) by using the ε-cutoff random transformation [1] and a
distortion ball. Our bound is sharp in the sense that we will
describe in Remark 1. Further, the result is closely related to
lossy source coding, and thus it gives insight to lossy source
coding (see Remark 2).

2. Result of Prior Work

The following theorem shows the minimum information
leakage under the utility constraint that P[d(X,Y ) > D] = 0.

Theorem 1 ([2]): For any probability distribution PX , dis-
tortion function d : X×Y → [0,+∞), distortion level D ≥ 0,
and convex function f : R+ → R such that f (1) = 0,

inf
PY |X :

P[d(X ,Y)>D]=0

L f (X → Y ) = f (0)+

inf
QY

EPX

[
QY (BD(X))

(
f
(

1
QY (BD(X))

)
− f (0)

)]
,

where the infimum on the right-hand side is taken over all
distributions on Y, BD(x) is a distortion ball centered at x,
i.e., BD(x) := {y ∈ Y : d(x, y) ≤ D} and QY (BD(x)) :=∑
y∈BD (x)QY (y).

∗All logarithms are of base 2 throughout this letter.
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3. Main Results

Before showing our result, we need to define the notion of
the ε-cutoff random transformation:

Definition 2 ([1]): For ε ∈ [0,1) and a random variable Z
taking values in a setZ, the ε-cutoff random transformation
〈·〉ε is defined as

〈Z〉ε :=


Z if Z < η,

η if Z = η (with prob. 1 − α),
0 if Z = η (with prob. α),
0 otherwise,

where η ∈ R and α ∈ [0,1) are determined by P[Z > η] +
αP[Z = η] = ε†.

Now, the following theorem gives the upper bound of
theminimum information leakage under the utility constraint
that P[d(X,Y ) > D] ≤ ε . The proof is in Sect. 4.1.

Theorem 2: For any probability distribution PX , distortion
function d : X × Y → [0,+∞), distortion level D ≥ 0,
convex function f : R+ → R such that f (1) = 0, and
ε ∈ [0,1), we have

inf
PY |X :

P[d(X ,Y)>D]≤ε

L f (X → Y ) ≤ inf
QY∑

x∈X:〈
log 1

QY (BD (x))

〉
ε

>0

PX (x)EQY

[
f
(
1{d(x,Y ) ≤ D}

QY (BD(x))

)]
, (2)

where 1{·} is the indicator function and the infimum on the
right-hand side is taken over all distributions on Y.

Setting f (t) = t log t in Theorem 2, we have the follow-
ing corollary (the proof is in Sect. 4.2):

Corollary 1: Under the same conditions of Theorem 2,

inf
PY |X :

P[d(X ,Y)>D]≤ε

I(X;Y ) ≤ inf
QY

EPX

[〈
log

1
QY (BD(X))

〉
ε

]
,

(3)

where the infimum on the right-hand side is taken over all
distributions on Y.

Remark 1: Set ε = 0 in (2). Then, some calculation yields

inf
PY |X :

P[d(X ,Y)>D]=0

L f (X → Y ) ≤ f (0)+

inf
QY

EPX

[
QY (BD(X))

(
f
(

1
QY (BD(X))

)
− f (0)

)]
.

†As pointed out in [1], the values of η and α satisfying this
equality are not uniquely determined in general, but any pair (η,α)
satisfying this equality defines the same 〈Z〉ε up to almost-sure
equivalence. See the description just after (14) in [1].

Due to Theorem 1, the above inequality is actually equality.
Thus, the bound in Theorem 2 is sharp in the special setting.

Remark 2: The inequality (3) is the same inequality ob-
tained by Kostina et al. [1] in the context of lossy source
coding (see the inequality (132) of Theorem 8 in [1]).

Remark 3: Theorem 2 shows only the upper bound of (1).
It is a future work to derive the lower bound of (1).

4. Proofs

4.1 Proof of Theorem 2

First, we fix an arbitrary probability distribution QY on Y
and define the privacy mechanism PY |X as follows:

PY |X (y |x)

:=

{ 1{d(x,y)≤D }QY (y)

QY (BD (x))
if

〈
log 1

QY (BD (x))

〉
ε
> 0,

QY (y) otherwise,
(4)

Then, it is easy to see that the excess distortion probability
under PXPY |X is P[d(X,Y ) > D] ≤ ε . Therefore, we obtain
the following chain:

inf
PY |X :

P[d(X ,Y)>D]≤ε

L f (X → Y )
(a)
≤ D f (PXPY |X ‖PX ×QY )

=
∑
y∈Y

QY (y)
∑
x∈X

PX (x) f
(

PY |X (y |x)
QY (y)

)

=
∑
y∈Y

QY (y)


∑

x∈X:〈
log 1

Q
Y
(BD (x))

〉
ε

=0

PX (x) f
(

PY |X (y |x)
QY (y)

)

+
∑

x∈X:〈
log 1

Q
Y
(BD (x))

〉
ε

>0

PX (x) f
(

PY |X (y |x)
QY (y)

)
(b)
=

∑
y∈Y

QY (y)


∑

x∈X:〈
log 1

Q
Y
(BD (x))

〉
ε

=0

PX (x) f (1)

+
∑

x∈X:〈
log 1

Q
Y
(BD (x))

〉
ε

>0

PX (x) f
(
1{d(x, y) ≤ D}

QY (BD(x))

)
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(c)
=

∑
x∈X:〈

log 1
Q
Y
(BD (x))

〉
ε

>0

PX (x)EQY

[
f
(
1{d(x,Y ) ≤ D}

QY (BD(x))

)]
,

where (a) and (b) follows from (4), and (c) is due to f (1) = 0.
Since QY is a fixed arbitrary distribution onY, we take

infimum over all distributions on Y and complete the proof.

4.2 Proof of Corollary 1

Setting f (t) = t log t in Theorem 2, we see that the left-hand
side of (2) reduces to

inf
PY |X :

P[d(X ,Y)>D]≤ε

I(X;Y ).

On the other hand, when f (t) = t log t, the right-hand
side of (2) is calculated as

inf
QY

∑
x∈X:〈

log 1
QY (BD (x))

〉
ε

>0

PX (x)EQY

[
f
(
1{d(x,Y ) ≤ D}

QY (BD(x))

)]

= inf
QY

∑
x∈X:〈

log 1
QY (BD (x))

〉
ε

>0

PX (x)

·


∑

y∈BD (x)

QY (y)
1{d(x, y) ≤ D}

QY (BD(x))
log

1{d(x, y) ≤ D}
QY (BD(x))

+
∑

y∈BD (x)c

QY (y)
1{d(x, y) ≤ D}

QY (BD(x))
log

1{d(x, y) ≤ D}
QY (BD(x))


(a)
= inf

QY

∑
x∈X:〈

log 1
QY (BD (x))

〉
ε

>0

PX (x)

·
∑

y∈BD (x)

QY (y)
1

QY (BD(x))
log

1
QY (BD(x))

= inf
QY

∑
x∈X:〈

log 1
QY (BD (x))

〉
ε

>0

PX (x) log
1

QY (BD(x))

(b)
= inf

QY

EPX

[〈
log

1
QY (BD(X))

〉
ε

]
,

where BD(x)c denotes the complement of BD(x), (a) follows
from the definition of the distortion ball BD(x) and the con-
vention that 0 log 0 = 0, and (b) follows from the definition
of the ε-cutoff random transformation.
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