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An Equivalent Expression for the Wyner-Ziv Source Coding
Problem∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU††b), Fellow

SUMMARY We consider the coding problem for lossy source coding
with side information at the decoder, which is known as the Wyner-Ziv
source coding problem. The goal of the coding problem is to find the
minimum rate such that the probability of exceeding a given distortion
threshold is less than the desired level. We give an equivalent expression of
the minimum rate by using the chromatic number and notions of covering
of a set. This allows us to analyze the coding problem in terms of graph
coloring and covering.
key words: chromatic number, covering, finite blocklength, lossy source
coding, side information, zero-error coding

1. Introduction

Lossy source coding with side information at the decoder [2]
is fundamental and important in information theory. This
source coding deals with sequences generated by two corre-
lated sources. A sequence generated by one of two sources is
encoded into a codeword. Then, the sequence is reproduced
allowing some distortion from the codeword and a source
sequence generated by the other source that is often referred
to as side information. This source coding is depicted in
Fig. 1, where X , Y , and X̂ denote a source sequence, side
information, and the reproduced sequence, respectively.

The coding problem for the source coding is to find
the minimum rate (or equivalently the minimum number
of codewords) such that the probability of exceeding a given
distortion threshold is less than the desired level. This coding
problem is known as the Wyner-Ziv source coding problem.
The limit of the minimum rate for the coding problem has
already been clarified [2], [3], where the blocklength (i.e.,
the length of the sequence to be encoded) goes to infinity.

On the other hand, to the best of our knowledge, the
minimum rate in finite blocklengths has not been fully clar-
ified except for some special cases of the coding problem:
lossy source coding problem [4], the lossless source cod-
ing problem with side information [4], and their zero-error
cases [5], [6]. Only some upper bounds, lower bounds, and
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Fig. 1 Wyner-Ziv source coding.

asymptotic behavior [7]–[9] of the minimum rate have been
reported so far. We note that the Wyner-Ziv source coding
problem in the zero-error case has not been clarified, where
the zero-errormeans that the probability of exceeding a given
distortion threshold is zero.

In this paper, to clarify the minimum rate, we give
an equivalent expression of the minimum rate. We note
that an equivalent expression [4] for the lossy source coding
problem is given by using ε-coveringwhich is a collection of
centers of balls that cover a given set. Moreover, equivalent
expressions [4], [6] for the lossless source coding problem
with side information is given by using the chromatic number
which is the minimum number of colors needed to color all
vertices of a graph, where no two adjacent vertices have the
same color. Thus, an equivalent expression for the Wyner-
Ziv source coding problem seems to be given by combining
these two notions. However, in order to give an equivalent
expression, we need an additional notion of ε-partitionwhich
is a collection of disjoint subsets of balls of ε-covering.
This implies that using ε-covering and graph coloring may
not be enough to construct an optimal Wyner-Ziv source
coding, and noticing this is important in the practical code
construction.

More precisely, we show that theminimum rate is equiv-
alent to the chromatic number of a graph induced by ε-
covering and ε-partition of a subset of source sequences.
Due to this, every idea for the chromatic number, covering,
and partition can be used to analyze the minimum rate. In
other words, our equivalent expression gives a new perspec-
tive to the coding problem in the finite-blocklength regime.
We note that the given equivalent expression is also valid for
the zero-error case. We also show that the given equivalent
expression recovers the previous results in [4]–[6]. Further-
more, for stationary memoryless sources, we show that the
equivalent expression converges to the well-known single-
letter characterization [2] of the minimum rate as the block
length tends to infinity.

The rest of this paper is organized as follows. In Sect. 2,
we provide notations and the formal definitions of the coding
problem, ε-covering, ε-partition, and the chromatic number.
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In Sect. 3, we give our equivalent expression and some spe-
cial cases involving stationary memoryless cases and show
that it recovers the previous results in [4]–[6]. In Sect. 4, we
show proofs for our equivalent expressions. In Sect. 5, we
conclude the paper.

2. Preliminaries

In this section, we provide notations and the formal defini-
tions of the Wyner-Ziv source coding problem, ε-covering,
ε-partition, and the chromatic number.

2.1 Notations

For a pair of integers i ≤ j, the set of integers {i, i + 1, . . . , j}
is denoted by [i : j]. For a function f : X → Y, the image
of f is denoted by f (X) = {y ∈ Y : ∃x ∈ X, f (x) = y }.
The probability distribution of a random variable (RV) X is
denoted by the subscript notation PX , and the conditional
probability distribution of X given Y is denoted by PX |Y .
For an RV X ∈ X and a subset A ⊆ X, the probability
Pr{X ∈ A} is denoted by PX (A). The nth Cartesian power
of a set X is denoted by Xn, and an n-length sequence of
symbols (a1, a2, . . . , an) is denoted by an. In what follows,
all logarithms and exponentials are taken to the base 2.

2.2 Wyner-Ziv Source Coding Problem

In this section, we define theWyner-Ziv source coding prob-
lem (see Fig. 1).

LetX,Y and X̂ be finite sets. Let X ∈ X andY ∈ Y are
RVs that represent single source symbols, where Y denotes
the side information at the decoder. If X is the nth Cartesian
power of a finite set, we can regard the source symbol X as
an n-length source sequence. Hence, for the sake of brevity,
we deal with single source symbols unless otherwise stated.

The encoder f is defined as f : X → [1 : M], where M
is a positive integer that represents the number of codewords.
The decoder ϕ is defined as ϕ : [1 : M] × Y → X̂. In order
to measure the distortion between the source symbol and
the reproduction symbol in X̂, we introduce the distortion
measure defined by a map d : X × X̂ → [0,+∞).

We define the minimum number of codewords as fol-
lows:

Definition 1. For ε ≥ 0 and M ≥ 1, we say ( f , ϕ) is an
(M, D, ε )-code if and only if Pr{d(X, ϕ( f (X ),Y )) > D} ≤ ε
and the number of codewords is M .

Definition 2 (Minimum number of codewords). For D, ε ≥
0,

M∗(D, ε ) , min{M : ∃(M, D, ε )-code}.

The goal of the Wyner-Ziv source coding problem is to
find M∗(D, ε ).

For given D, ε ≥ 0, there may not exist an (M, D, ε )-
code for any M ≥ 1, and M∗(D, ε ) may not be defined.

In this case, the coding problem itself becomes meaning-
less. Whether an (M, D, ε )-code exists or not needs to be
discussed individually for each distortion measure d and
source. In this paper, in order to avoid such complications,
we assume that, for given D, ε ≥ 0, an (M, D, ε )-code ex-
ists† for some M ≥ 1, and deal only with the case where
M∗(D, ε ) can be defined. Note, however, that in Remark 4,
we give a necessary and sufficient condition for the existence
of (M, D, ε )-codes.

In addition, since it obviously holds that M∗(D, 1) = 1,
we do not consider this obvious case and assume that ε ∈
[0, 1).

2.3 Covering and Partition

In order to show the equivalent expression for the coding
problem, we introduce ε-covering, ε-partition, and also ε-
entropy [10].

We define a ball of radius ε with center at x̂ ∈ X̂ as

Bε ( x̂) ,{x ∈ X : d(x, x̂) ≤ ε }.

For a given set A ⊆ X, we say a subset C ⊆ X̂ is an
ε-covering of A if and only if Bε ( x̂) , ∅ for all x̂ ∈ C and

A ⊆
⋃
x̂∈C

Bε ( x̂).

This means that the set Bε (C) = {Bε ( x̂) : x̂ ∈ C} of balls
induced by C covers the set A.

The ε-entropy Hε (A) of a set A is defined as

Hε (A) , log min{|C| : C is an ε-covering of A}.

We say a family B̄ε (C) = {B̄ε ( x̂) ⊆ Bε ( x̂) : x̂ ∈ C}
of subsets of balls is an ε-partition of A given by C if and
only if B̄ε ( x̂) , ∅ for all x̂ ∈ C, B̄ε ( x̂) ∩ B̄ε ( x̂ ′) = ∅ if
x̂ , x̂ ′ ∈ C, and

A ⊆
⋃
x̂∈C

B̄ε ( x̂).

This means that a family of these non-empty disjoint subsets
gives a partition of the set A.

As in the notation used here, a set of balls and an ε-
partition may be written with an ε-covering C. However, for
simplicity, if it is clear from the context, we omit C and, for
example, write B̄ε instead of B̄ε (C).

2.4 Graph Coloring and Chromatic Number

In this section, we introduce the chromatic number (cf. e.g.
[11, Section 6.1]).

Since a graph G consists of the set V of vertices and the
set E of edges, we denote the graph as G = (V, E). A vertex
coloring is an assignment c : V → N of integer numbers
†For example, we consider a very important case whereX = X̂

and d(x, x) = 0 ∀x ∈ X. In this case, for any D, ε ≥ 0, there exists
an (M, D, ε )-code with some M ≥ 1.
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to vertices such that no two adjacent vertices have the same
integer number, i.e., color. Then, the minimum number of
colors needed to color a given graph is called its chromatic
number, and defined as

χ(G) , min{|c(V ) | : c is a vertex coloring of G}.

3. Main Results

In this section, we give equivalent expressions for theWyner-
Ziv source coding problem and some special cases.

For a subset A ⊆ X ×Y, we define

XA , {x ∈ X : ∃y ∈ Y, (x, y) ∈ A},
XA|y , {x ∈ X : (x, y) ∈ A}.

XA denotes the X side of A, and XA|y denotes the X side
ofA when theY side is fixed to y . We defineYA andYA|x
similarly.

In order to give our equivalent expression, for D ≥ 0
and A ⊆ X × Y, we introduce (D,A)-covering family and
(D,A)-partition family. For y ∈ YA , let Cy,A ⊆ X̂ be a D-
covering ofXA|y , and B̄ (y)

D,A (Cy,A ) = {B̄ (y)
D,A ( x̂) ⊆ BD ( x̂) :

x̂ ∈ Cy,A } be a D-partition of XA|y given by Cy,A . Hence,
it holds that

XA|y ⊆
⋃

x̂∈Cy,A

B̄
(y)
D,A ( x̂) ⊆

⋃
x̂∈Cy,A

BD ( x̂).

Then, we refer to families C = {Cy,A : y ∈ YA } and
B̄ = {B̄

(y)
D,A (Cy,A ) : y ∈ YA } as a (D,A)-covering family

and a (D,A)-partition family, respectively.
For simplicity, we often omit A from Cy,A , B̄ (y)

D,A ( x̂),
and B̄ (y)

D,A (Cy,A ) and write them as Cy , B̄ (y)
D ( x̂), and

B̄
(y)
D (Cy ), respectively. Furthermore, as mentioned in the

previous section, we may omit Cy from B̄ (y)
D (Cy ) and write

it as B̄ (y)
D .

We note that for any y ∈ YA and x ∈ XA|y , there is the
unique element x̂ ∈ Cy such that x ∈ B̄ (y)

D ( x̂). We denote
this element x̂ as x̂y (x).

For a (D,A)-covering family C and a (D,A)-partition
family B̄, let G(A, C, B̄) be a graph such that the set of
vertices corresponds to XA and two vertices x, x ′ ∈ XA
are connected by an edge if and only if the following two
conditions are satisfied for some y ∈ YA ,

(i) (x, y) ∈ A and (x ′, y) ∈ A,
(ii) x̂y (x) , x̂y (x ′).

Then, we have the next theorem which gives an equiv-
alent expression for the Wyner-Ziv source coding problem.

Theorem 1. For any D ≥ 0 and ε ∈ [0, 1), we have

log M∗(D, ε ) = min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)), (1)

where FD,ε is triples of A ⊆ X × Y satisfying PXY (A) ≥

1 − ε , a (D,A)-covering family C = {Cy : y ∈ YA }, and a
(D,A)-partition family B̄ = {B̄ (y)

D (Cy ) : y ∈ YA }.

Remark 1. As we will show in Remark 4, there exists
(A, C, B̄) ∈ FD,ε if and only if there exists an (M, D, ε )-
code. Thus, the both sides of the equality (1) are well de-
fined as long as there exists an (M, D, ε )-code or (A, C, B̄) ∈
FD,ε .

We note that, according to Remark 1 and the assump-
tion that there exists an (M, D, ε )-code, there also exists
(A, C, B̄) ∈ FD,ε .

Theorem 1 shows that the Wyner-Ziv source coding
problem is equivalent to the chromatic number of a graph
given by ε-covering and ε-partition. Thus, we can use
many known results in the chromatic number such as known
bounds and algorithms (cf. e.g. [11, Section 7]) to approxi-
mate the minimum number of codewords.

As we will show later, equivalent expressions for the
lossy source coding problem and the lossless source cod-
ing problem with side information are given by using the
chromatic number and ε-covering. On the other hand, for
the Wyner-Ziv source coding problem, we need to use ε-
partition. This is due to the fact that ε-partition gives the
unique index x̂y (x) of the ball including the given symbol
x ∈ X. If we only use ε-covering, there are many choices
of indices of balls for a given symbol x ∈ X. Thus, the
graph depends on what index is chosen for x̂y (x) and is not
defined uniquely from ε-covering. Since the proof of The-
orem 1 largely depends on the graph G(A, C, B̄), we need
ε-partition to define the graph uniquely.

We show two special cases of the right-hand side of
(1), which give minimum numbers of codewords of the
lossy source coding problem [4, Theorem 1] and the lossless
source coding problem with side information [4, Theorem
2].

Theorem 2. Let |Y | = 1, i.e., Y be constant. Then, for any
D ≥ 0 and ε ∈ [0, 1), we have

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)) = min
A⊆X:

PX (A)≥1−ε

HD (A).

Theorem 3. Let D = 0, X̂ = X, and d(x, x ′) = 0 if and
only if x = x ′. Then, for any ε ∈ [0, 1), we have

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

= min
A⊆X×Y:

PXY (A)≥1−ε

log χ(G(A)),

where G(A) denotes the graph such that the set of vertices
corresponds to XA and two vertices x, x ′ ∈ XA are con-
nected by an edge if and only if (x, y) ∈ A and (x ′, y) ∈ A
for some y ∈ YA and x , x ′.

Tuncel et al. [5] give an equivalent expression for the
lossy source coding problem in the zero-error case. This is
given by a dominating set D of a graph G = (V, E) and its
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domination number γ(G). The dominating set D (cf. e.g.
[11, Section 15.1]) is a subset of V such that every vertex of
the graph either belongs toD or is adjacent to some vertex in
D, and the domination number is the minimum cardinality
of a dominating set, i.e.,

γ(G) = min{|D| : D is a dominating set of G}.

This is a similar notion of the ε-entropy. In fact, we have the
next lemma.

Lemma 1. We assume that there is an ε-covering ofA ⊆ X.
LetA (1) = A × {1} and X̂ (2) = X̂ × {2}. We denote (x, 1) ∈
A (1) and ( x̂, 2) ∈ X̂ (2) as x (1) and x̂ (2) , respectively. Let
Gε (A) be a graph† such that the set of vertices corresponds
to A (1) ∪ X̂ (2) , where any x̂ (2), x̂

′(2) (, x̂ (2)) ∈ X̂ (2) are
connected and x (1) ∈ A (1) and x̂ (2) ∈ X̂ (2) are connected if
and only if d(x, x̂) ≤ ε . Then, we have

Hε (A) = log γ(Gε (A)). (2)

We prove this lemma inAppendixA. Due to this lemma
and Theorems 1 and 2, we obtain an equivalent expression
for the lossy source coding problem in the zero-error case
(see [5, Section 2]). This is shown in the next corollary.

Corollary 1. Let |Y | = 1, i.e., Y be constant, and A ′ =
{x ∈ X : PX (x) > 0}. Then, we have

log M∗(D, 0) = HD (A ′)
= log γ(GD (A ′)). (3)

Proof. For any A ⊆ X such that PX (A) = 1, it holds that
A ′ ⊆ A, and hence any D-covering of A is also a D-
covering of A ′. Thus, we have HD (A) ≥ HD (A ′). This
yields

log M∗(D, 0)
(a)
= min

A⊆X:
PX (A)=1

HD (A) ≥ HD (A ′),

where (a) comes from Theorems 1 and 2. Since the opposite
direction is obvious, we have

log M∗(D, 0) = HD (A ′).

We immediately obtain the corollary from this equality and
Lemma 1.

�

Remark 2. Tuncel et al. [5] only deal with the case where
X = X̂ and d(x, x) = 0 for any x ∈ X. If we assume this and
also X = A ′, the equivalent expression (3) holds by using
the graph ḠD (A ′) (instead of GD (A ′)) such that the set
of vertices corresponds to A ′, where x, x ′(, x) ∈ A ′ are
connected if and only if d(x, x ′) ≤ D. Then, the equivalent
expression (3) is exactly the same as that of Tuncel et al.

On the other hand, due to Theorems 1 and 3, we obtain
†We introduce A (1) and X̂(2) to make A (1) ∪ X̂(2) a disjoint

union. If A ∩ X̂ = ∅, we do not need to introduce these sets.

an equivalent expression for the lossless source coding prob-
lem with side information in the zero-error case [6]. This is
shown in the next corollary.

Corollary 2 ([6, Proposition 2]). Let X̂ = X, d(x, x ′) = 0 if
and only if x = x ′, andA ′ = {(x, y) ∈ X×Y : PXY (x, y) >
0}. Then, we have

log M∗(0, 0) = log χ(G(A ′)).

Proof. For any A ⊆ X ×Y such that PXY (A) = 1, it holds
that G(A ′) is a subgraph of G(A). Thus, we have

log M∗(0, 0)
(a)
= min
A⊆X×Y:
PXY (A)=1

log χ(G(A))

(b)
≥ log χ(G(A ′)),

where (a) comes from Theorems 1 and 3, and (b) follows
since the chromatic number of a graph is greater than or
equal to that of its subgraph (cf. e.g. [11, Theorem 6.1]).
Since the opposite direction is obvious, this completes the
proof. �

As with the above zero-error cases, due to Theorem 1,
we obtain a bit simpler expression for the Wyner-Ziv source
coding problem in the zero-error case. This is shown in the
next corollary.

Corollary 3. Let A ′ = {(x, y) ∈ X × Y : PXY (x, y) > 0}.
Then, we have

log M∗(D, 0) = min
(C, B̄)∈FD (A′)

log χ(G(A ′, C, B̄)), (4)

where FD (A ′) is pairs of a (D,A ′)-covering family C =
{Cy,A′ : y ∈ YA′ } and a (D,A ′)-partition family B̄ =
{B̄

(y)
D,A′ (Cy,A′ ) : y ∈ YA′ } (i.e., FD (A ′) = {(C, B̄) :

(A ′, C, B̄) ∈ FD,0}).

Proof. For (A, C, B̄) ∈ FD,0, let C′ = {Cy,A : y ∈ YA′ }
and B̄ ′ = {B̄ (y)

D,A (Cy,A ) : y ∈ YA′ }. Then, we have
(C′, B̄ ′) ∈ FD (A ′) and G(A ′, C′, B̄ ′) is a subgraph of
G(A, C, B̄). Thus, we have

log M∗(D, 0)
(a)
= min

(A,C, B̄)∈FD,0
log χ(G(A, C, B̄))

(b)
≥ min

(C, B̄)∈FD (A′)
log χ(G(A ′, C, B̄)),

where (a) comes from Theorem 1, and (b) follows since the
chromatic number of a graph is greater than or equal to that
of its subgraph. Since the opposite direction is obvious, this
completes the proof. �

We regard the nth Cartesian power Xn (resp. X̂n, Yn)
as the alphabet X (resp. X̂, Y). We also regard the n-length
sequence Xn (resp. X̂n, Y n) as the symbol X (resp. X̂ , Y ),
and the distortion measure dn : Xn×X̂n → [0,+∞) for each
blocklength n as the distortionmeasure d : X×X̂ → [0,+∞).
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Then, the above theorems and corollaries can be directly ap-
plied to n-length source sequences. In particular, we con-
sider the case where sources are stationary memoryless, i.e.,
the pair (Xn,Y n) is a sequence of independent copies of a
pair of RVs (X,Y ) overX×Y. For these sources, the equiv-
alent expression converges to the well-known single-letter
characterization [2] of the minimum rate as the block length
tends to infinity, which is shown in the next theorem.

Theorem 4. Let the distortion measure dn be additive, i.e.,
for a function d : X × X̂ → [0,+∞), the distortion measure
is represented as dn(xn, x̂n) = 1

n

∑n
i=1 d(xi, x̂i). Then, for

any D > Dmin, we have

lim
ε ↓0

lim sup
n→∞

1
n

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

= Rwz(D),

where Rwz(D) = min I (X ; U |Y ) of which minimum is
taken over all RVs U ∈ U and functions ψ : U ×
Y → X̂ such that the Markov chain Y ↔ X ↔

U holds and E[d(X, ψ(U,Y ))] ≤ D, and Dmin =

infψ,U:Y↔X↔U E[d(X, ψ(U,Y ))].

As shown in the following corollaries, by using this
theorem, we can immediately show that two special cases in
Theorems 2 and 3 converge to single-letter characterizations
(cf. e.g. [12]) for the lossy source coding problem and the
lossless source coding problem with side information. This
is also shown in [4].

Corollary 4 ([4, Theorem 3]). Let the distortion measure
dn be additive. Then, for any D > Dmin, we have

lim
ε ↓0

lim sup
n→∞

1
n

min
A⊆Xn :

PXn (A)≥1−ε

HD (A) = R(D),

where R(D) = minX̂:E[d(X,X̂)]≤D I (X ; X̂ ) and Dmin =

infX̂ E[d(X, X̂ )].

Corollary 5 ([4, Theorem 4]). We have

lim
ε ↓0

lim sup
n→∞

1
n

min
A⊆Xn×Yn :

PXnYn (A)≥1−ε

log χ(G(A)) = H (X |Y ).

4. Proofs of Theorems

In this section, we prove Theorems 1–4.

4.1 Proof of Theorem 1

First, we show that

log M∗(D, ε ) ≤ min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)). (5)

Let (A, C, B̄) ∈ FD,ε and c be a vertex coloring of
G(A, C, B̄). For y ∈ YA and i ∈ c(XA|y ), we consider the
set

Si, y = {x ∈ XA|y : c(x) = i}.

For any x, x ′ ∈ Si, y , we have c(x) = i = c(x ′). Thus,
vertices x and x ′ are not adjacent in the graph G(A, C, B̄).
Moreover, according to the definition of the graph, it holds
that x̂y (x) = x̂y (x ′) because (x, y) ∈ A and (x ′, y) ∈ A.
This implies that there is x̂i, y ∈ X̂ such that x̂y (x) = x̂i, y for
any x ∈ Si, y . Hence, for any x ∈ Si, y , we have

x ∈ B̄ (y)
D ( x̂y (x)) = B̄ (y)

D ( x̂i, y ). (6)

By using the vertex coloring c and x̂i, y , we define an
encoder and a decoder as follows:

• The encoder is defined as

f (x) ,



c(x) if x ∈ XA,
e otherwise,

where e is any fixed integer in c(XA ).
• The decoder is defined as

ϕ(i, y) ,



x̂i, y if y ∈ YA, i ∈ c(XA|y ),
ê otherwise,

where ê is any fixed symbol in X̂.

For these encoder and decoder, we show that the dis-
tortion is less than D if (x, y) ∈ A. For any (x, y) ∈ A,
we have x ∈ Sc(x), y because y ∈ YA , x ∈ XA|y , and
c(x) ∈ c(XA|y ). Hence, according to (6), we have

x ∈ B̄ (y)
D ( x̂c(x), y ) ⊆ BD ( x̂c(x), y ). (7)

On the other hand, we have f (x) = c(x) and ϕ( f (x), y) =
ϕ(c(x), y) = x̂c(x), y because x ∈ XA|y ⊆ XA , y ∈ YA , and
c(x) ∈ c(XA|y ). Hence, we have

d(x, ϕ( f (x), y)) = d(x, x̂c(x), y ) ≤ D,

where the last inequality comes from (7). Since the distortion
exceeds D only if (x, y) < A, we have

Pr{d(X, ϕ( f (X ),Y )) > D} ≤ PXY (Ac) ≤ ε, (8)

whereAc denotes the complement of the setA and the last
inequality comes from the definition of A. This means that
( f , ϕ) is a (|c(XA ) |, D, ε )-code, and hence we have

log M∗(D, ε ) ≤ log |c(XA ) |.

Since this holds for any (A, C, B̄) ∈ FD,ε and coloring c,
we have

log M∗(D, ε ) ≤ min
(A,C, B̄)∈FD, ε

min
c

log |c(XA ) |

= min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)).

Next, we show the opposite direction, i.e.,

log M∗(D, ε ) ≥ min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)). (9)
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For any given (M, D, ε )-code, let

A = {(x, y) ∈ X × Y : d(x, ϕ( f (x), y)) ≤ D} ,

Cy =
{
x̂ ∈ X̂ : ∃(x, y) ∈ A, x̂ = ϕ( f (x), y)

}
, (10)

B̄
(y)
D ( x̂) = {x ∈ X : x̂ = ϕ( f (x), y), d(x, x̂) ≤ D} .

(11)

Note that A , ∅, Cy , ∅ for any y ∈ YA , and B̄ (y)
D ( x̂) , ∅

for any y ∈ YA and x̂ ∈ Cy .
For any y ∈ YA and x̂ ∈ Cy , we have B̄ (y)

D ( x̂) ⊆ BD ( x̂)
and B̄ (y)

D ( x̂) ∩ B̄ (y)
D ( x̂ ′) = ∅ if x̂ , x̂ ′ ∈ Cy . This is because

if there is x such that x ∈ B̄ (y)
D ( x̂) and x ∈ B̄ (y)

D ( x̂ ′), we
have x̂ = ϕ( f (x), y) = x̂ ′. This contradicts the assumption
that x̂ , x̂ ′. We also have

XA|y

= {x ∈ X : (x, y) ∈ A}
= {x ∈ X : (x, y) ∈ A, d(x, ϕ( f (x), y)) ≤ D}

=
{
x ∈ X : (x, y) ∈ A, ∃x̂ ∈ Cy, x̂ = ϕ( f (x), y),

d(x, x̂) ≤ D}

⊆
{
x ∈ X : ∃x̂ ∈ Cy, x̂ = ϕ( f (x), y), d(x, x̂) ≤ D

}

=
⋃
x̂∈Cy

B̄
(y)
D ( x̂) ⊆

⋃
x̂∈Cy

BD ( x̂).

Thus, Cy ⊆ X̂ is a D-covering of XA|y , and B̄ (y)
D is a D-

partition of XA|y given by Cy . Furthermore, we have

PXY (A) = Pr{d(X, ϕ( f (X ),Y )) ≤ D} ≥ 1 − ε .

Hence, we have (A, C, B̄) ∈ FD,ε , where C = {Cy : y ∈
YA } and B̄ = {B̄ (y)

D : y ∈ YA }.
We note that for any x ∈ XA|y , it holds that x ∈

B̄
(y)
D ( x̂y (x)). Hence, by the definition of B̄ (y)

D , we have

x̂y (x) = ϕ( f (x), y).

Since adjacent vertices x, x ′ ∈ XA (x , x ′) of the graph
G(A, C, B̄) satisfy conditions (i) and (ii) for some y ∈ YA ,
we have x, x ′ ∈ XA|y and x̂y (x) , x̂y (x ′). Hence, we have

ϕ( f (x), y) = x̂y (x) , x̂y (x ′) = ϕ( f (x ′), y).

This means that f (x) , f (x ′), i.e., no adjacent vertices of
G(A, C, B̄) have the same codeword. In other words, f is a
vertex coloring of G(A, C, B̄). Hence we have

log M ≥ log | f (XA ) |

≥ log χ(G(A, C, B̄))

≥ min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)),

where the last inequality comes from the fact that
(A, C, B̄) ∈ FD,ε . Since this inequality holds for any
(M, D, ε )-code, we have (9). This completes the proof.

Remark 3. According to the proof, the code using the vertex
coloring c and x̂i, y can exactly attain the minimum rate for
the coding problem.

Remark 4. We assume that there exists (A, C, B̄) ∈ FD,ε .
Then, according to the first half of the proof, there exists an
(M, D, ε )-code. On the other hand, we assume that there
exists an (M, D, ε )-code. Then, according to the second
half of the proof, there exists (A, C, B̄) ∈ FD,ε . Thus,
there exists (A, C, B̄) ∈ FD,ε if and only if there exists an
(M, D, ε )-code.

4.2 Proof of Theorem 2

Let Y = {b}. For any (A, C, B̄) ∈ FD,ε , we have C = {Cb }
and B̄ = {B̄ (b)

D }. Let C̄b = { x̂ ∈ Cb : B̄ (b)
D ( x̂) ∩ XA|b , ∅}.

We note that C̄b is also a D-covering of XA|b . This is
because

XA|b ⊆
⋃
x̂∈Cb

B̄
(b)
D ( x̂) ∩ XA|b

=
⋃
x̂∈C̄b

B̄
(b)
D ( x̂) ∩ XA|b

⊆
⋃
x̂∈C̄b

B̄
(b)
D ( x̂) ⊆

⋃
x̂∈C̄b

BD ( x̂).

For each x̂ ∈ C̄b , we choose an x ∈ B̄ (b)
D ( x̂)∩XA|b and

denote it as x( x̂). It obviously holds that x̂b (x( x̂)) = x̂. We
consider a subset S ⊆ XA of vertices of G(A, C, B̄) such
that

S =
⋃
x̂∈C̄b

{x( x̂)}.

For any x̂, x̂ ′ ∈ C̄b such that x̂ , x̂ ′, we have (x( x̂), b) ∈ A,
(x( x̂ ′), b) ∈ A, and x̂b (x( x̂)) = x̂ , x̂ ′ = x̂b (x( x̂ ′)). Thus,
any vertices in S ⊆ XA are connected with each other. This
means that the subgraph induced by S of G(A, C, B̄) is a
clique. Hence, we have

log χ(G(A, C, B̄))
(a)
≥ log |S|
(b)
≥ HD (XA|b)
(c)
≥ min

Ā⊆X:
PX (Ā)≥1−ε

HD (Ā),

where (a) follows since the chromatic number is greater than
or equal to the number of vertices of a clique (cf. e.g. [11,
Corollary 6.2]), (b) follows since |S| = |C̄b | and C̄b is a
D-covering of XA|b , and (c) comes from the fact that

1 − ε ≤
∑

(x, y)∈A

PXY (x, y)

=
∑

x:(x,b)∈A

PXY (x, b)
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= PX (XA|b).

Since this holds for any (A, C, B̄) ∈ FD,ε , we have

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)) ≥ min
Ā⊆X:

PX (Ā)≥1−ε

HD (Ā).

(12)

Next, we show the inequality in the opposite direction.
Let Ā∗ ⊆ X and D-covering C∗

b
of Ā∗ attain the right-hand

side of (12), i.e.,

min
Ā⊆X:

PX (Ā)≥1−ε

HD (Ā) = HD (Ā∗) = log |C∗b |.

For the sake of brevity, let C∗
b
= { x̂1, x̂2, . . . , x̂ |C∗

b
| }. We

define B̄ (b)
D as

B̄
(b)
D ( x̂i) , BD ( x̂i) \

i−1⋃
k=1
BD ( x̂k ), ∀i ∈ {1, . . . , |C∗b |}.

As shown in Appendix B, B̄ (b)
D is a D-partition of Ā∗ given

by C∗
b
.
Let A = Ā∗ × {b}. Since XA|b = Ā∗, we have

PXY (A) = PX (XA|b) = PX (Ā∗) ≥ 1 − ε . Hence, it holds
that (A, C, B̄) ∈ FD,ε , where C = {C∗b } and B̄ = {B̄

(b)
D }.

Since Ā∗ = XA|b = XA , we can define c : XA → N
as

c(x) , i if x ∈ B̄ (b)
D ( x̂i).

Then, for any adjacent vertices x, x ′ ∈ XA (= XA|b) in the
graph G(A, C, B̄), we have x̂c(x) = x̂b (x) , x̂b (x ′) =
x̂c(x′) . Since this means that c(x) , c(x ′), c is a vertex
coloring of the graph. Hence, we have

min
Ā⊆X:

PX (Ā)≥1−ε

HD (Ā) = log |C∗b |

≥ log |c(XA ) |

≥ log χ(G(A, C, B̄))

≥ min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)).

This completes the proof.

4.3 Proof of Theorem 3

Since D = 0, X̂ = X, and d(x, x ′) = 0 if and only if
x = x ′, we have BD (x) = {x} for any x ∈ X. Hence, for
any (A, C, B̄) ∈ FD,ε , any y ∈ YA , and any x ∈ Cy , we
have B̄ (y)

D (x) = {x}. Moreover, for any x ∈ XA|y , we have
x̂y (x) = x. Hence, two vertices x, x ′ ∈ XA in the graph
G(A, C, B̄) are connected by an edge if and only if (x, y) ∈
A and (x ′, y) ∈ A for some y ∈ YA and x , x ′. This is
because it always holds that x̂y (x) = x , x ′ = x̂y (x ′). Thus,
for any (A, C, B̄) ∈ FD,ε , we have G(A, C, B̄) = G(A).

Now, we have

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

= min
(A,C, B̄)∈FD, ε

log χ(G(A))

≥ min
A⊆X×Y:

PXY (A)≥1−ε

log χ(G(A)),

where the last inequality follows since for any (A, C, B̄) ∈
FD,ε , it holds that PXY (A) ≥ 1 − ε .

On the other hand, for any A ⊆ X × Y such that
PXY (A) ≥ 1 − ε , let C′ = {C′y : y ∈ YA } and B̄ ′ = {B̄

′(y)
D :

y ∈ YA }, where C′y = XA|y and B̄
′(y)
D (x) = {x} for any

y ∈ YA and x ∈ C′y . Then, we have (A, C′, B̄ ′) ∈ FD,ε ,
and hence G(A) = G(A, C′, B̄ ′). Thus, we have

min
A⊆X×Y:

PXY (A)≥1−ε

log χ(G(A))

= min
A⊆X×Y:

PXY (A)≥1−ε

log χ(G(A, C′, B̄ ′))

≥ min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄)).

This completes the proof.

4.4 Proof of Theorem 4

Let (A, C, B̄) ∈ FD,ε and a coloring c of G(A, C, B̄) satisfy

log |c(Xn
A ) | = min

(A,C, B̄)∈FD, ε
log χ(G(A, C, B̄)). (13)

For these sets (A, C, B̄) and the coloring c, we define a
code ( f , ϕ) in the same way as that in the proof of Theorem
1 in Sect. 4.1. Since ( f , ϕ) is a (|c(Xn

A
) |, D, ε )-code (see

(8)), it holds that Pr{dn(Xn, X̂n) > D} ≤ ε , where X̂n =

ϕ( f (Xn),Y n). Hence, we have

E[dn(Xn, X̂n)] ≤ D + εdmax, (14)

where dmax = max(x, x̂)∈X×X̂ d(x, x̂). By using this code and
the equality (13), we have

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

= log |c(Xn
A ) |

= log | f (Xn) |
≥ H (F)
(a)
≥ nRwz(E[dn(Xn, X̂n)])
(b)
≥ nRwz(D + εdmax),

where F = f (Xn), (a) comes from the converse proof of the
Wyner-Ziv theorem in [13, Section 11.3.2], and (b) comes
from (14) and the fact that Rwz is a nonincreasing function.
Since Rwz is a continuous function, we have

lim
ε ↓0

lim sup
n→∞

1
n

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))
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≥ Rwz(D).

Next, we show the inequality in the opposite direction.
We define the set of typical sequences [13, Section 2.4] as

T (n)
ε (X ) , {xn ∈ Xn : ∀x ∈ X,

|π(x |xn) − PX (x) | ≤ εPX (x)},

where π(x |xn) = |{i : xi = x}|/n. We will omit the RV
X when it is clear from the context. For D > Dmin and
sufficiently small ε > ε ′ > 0, let an RV U and a function
ψ attain the function Rwz(D/(1 + ε )). For two constants
R̃ ≥ R ≥ 0, according to the achievability proof of the
Wyner-Ziv theorem in [13, Section 11.3.1], we can show the
existence of a set {un(l) ∈ Un : l ∈ [1 : 2 dnR̃e]} and a code
( f , ϕ) that performs the following encoding and decoding:

• Encoding: For a given xn ∈ Xn, the encoder finds l ∈
[1 : 2 dnR̃e] such that (un(l), xn) ∈ T (n)

ε ′ . If there ismore
than one such index, it selects a specific one of them. If
there is no such index, it selects a specific index from
[1 : 2 dnR̃e]. The encoder outputs m ∈ [1 : 2 dnRe] such
that l ∈ B(m), where B(m) = [(m−1)2 dnR̃e−dnRe +1 :
m2 dnR̃e−dnRe].

• Decoding: For given yn ∈ Yn and m ∈ [1 : 2 dnRe],
the decoder finds the unique index l̂ ∈ B(m) such that
(un(l̂), yn) ∈ T (n)

ε . If there is more than one or no such
index, it sets l̂ = 1. The decoder outputs x̂n such that

x̂i = ψ(ui (l̂), yi),

where ui (l̂) denotes the ith component of un(l̂).

Here, we define

Sn , {(xn, yn) ∈ Xn × Yn : (un(l̂), xn, yn) ∈ T (n)
ε },

where l̂ ∈ B(m) is the index selected by the decoder based
on (xn, yn). Then, for this code, we have (see also [13,
Section 11.3.1])

lim
n→∞

Pr{(Xn,Y n) ∈ Sn} = 1

by setting that R̃ = I (X ; U)+ δ(ε ′)+ ε and R = Rwz(D/(1+
ε )) + δ(ε ) + δ(ε ′) + 2ε , where δ(ε ) and δ(ε ′) are some
constants that go to zero as ε goes to zero.

On the other hand, for any (xn, yn) ∈ Sn, we have

dn(xn, ϕ( f (xn), yn))

=
1
n

n∑
i=1

d(xi, ψ(ui (l̂), yi))

=
∑

(u,x, y)∈U×X×Y

π(u, x, y |un(l̂), xn, yn)d(x, ψ(u, y))

(a)
≤ (1 + ε )E[d(X, ψ(U,Y ))]

(b)
≤ D,

where (a) follows since (un(l̂), xn, yn) ∈ T (n)
ε and (b) fol-

lows sinceU andψ attain the function Rwz(D/(1+ε )). Thus,

for sufficiently large n > 0, we have

1 − ε ≤ Pr{(Xn,Y n) ∈ Sn} ≤ Pr{(Xn,Y n) ∈ A},

where

A =
{
(xn, yn) ∈ Xn × Yn :

d(xn, ϕ( f (xn), yn)) ≤ D
}
.

Now, we define Cyn and B̄ (yn )
D ( x̂n) exactly the same as

(10) and (11), respectively. Then, according to the proof of
Theorem 1 in Sect. 4.1, (A, C, B̄) ∈ FD,ε and f is a vertex
coloring of G(A, C, B̄), where C = {Cyn : yn ∈ Yn

A
} and

B̄ = {B̄
(yn )
D : yn ∈ Yn

A
}. Thus, for sufficiently large n > 0,

we have
1
n

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

≤
1
n

log | f (Xn
A ) |

≤ Rwz(D/(1 + ε )) + δ(ε ) + δ(ε ′) + 2ε +
1
n
.

Since ε > 0 can be arbitrarily small, we have

lim
ε ↓0

lim sup
n→∞

1
n

min
(A,C, B̄)∈FD, ε

log χ(G(A, C, B̄))

≤ Rwz(D).

This completes the proof.

5. Conclusion

In this paper, we have considered the Wyner-Ziv source
coding problem and given an equivalent expression of the
minimum rate. Our equivalent expression is given by us-
ing the chromatic number, ε-covering, and ε-partition. As
special cases of our expression, we have given equivalent
expressions for the lossy source coding problem, the loss-
less source coding problem with side information, and zero-
error cases. Furthermore, for stationarymemoryless sources,
we have shown that our equivalent expression converges to
the single-letter characterization of the minimum rate as the
block length tends to infinity.

It is an interesting future direction to give tight up-
per and lower bounds on the minimum rate in the finite-
blocklength regime using our equivalent expression and
known results in the chromatic number. Another direc-
tion is to find an equivalent expression for the coding
problem when other criteria are used, such as the aver-
age distortion criterion, i.e., E[d(X, ϕ( f (X ),Y ))] ≤ D
instead of the excess distortion probability criterion, i.e.,
Pr{d(X, ϕ( f (X ),Y )) > D} ≤ ε .
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Appendix A: Proof of Lemma 1

In this appendix, we prove Lemma 1. To this end, we use
the next lemma.

Lemma 2. We assume that there is an ε-covering ofA ⊆ X.
Let D be a dominating set of Gε (A). Then, for x (1)

e ∈

A (1) ∩ D and its adjacent vertex x̂ (2)
a ∈ X̂ (2) , Dea = D \

{x (1)
e } ∪ { x̂

(2)
a } is still a dominating set of Gε (A).

Proof. Let N[v] be a closed neighborhood of v , i.e., N[v] =
{v } ∪ {v ′ : v ′ is adjacent to v }. Then, D is a dominating set
if and only if

A (1) ∪ X̂ (2) ⊆
⋃
v∈D

N[v]. (A· 1)

We will show that Dea = D \ {x
(1)
e } ∪ { x̂

(2)
a } satisfies (A· 1).

Since there is an ε-covering ofA, for any vertex x (1) ∈

A (1) , there is some vertex x̂ (2) ∈ X̂ (2) such that d(x, x̂) ≤ ε .
Hence, by the definition of Gε (A), the vertex x (1)

e ∈ A (1) ∩

D must be adjacent to the vertex x̂ (2)
a ∈ X̂ (2) and is not

isolated. Then, we have

{x (1)
e } ⊆ {v

′ : v ′ is adjacent to x̂ (2)
a }. (A· 2)

Moreover, since any adjacent vertex of x (1)
e is in X̂ (2) by the

definition of Gε (A), we have

{v ′ : v ′ is adjacent to x (1)
e } ⊆ X̂

(2) . (A· 3)

Now, we have

N[x (1)
e ] = {x (1)

e } ∪ {v
′ : v ′ is adjacent to x (1)

e }

(a)
⊆ {v ′ : v ′ is adjacent to x̂ (2)

a } ∪ X̂
(2)

(b)
= { x̂ (2)

a } ∪ {v
′ : v ′ is adjacent to x̂ (2)

a }

= N[x̂ (2)
a ],

where (a) comes from (A· 2) and (A· 3), and (b) comes from
the fact that the vertex x̂ (2)

a is adjacent to any other vertex in
X̂ (2) . Due to this, we have

A (1) ∪ X̂ (2) (a)
⊆ N[x (1)

e ] ∪
⋃

v∈D\{x (1)
e }

N[v]

⊆ N[x̂ (2)
a ] ∪

⋃
v∈D\{x (1)

e }

N[v]

=
⋃
v∈Dea

N[v],

where (a) follows since D is a dominating set. This means
that Dea is a dominating set. �

Now, we prove the lemma.

Proof of Lemma 1. The proof is based on the proof of [14,
Theorem A.1].

Let C ⊆ X̂ be an ε-covering ofA. Then, for any x ∈ A,
there is x̂ ∈ C such that d(x, x̂) ≤ ε . Hence, by letting
C (2) = C×{2}(⊆ X̂ (2)), x (1) ∈ A (1) is adjacent to x̂ (2) ∈ C (2)

in the graph Gε (A). Furthermore, any x̂
′(2) ∈ X̂ (2) belongs

to C (2) or is adjacent to any x̂ (2) ∈ C (2) . Hence, C (2) is a
dominating set of the graph. This gives

Hε (A)
= log |C∗ |
= log |C∗(2) |

≥ log min{|D| : D is a dominating set of Gε (A)}
= log γ(Gε (A)), (A· 4)

where C∗ is an ε-covering that attains the ε-entropy and
C∗(2) = C∗ × {2}.

Let D be a dominating set of Gε (A). According to
Lemma 2, the set obtained by eliminating x (1) ∈ A (1) ∩ D

from D and adding an adjacent vertex x̂ (2) ∈ X̂ (2) of x (1)

is still a dominating set. Repeating this elimination and
addition until all vertex in A (1) are eliminated from D,
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we obtain a dominating set Dea such that Dea ⊆ X̂
(2) and

|Dea | ≤ |D|. From the definition of the dominating set, any
x (1) ∈ A (1) is adjacent to some x̂ (2) ∈ Dea(⊆ X̂ (2)) and
hence d(x, x̂) ≤ ε . This means that Dea |2 = { x̂ : ( x̂, 2) ∈
Dea} is an ε-covering of A. Hence, we have

log γ(Gε (A))
= log |D∗ |
≥ log |D∗ea |

= log |D∗ea |2 |

≥ log min{|C| : C is an ε-covering of A}
= Hε (A), (A· 5)

where D∗ is a dominating set that attains the domination
number, andD∗ea(⊆ X̂ (2)) is a dominating set obtained from
D∗ by repeating the above elimination and addition process.

Due to (A· 4) and (A· 5), we have (2). �

Appendix B: Existence of Partition

Let Ā∗ ⊆ X and D-covering C∗
b
of Ā∗ attain the right-hand

side of (12). We note that, for any x̂ ∈ C∗
b
,

BD ( x̂) \
⋃

x̂′∈C∗
b
\{x̂ }

BD ( x̂ ′) , ∅. (A· 6)

This comes from the following fact: If there exists x̂ ∈ C∗
b

such that

BD ( x̂) \
⋃

x̂′∈C∗
b
\{x̂ }

BD ( x̂ ′) = ∅,

we have

BD ( x̂) ⊆
⋃

x̂′∈C∗
b
\{x̂ }

BD ( x̂ ′).

Thus, C∗
b
\ { x̂} is a D-covering of Ā∗, and this yields a

contradiction that

HD (Ā∗) ≤ log |C∗b \ { x̂}| < log |C∗b | = HD (Ā∗).

For the sake of brevity, let C∗
b
= { x̂1, x̂2, . . . , x̂ |C∗

b
| }. We

define B̄ (b)
D as in the proof of Theorem 2, i.e.,

B̄
(b)
D ( x̂i) , BD ( x̂i) \

i−1⋃
k=1
BD ( x̂k ), ∀i ∈ {1, . . . , |C∗b |}.

Then, for any i ∈ {1, . . . , |C∗
b
|}, we have B̄ (b)

D ( x̂i) ⊆ BD ( x̂i)
and B̄ (b)

D ( x̂i) , ∅ due to (A· 6). Furthermore, according to
this definition, B̄ (b)

D ( x̂i) does not include any ball BD ( x̂k )
such that k < i. Thus, for any k, i ∈ {1, . . . , |C∗

b
|} such that

k < i, we have B̄ (b)
D ( x̂k ) ∩ B̄ (b)

D ( x̂i) = ∅. We also have

Ā∗ ⊆

|C∗
b
|⋃

i=1
BD ( x̂i)

(a)
=

|C∗
b
|⋃

i=1

*
,
BD ( x̂i) \

i−1⋃
k=1
BD ( x̂k )+

-

=

|C∗
b
|⋃

i=1
B̄

(b)
D ( x̂i),

where (a) comes from the fact that

M⋃
i=1

Ai =

M⋃
i=1

*
,

Ai \

i−1⋃
k=1

Ak
+
-
.

Therefore, B̄ (b)
D is a D-partition of Ā∗ given by C∗

b
.
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