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DNN-Based Decoder on Multiple-Access Fading Channel
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SUMMARY In the user identification (UI) scheme for a multiple-access
fading channel based on a randomly generated (0, 1, −1)-signature code,
previous studies used the signature code over a noisy multiple-access adder
channel, and only the user state information (USI) was decoded by the sig-
nature decoder. However, by considering the communication model as a
compressed sensing process, it is possible to estimate the channel coeffi-
cients while identifying users. In this study, to improve the efficiency of
the decoding process, we propose an iterative deep neural network (DNN)-
based decoder. Simulation results show that for the randomly generated
(0, 1, −1)-signature code, the proposed DNN-based decoder requires less
computing time than the classical signal recovery algorithm used in com-
pressed sensing while achieving higher UI and channel estimation (CE)
accuracies.
key words: signature code, deep neural network, compressed sensing, user
identification, channel estimation

1. Introduction

In a wireless network with a large number of devices, such
as massive machine-type communication (mMTC), most of
the time, only a fraction of users are simultaneously active.
In this context, user identification (UI) for a multiple-access
fading channel is an important issue. The UI scheme based
on signature code is widely concerned because the code
length L is smaller than the number of devices T , which
leads to a higher spectral efficiency than other conventional
multiple-access-based schemes. In previous studies, the
signature code was constructed for a noisy multiple-access
adder channel, and only the user state information (USI) was
decoded using the signature decoder [1]–[3]. However, in
a multi-access fading channel, the channel state information
(CSI) is also important for channel decoding.

Consider a signature matrix S and a fading coefficient
vector k with elements given by the multiplication of the
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active status of user and channel coefficients. Because only
a fraction of users are simultaneously active, k is sparse. The
recovery of the vector k from the superimposed signal y =
kS+n with the highest possible accuracy is a basic problem
in compressed sensing. The recovered vector contains not
only the USI but also the CSI. This idea makes the joint
channel estimation (CE) and UI possible.

In compressed sensing field, the `1-regularized least
squares (LS) algorithm that minimizes ‖ y − kS‖22 +λ ‖k ‖1
is commonly used for solving sparse signal recovery prob-
lems. There are several algorithms to solve `1-regularized
LS problems efficiently, among which the least absolute
shrinkage and selection operator (LASSO) is well known.
The iterative shrinkage thresholding algorithm (ISTA) [4] is
one of the most well-known algorithms for solving LASSO
problems; it is an iterative algorithm comprising a linear
estimation and a shrinkage process based on a soft thresh-
olding function. An interior-point methodwas also proposed
for solving large-scale `1-regularized least-squares programs
(LSPs) to compute the search direction in a sparse recon-
struction algorithm based on the preconditioned conjugate
gradient algorithm [5]. The matching pursuit (MP) algo-
rithm and orthogonal matching pursuit (OMP) [6], [7] are
also `1-regularization algorithms with incomplete measure-
ments. Above iterative sparse reconstruction algorithms are
usually used as iterative joint CE andUI solutions in previous
studies with similar settings, like [8], [9].

Machine learning (ML) algorithms enable one to per-
form tasks that are too challenging to perform with fixed
programs written and designed by humans [10]. Standard
deep-learning techniques, such as stochastic gradient de-
scent (SGD) algorithms based on mini-batches, are used to
adjust the trainable variables for improving the algorithm
performance. Recently, ML, including deep neural net-
works (DNNs), has been applied as a promising solution
for practical applications, such as a stable and efficient de-
coder [11], [12]. In the field of signal processing, algo-
rithms based on ML have been applied to recover sparse
signals [13], [14]. In related research on signature codes,
by applying training data to a properly designed DNN, the
scheme proposed in [15] learns the nonlinear mapping be-
tween the received signal and the support for detecting active
users. Unlike traditional algorithms and ML methods based
on conventional models, neural network-based solutions can
improve the model’s performance through a large amount of
data, which is not present in traditional ML because of the
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influence of the standard model used.
In our previous study [16], a DNN-based decoder was

implement with a binary signature code proposed in [3].
However, that signature code was constructed for a noisy
multiple-access adder channel, not perform well in a fading
channel. Furthermore, the preprocessing of the decoder is
too complicated. In the present study, we consider a ran-
domly generated (0,1,−1)-signature code for a multi-access
wireless fading channel and propose an iterative DNN-based
decoder for the code to identify active users and estimate the
channel coefficients for active users. The DNN-based de-
coder contains two types of basic units: a DNN-based user
detector and a DNN-based channel estimator. A recursive
algorithm is designed between the DNN-based detector and
DNN-based estimator. Because the DNN-based detector
provides prior information to the DNN-based channel esti-
mator, the DNN-based estimator provides highly accurate
estimation. Furthermore, simulation results show that the
proposed DNN-based decoder achieves higher active user-
detection and channel-estimation accuracies than existing
algorithms derived from compressed sensing technology for
the (0,1,−1)-signature code.

2. System Model

We consider a multiple-access fading communication sys-
tem in which T users communicate with a base station, as
shown in Fig. 1. A small fraction of these users are active
simultaneously. Let xi ∈ {0,1} represent the active status of
the i-th user, where 0 represents idle and 1 represents active,
and let P(xi = 1) denote the probability of user activity. We
assume that the active statuses of these users are independent
and that the probability of being active is uniform and equal
to ρ for all users, that is, P(xi = 1) = ρ for any i.

To determine the active status of the base station, when
the i-th user is active, a unique codeword si ∈ {0,1,−1}L
(code length L < T) is sent. The base station receives a
superimposed signal y expressed as

y =
T∑
i=1

xihi si + n, (1)

where hi is the channel coefficient for the i-th user, which is
a random variable following the Rayleigh distribution, and

Fig. 1 T -user multiple-access communication over a wireless fading
channel.

n ∈ RL is a Gaussian noise vector.
Let k = (k1, k2, . . . , kT ) with ki = xihi , and let S be a

T × L matrix S = [s1, s2, . . . , sT ]
T. We simplify Eq. (1) as

follows:

y =
T∑
i=1

ki si + n

= kS + n. (2)

Note that k = (k1, k2, . . . , kT ) is the fading coefficient vector
for active users. The compression ratio of the signature
matrix is defined as T/L and usually set to 2.

At the receiver, from the received signal y , we esti-
mate the fading coefficient vector k by solving the following
problem:

k̂ = arg min
k∈(R≥0)T

‖ y − kS‖22 , s.t. P(ki , 0) = ρ, (3)

where ‖·‖p denotes the `p norm. For a real number p ≥ 1,
the `p norm of the vector v is defined by

‖v ‖p= (|v1 |
p + |v2 |

p + · · · + |vn |
p)1/p, (4)

and when p = 0, it is the number of non-zero elements in a
vector; for instance, ‖(0,3,2,0)‖0= 2.

In this paper, we first propose a DNN-based decoder to
provide soft information about k, k̂s = (k̂s,1, k̂s,2, . . . , k̂s,T ).
Next, from k̂s, the user status x̂ = (x̂1, x̂2, . . . , x̂T ) is esti-
mated with a positive threshold τ as

x̂i =

{
0 k̂s,i < τ

1 k̂s,i ≥ τ.
(5)

Finally, we obtain an accurate estimate of k:

k̂ = (x̂1 k̂s,1, x̂2 k̂s,2, . . . , x̂T k̂s,T ). (6)

3. Feedforward Neural Network

Before introducing our DNN-based decoder, we first review
the feedforward neural network (FNN) structure that will be
used later.

The FNN is one of the most commonly used neural
networks. A basic FNN structure is composed of one input
layer, N repetitive hidden layers, and one output layer. Each
hidden layer of the basic FNN unit is composed of a weight
matrix, Wi; a bias vector, bi; and an activation function, φi ,
where i denotes the index of the hidden layer. The output
layer is composed of a weight matrix, Wo; a bias vector, bo;
and an activation function, φo. The output of the FNN with
N hidden layers is expressed as

f (v;Θ)
= φo(WoφN (WNφN−1(. . . φ1(W1v

+b1) . . . ) + bN ) + bo), (7)

where v denotes the input of the FNN unit and Θ is the



WEI et al.: USER IDENTIFICATION AND CHANNEL ESTIMATION BY ITERATIVE DNN-BASED DECODER ON MULTIPLE-ACCESS FADING CHANNEL
419

Table 1 Parameters of the FNN models.

Model Number of hidden layers Hidden layer’s neural

Simple model 1 T + L

Middle model 3 T + L

Wide model 3 (T + L) × 2

Deep model 1 6 T + L

Deep model 2 14 T + L

set of weight matrices and bias vectors for FNN, that is,
Θ = {Wi, bi |i = 0,1, . . . ,N} ∪ {Wo, bo}.

Two types of activation functions are used in this study.
The first is the rectified linear unit (ReLU) [17], which is
expressed as

φR(x) = x+ = max(0, x). (8)

ReLU is a non-linear functionwith the domain (−∞,+∞) and
range [0,+∞). The second activation function is the sigmoid
function. The standard sigmoid function is expressed as
follows:

φs(x) =
1

1 + e−x
. (9)

It is a nonlinear function with the domain (−∞,+∞) and
range (0,1).

4. Decoder Model Based on Simple FNN Structure

In this section, we built a decoder based on a simple FNN
structure called a simple FNN-based decoder. We tried five
FNN models with different parameters and gave the training
results.

4.1 Parameters of FNN Models

By adjusting the number of layers and number of nodes of
the FNN, a simple model, a middle model, a wide model,
and two deep models were created. These FNN models use
ReLU as the activation function in the hidden and output
layers, the Table 1 shows the structure details.

4.2 Loss Function for the Simple FNN-Based Decoder

The decoder recovers the fading coefficient vector k by
receiving the signal y . Therefore, the input of the FNNs is
y , and we expect the output of FNNs f (y ;Θ) to be close to
the fading coefficient vector k . To represent the difference
between f (y ;Θ) and k , we use the mean squared error
(MSE):

T∑
i=1
(ki − f (y ;Θ)i)2/T, (10)

Fig. 2 Training curve of the simple FNN-based decoder.

which is also used as a loss function in training.

4.3 Training Results of the Simple FNN-Based Decoder

We trained each decoder using training data which randomly
generated by a fixed (0,1,−1)-signature matrix with size
100 × 50, when setting ρ = 0.1, and SNR= 10 dB. The
training curves shown in Fig. 2. In the training the wide
model and deep model 1 show the best performance, the
middle model shows the next-best performance, and deep
model 2 shows the worst performance.

In the simulation, increasing the number of hidden lay-
ers and the number of nodes in a hidden layer within a certain
range can improve the performance of the model. Although
increasing the number of nodes in the hidden layer can in-
crease the performance, the network complexity increases
exponentially as the number of nodes in a hidden layer in-
creases. Another technique to improve performance is to
increase the number of hidden layers. However, if the num-
ber of hidden layers is too large, the training of the neural
network becomes difficult, and the model performance be-
gins to decrease. Therefore, the performance improvement
cannot rely solely on the simple stacking of neural networks,
we need to design the network further. In addition, the num-
ber of the trainable parameters of the wide model is 3.6 times
to the middle model and 1.46 times to the deep model 1. To
obtain the trade-off between complexity and performance to
the FNN, we choose L + T as the number of nodes in each
hidden layer in the following proposed DNN-based decoder.

5. Proposed Method

In this section, we first describe how the superimposed signal
y is recovered from the fading coefficient vector k in our
proposed DNN-based decoder. Subsequently, we present a
training procedure for the proposed scheme.

5.1 DNN-Based Decoder Structure

To solve the optimization problem (3), we propose an iter-
ative DNN-based decoder consisting of several generations,
as shown in Fig. 3. In the m-th generation of the DNN-based
decoder, the soft information on the user status, denoted by
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Fig. 3 Iterative DNN-based decoder with M generations.

Fig. 4 Schematic of the m-th generation of the DNN-based decoder.

x̂ms , and the estimate of the fading coefficient vector k of
active users, denoted by k̂

m

s , are obtained, given the received
signal y and the previous generation’s outputs x̂m−1

s and
k̂
m−1
s . For the first generation, the input x̂0

s is defined as an
all-zero vector (0,0, . . . ,0) ∈ RT , and k̂

0
s is defined as an

all-one vector (1,1, . . . ,1) ∈ RT .
As shown in Fig. 4, the m-th generation of the DNN-

based decoder contains a user detector and a channel es-
timator, named DNN-based user detector and DNN-based
channel estimator, respectively.

Given the received signal y and the previous estimator’s
output k̂m−1

s , the DNN-based user detector estimates the soft
information on the user status as

x̂ms = fd((y, k̂
m−1
s );Θd), (11)

where fd is the output function of the FNN for the DNN-
based channel estimator (7) andΘd denotes the set of weights
and biases of the DNN-based user detector. The DNN-based
channel estimator provides the received signal y and the
previous detector’s output x̂m−1

s as

k̂
m

s = fe((y, x̂m−1
s );Θe), (12)

where fe is the output function of the FNN for the DNN-
based channel estimator (7) andΘe denotes the set of weights
and biases of the DNN-based estimator. Note that the DNN-
based channel estimator aims to solve the problem of mini-
mizing ‖ y − kS‖22. This problem always has a solution, but
the solution may not be unique. Therefore, the DNN-based
user detector is necessary to provide prior information on the
position of the non-zero elements in the vector k . The prior
information makes the solution of the minimization problem
unique or approximately unique. The DNN-based user de-
tector can also be viewed as a shrinkage process for channel
estimation.

Table 2 Parameters of the neural network.

Parameter Estimator Detector

Number of hidden layers 3 3

Input layer’s neural T + L T + L

Hidden layer’s neural T + L T + L

Output layer’s neural T T

Table 3 Activation functions.

Layer Estimator Detector

Main hidden layer ReLU ReLU

Last hidden layer ReLU None

Output layer None Sigmoid

The DNN-based user detector and DNN-based channel
estimator both use the FNN structure described in Sect. 3.
The parameters and activation functions of the FNNs are
listed in Tables 2 and 3, respectively. In addition, we add
a batch-normalization layer before each hidden layer [18]
for substantially accelerating the training of deep networks.
The batch-normalization layer reparametrizes the underly-
ing optimization problem to make it stabler and smoother.
Consequently, the neural network can converge faster during
training [19].

5.2 Training Procedure

The proposed FNN structure is trained with the detec-
tor, fd((y, k̂

m−1
s );Θd), and the estimator, fe((y, x̂m−1

s );Θe),
which can recover the fading coefficient vector k . In the
training procedure, a multi-loss function inspired by [11] is
used:

Loss(y, k̂0
s , x̂

0
s , . . . , k̂

M−1
s , x̂M−1

s , k, x;Θd,Θe)

=

M∑
m=1
(MSEm

d (y, k̂
m−1
s , x;Θd)

+MSEm
e (y, x̂

m−1
s , k;Θe)), (13)

where MSEm
d denotes the MSE of the DNN-based user de-

tector in m-th generation, which is defined as

MSEm
d (y, k̂

m−1
s , x;Θd)

,
T∑
i=1
( fd((y, k̂

m−1
s );Θd)i − xi)/T . (14)

MSEm
e denotes the MSE of the DNN-based estimator in the

i-th generation, which is defined as

MSEm
e (y, x̂

m−1
s , k;Θe)
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,
T∑
i=1
( fe((y, x̂m−1

s );Θe)i − ki)/T . (15)

Let θi ∈ {Θd ∪ Θe} be a trainable parameter of the DNN-
based decoder. The updated θi , denoted by θ+i , is obtained
using the SGD method as follows:

θ+i := θi − α
∂

∂θi
Loss(y, . . . , k, x;Θd,Θe), (16)

where α is the learning rate (step size). Note that other
optimization algorithms based on the SGD method can also
be used, such as Adam [20] and RMSprop [21].

6. Numerical Experiments

In this section, we present the DNN-based decoder’s per-
formance for various signal-to-noise ratios (SNRs). In the
experiments, the (0,1,−1)-signaturematrixwith size 100×50
was used, and the zero elements in the matrix were set ac-
cording to a Bernoulli distribution with a probability of 0.5.
Furthermore, non-zero elements take the values 1 or −1 ac-
cording to the Bernoulli distribution with a probability of
0.5. The user activity probabilities ρ is fixed at 0.1, and the
channel coefficient obeys the Rayleigh distribution, with the
scale parameter being 1.

To make the neural network converge fully, we ran-
domly generated 75,000 batches of training data to train the
DNN-based decoder; the batch size was 1,000. The Xavier
method was used to initialize the weights and biases [22].
The learning rate α is fixed at 1 × 10−3. Figure 5 shows the
training curve for the DNN-based decoder with five genera-
tionswhen SNR= 10 dB.Our trained batches are sufficient to
stabilize the decoder’s multi-loss. Figure 6 and Fig. 7 show
the MSE of the detector and estimator, respectively, for dif-
ferent generations in the DNN-based decoder. The MSE
tends to stabilize after three to five generations. Therefore,
in the subsequent experiments, the number of generations in
training and simulation were set to five.

6.1 User Identification Accuracy

Here, we present the performance of theDNN-based decoder
inUI andCE. The status judgment error rate (SER) is defined
as follows:

SER , E
[
‖ x̂ − x‖0

T

]
. (17)

Figure 8 shows the SER performance of the DNN-based de-
coder in various values of τ when SNR= 10 dB. The DNN-
based decoder has the best performance when τ is in the
interval (0.01,0.1), so we take an intermediate value 0.05 as
the value of τ. Figure 9 shows the SER results in various gen-
erations of the DNN-based decoder for randomly generated
(0,1,−1)-signature matrices when τ was set to 0.05. The
horizontal axis represents the SNR of this system. For the
DNN-based decoder, the training SNR is equal to the testing

Fig. 5 Training curve of the DNN-based decoder, when SNR= 10 dB.

Fig. 6 MSE of the DNN-based detector for different generations in train-
ing, when SNR= 10 dB.

Fig. 7 MSEof theDNN-based estimator for different generations in train-
ing, when SNR= 10 dB.

SNR. The results in Fig. 9 show that as the number of itera-
tions increases, the performance of the DNN-based decoder
is better, which proves the validity of the iterative approach
for the proposed DNN-based decoder. For comparison, the
figure also shows the SER results for several classical recov-
ery algorithms: ISTA [4]; OMP [7]; basis pursuit (BP) [23],
which was implemented by disciplined convex programming
[24] in our simulations; and large-scale `1-regularized LSPs
[5]. The results show that the proposed DNN-based decoder
achieves the lowest SER among the compared methods.

6.2 Channel Estimation Accuracy

To evaluate the CE accuracy of the decoders, we used the
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Fig. 8 SER performance of DNN-based decoder in various τ, when
SNR= 10 dB.

Fig. 9 SERperformance of decodingwith randomly generated (0, 1, −1)-
signature code.

average normalized MSE (NMSE), which is defined as fol-
lows:

NMSE(dB) , 10 log10 E

[
‖ k̂ − k ‖22
‖k ‖22

]
. (18)

The average NMSE reflects the gap between the estimated
fading coefficient vector k̂ and the actual fading coefficient
vector k. A smaller averageNMSE results in a better channel
estimate accuracy of the decoder. To avoid a situation where
the denominator is zero when calculating the NMSE, we
excluded data corresponding to inactive users, that is, x ,
(0)T . Figure 10 shows the average NMSE performance of
each decoder for a randomly generated (0,1,−1)-signature
matrix with various SNRs. For the DNN-based decoder,
the training SNR is equal to the testing SNR. The results in
Fig. 10 show that the validity of the iterative approach for
the proposed DNN-based decoder, and the proposed DNN-
based decoder achieves the lowest average NMSE among
all the compared methods. For ISTA and BP, the NMSE
is relatively high because, in the recursion of optimization,
no prior information on the user status is provided. OMP
is an iterative greedy algorithm that easily falls into a local
optimal solution.

Fig. 10 NMSE performance of decoding with randomly generated
(0, 1, −1)-signature code.

Fig. 11 NMSE performance of DNN-based decoder with randomly gen-
erated (0, 1, −1)-signature code.

6.3 Generalization Ability Discussion

In order to test the generalization ability of the DNN decoder
under different testing SNR, we conducted experiments on
the decoder trained under different training SNR and per-
form these decoders at testing SNR of 1 dB, 6 dB, 10 dB,
and 20 dB. The experimental results are shown in Fig. 11.
It can be seen from Fig. 11 that the training SNR basically
determines the performance limit of the decoder. The larger
the training SNR be using, the better the performance of
the decoder in the high testing SNR field, however when
the training SNR greater than 8 dB, the performance of the
decoder in the low testing SNR field becomes to accelerate
deterioration, so we think testing SNR in the interval (8,13)
is a more appropriate parameter. Since the data in training
is completely set by the program and randomly generated,
these parameters may deviate from the actual situation. We
recommend using the data obtained in the working environ-
ment for neural network training, and this will be the best
choice.

We also observed the performance of the decoder when
the user’s active probability ρ changes in testing when train-
ing ρ = 0.1, SNR= 10 dB, and the results are shown in
Fig. 12. When the testing ρ is greater than the training ρ,
the decoding difficulty increases due to the increase of ac-
tive users in the same time slot, and the performance of the
decoder will decrease. When the testing ρ is slightly smaller
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Fig. 12 NMSE performance of DNN-based decoder in various ρ, when
SNR= 10 dB.

Table 4 Average computing time for various decoders (in seconds).

OMP DNN ISTA LSPs BP

4.15E-4 3.12E-3 4.09E-2 0.177 0.507

than the training ρ, the decoding difficulty is reduced due
to the reduction of active users in the same time slot, and
the performance of the decoder will be improved, like in the
interval (0.07, 0.1). However, when ρ continues to decrease,
although the decoding difficulty decreases, the received sig-
nal at this time is too different from the signal in the training
phase, the performance of the decoder begins to deteriorate,
like in the interval (0.01, 0.07). Therefore, the DNN-based
decoder has a certain generalization ability for ρ, when ρ
does not change much, like an interval (0.04, 0.12), its per-
formance does not deteriorate.

6.4 Computation Efficiency

Table 4 lists the average computing times in the above exper-
iment. The decoding methods explained in the previous sub-
sections were performed off-line using a computer equipped
with Intel Core i5 CPU at 3.10 GHz with 8 GB memory.
To ensure fairness, no GPU was used in this test. The table
demonstrates that the proposed DNN-based decoder is less
time consuming than those based on BP, ISTA, and LSPs
for recovering the fading coefficient vector k . However,
the computing time of the OMP-based decoder is less than
that of the DNN-based decoder. This is because the OMP-
based decoder is a greedy algorithm that considers only the
local minimum solution and not the global solution. Con-
sequently, the performance of the OMP-based decoder is
significantly lower than that of the DNN-based decoder in
user detection as well as channel estimation. Therefore, the
DNN-based decoder is the most efficient decoder.

7. Conclusions

In this study, we considered a randomly generated (0,1,−1)-
signature code for a multi-access wireless fading channel,
in which a small fraction of users are active simultaneously,
and proposed an iterative DNN-based decoder for the code to

identify active users and estimate the channel coefficients. A
recursive algorithm was designed between the DNN-based
detector andDNN-based estimator. Because theDNN-based
detector provides prior information to the DNN-based chan-
nel estimator, the DNN-based estimator achieves highly ac-
curate estimation.

Simulation results show that the proposed DNN-based
decoder achieves higher accuracies in UI and CE than exist-
ing algorithms derived from compressed sensing technology
for the randomly generated (0,1,−1)-signature code.

As the performance of sparse signal recovery in com-
pressed sensing depends substantially on the compression
matrix used, in the future, we will investigate the design of a
signaturematrix that can achieve good sparse signal recovery
performance in a wireless fading channel.
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