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SUMMARY The convex hull is the minimum convex surrounding a
given set of points. Since the process of finding convex hulls has various
practical application fields including embedded real-time systems, efficient
acceleration of convex hull algorithms is an important problem in computer
geometry. In this paper, we discuss an FPGA acceleration approach to
address this problem. In order to compute the convex hull of an unsorted
point set, it is necessary to store all the points during the computation, and
thus the capacity of a on-chip memory is likely to be a major constraint for
efficient FPGA implementation. On the other hand, approximate convex
hulls are often sufficient for practical applications. Therefore, we propose
a hardware oriented approximate convex hull algorithm, which can process
the input points as a stream without storing all the points in the memory.
We also propose some computation reduction techniques for efficient FPGA
implementation. Then, we present FPGA implementation of the proposed
algorithm, which is parallelized both in temporal and spatial domains, and
evaluate its effectiveness in terms of performance and accuracy. As a
result, we demonstrated 11 to 30 times faster performance compared to
the widely-used convex hull software library Qhull. In addition, accuracy
assessment revealed that the maximum approximation error normalized to
the diameters of point sets was 0.038%, which was reasonably small for
practical use cases.
key words: convex hull, hardware algorithm, FPGA, approximated algo-
rithm

1. Introduction

Given a point set P, theminimum convex that includes all the
points in P is called the convex hull of P. For example,for
point sets defined on a two dimensional (2D) planar space,
the convex hull of P becomes the convex polygon whose ver-
tices are a subset of P as illustrated in Fig. 1. A convex hull
problem, whose purpose is to find the convex hullCH(P) of a
given point set P, has various practical applications [2], and
thus its high speed algorithms and implementation have been
widely addressed in the field of computational geometry.

Qhull [3] is one of the most popular software libraries
for computing convex hulls. The main algorithm used in the
Qhull library is called Quickhull [4], [5]. Mei proposed
a GPU-accelerated high-speed 2D convex hull algorithm
called CudaChain [6]. CudaChain firstly reduces interior
points of a given point set to form a simple polygon. This
step is parallelly performed on a GPU. Then, the convex hull
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Fig. 1 Example of convex hull for a 2D point set.

of the simplified polygon is computed with Melkman’s al-
gorithm [7] on a CPU. Performance evaluation revealed that
CudaChain with GT640 and GTX660M GPUs outperforms
Qhull by a factor of 5 to 6 for a 20M-point set. Srungarapu
et al. implemented the Quickhull algorithm on a GTX280
GPU and achieved 14 times speedup to Qhull [8]. Srikanth
et al. also parallelized the Quickhull algorithm and evalu-
ated the performance on a GTX280 GPU as well as a Cell
Broadband Engine [9]. The GPU implementation achieved
approximately 15 times speedup to Quickhull implementa-
tion on aCPU,while Cell BroadbandEngine implementation
obtained 4 to 5 times performance compared to themain pro-
cessor execution. Tzeng et al. implemented a general GPU
framework for divide-and-conquer algorithms and applied
it to accelerate 2D and 3D convex hull computations [10].
Compared toQhull implementation, they demonstratedmore
than 10 times acceleration.

Aiming at effective real-time convex hull calculation,
Kemmotsu et al. proposed an FPGA-based parallel approach
for convex hull computing for points in 2D images [11]. The
basis of this approach is Andrew’s Monotone Chain [12],
which needs the input points to be sorted in advance as a
pre-processing step. Kemmotsu’s approach eliminates the
pre-processing step from the implementation by limiting ap-
plication domains to image processing, in which input points
are always given in a raster scan manner. They also proposed
to parallelly compute the upper hull and the lower hull. The
final result is obtained by combining them. However, the ap-
proach is not suitable for general systems that need to handle
unsorted input points.

In typical convex hull algorithms for unsorted point sets,
such asGraham’s scan [13], Andrew’sMonotoneChain [12],
and Quickhull [4], entire input points need to be stored and
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available in memory before starting computation, which im-
poses a challenge for FPGA implementation. Since the ca-
pacity of on-chip memory of FPGAs is limited, the use of
external memory is required to avoid size (the number of
points) limitation of solvable problems. However, this ap-
proach will significantly reduce the advantage of FPGAs,
in terms of both performance and power efficiency. For
FPGAs, online algorithms that can process the input in a
point-by-point manner are more preferable.

Fortunately, convex hulls are often used to roughly grab
abstract object shapes in applications such as collision de-
tection and path planning, where computation of the exact
convex hulls is not necessarily needed. For such appli-
cation domains, approximate convex hull computing algo-
rithms [14]–[17] are acceptable. In this paper, we propose
an online approximate convex hull algorithm for unsorted
point sets and present its FPGA implementation. This al-
gorithm is hardware oriented, in a sense that input points
can be processed in a pipelined manner without storing all
the points in memory. As far as the authors’ knowledge,
FPGA implementation of such online approximate convex
hull algorithms has not been reported so far.

The rest of the paper is organized as follows. The
proposed algorithm is described in Sect. 2, and the FPGA
implementation is shown in Sect. 3. In Sect. 4, we evaluate
the implementation by comparing the performance to related
work [6] and the software library Qhull [3]. Finally, Sect. 5
concludes this paper.

2. Algorithm

Let θ be an angle between a unit vector v ∈ R2 and a
position vector P ∈ R2. Let us consider an inner product
map d : R2 → R such that :

d(P) ≡ vTP = ‖v ‖‖P‖ cos θ = ‖P‖ cos θ (1)

where θ is the angle between the two vectors P and v. Let
` be the line with the direction vector v passing through the
origin. As depicted in Fig. 2, d(P) can be interpreted as the
signed distance between the origin and the point P′, which
is the projection of point P on the line `.

Let us consider that all the points in a given point set P
are projected onto a line `. If a projected point becomes one
of the end points on the line `, the corresponding original
point is one of the vertices of the convex hull CH(P) as
shown in Fig. 3 and Fig. 4. Therefore, the vertices of CH(P)
can be obtained by finding the points P ∈ P which have the
maximum or minimum value of d(P), by rotating the unit
vector v . Here, we call v a scan vector. Although ideally the
scan vector should be continuously rotated to scan the 2D
plane, we need to discretize the algorithm using a small step
angle for implementation. By rotating the scan vector in the
counterclockwise direction, the vertices of the convex hull
can be obtained in a counterclockwise order as illustrated in
Fig. 5.

While this principle is also shared by other approx-
imated convex hull algorithms such as [14] and [17], we

Fig. 2 Projection points and signed distances.

Fig. 3 Projection of points to a line. Nodes 8 and 23 are the end points.

Fig. 4 Convex hull of the points shown in Fig. 3. Node 8 and 23, which
are the end points in the projection, belong to the vertices of the convex
hull.

introduce a computation reduction technique for FPGA im-
plementation as follows. A naive calculation of one inner
product in Eq. (1) requires two multiplications. Utilizing
symmetry, however, four inner products can be computed by
two multiplications. With a polar coordinates system, a unit
vector v is defined with a polar angle θ as :

v(θ) = (vx, vy)
T = (cos θ, sin θ)T . (2)
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Fig. 5 Lines made by rotating scan vectors and their projected end points
(light blue nodes). Their original points form the vertices of the convex hull
(green nodes).

Here, let us consider the following four symmetric vectors :

v0 = v(θ), v1 = v
( π
2
− θ

)
, v2 = v

(
θ +

π

2

)
,

v3 = v (π − θ)
(3)

where θ ∈ [0, π4 ). The inner products between point P =
(px, py)T and these vectors can be expressed as :

d0(P) ≡ v0
TP = px cos θ + py sin θ

d1(P) ≡ v1
TP = px sin θ + py cos θ

d2(P) ≡ v2
TP = −px sin θ + py cos θ

d3(P) ≡ v3
TP = −px cos θ + py sin θ.

(4)

Dividing the both sides of Eq. (4) by cos θ, we get :

d ′0(P) = px + py tan θ
d ′1(P) = px tan θ + py
d ′2(P) = −px tan θ + py
d ′3(P) = −px + py tan θ

(5)

where d ′i (P) ≡
di (P)
cos θ . Since cos θ > 0 for θ ∈ [0, π4 ),

di(P0) ≤ di(P1) ⇔ d ′i (P0) ≤ d ′i (P1) (6)

for any pair of points P0 and P1. Therefore, we can use
d ′i (P) in stead of di(P) for judgment of end points. By
pre-calculating the value of tan θ, the four inner products in
Eq. (5) can be computed with two multiplications, that is,
px tan θ and py tan θ.

The proposed approximate convex hull algorithm is de-
scribed in Algorithm 1. Here, n and s are the size of a given
point set and the number of scan vectors in [0, π4 ), respec-
tively. In this algorithm, a circle is divided into eight sectors
as shown in Fig. 6, and the point numbers (IDs) on the convex
hull are pushed into each stack N0,N1, · · · ,N7 in a scanned

Algorithm 1 Approximate convex hull algorithm
Input: P = {P0, P1, · · · , Pn−1 }: Point set

s : number of scan vectors in [0, π4 )
Output: Array of point IDs for convex hull vertices in counterclockwise
Data Structure: N0, N1, · · · N7: Stacks

for i = 1, · · · , n − 1 do
Pi ⇐ Pi − P0;

end for
for i = 0, · · · ,s −1 do
θ ⇐ iπ

4s ;
for k = 0, 1, 2, 3 do

nk = arg max
0≤ j<n

d′
k
(Pj ); nk+4 = arg min

0≤ j<n
d′
k
(Pj );

end for
for k = 0, · · · , 7 do

if i = 0 or nk , Nk .top() then
Nk .push(nk );

end if
end for

end for
for k = 0, · · · , 3 do

N2k+1.reverse();
end for
return unite(N0, · · · , N7)

Fig. 6 Domains of angles for each stack.

order. Since the computation for one scan takes O(n), the
time complexity for sequential execution of this algorithm is
O(ns). If we make s a small value, the execution time will
be reduced, but the approximation error will increase.

3. Implementation

We designed pipeline-based custom hardware for the pro-
posed approximate convex hull algorithm. Since the calcu-
lation for each scan vector is independent, we prepared as
many calculation modules as the number of scan vectors to
extract parallelism. The overall diagram of the circuit is as
shown in Fig. 7. The roles of each signal and parameter are
summarized in Table 1. The implemented circuit receives
information for one point (point ID and xy coordinates) ev-
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Fig. 7 The overall diagram of the circuit.

Table 1 The roles of each signal and parameter.
name role

input in_n point ID of input point
in_x x coordinate of input point
in_y y coordinate of input point
in_en input enable flag
in_complete input complete flag

output out_n point ID of CH vertex
out_en output enable flag
out_complete output complete flag

parameter s number of scan vectors in [0, π4 )
Ws multiplication max bit width
Wn point ID bit width
Wx input x coordinate bit width
Wy input y coordinate bit width

ery clock cycle. The circuit starts output of the point IDs for
the vertices of the calculated convex hull one by one each
cycle, several clock cycles after whole point information has
been given.

The horizontally arranged rectangles in Fig. 7 show IN-
NER_MINMAX circuits, for each of which a unique scan
vector v is assigned. This circuit calculates the inner prod-
ucts between the input point and the four symmetric vectors
v0, · · · , v3, and holds the maximum and minimum values as
well as the corresponding point IDs. After the input of the
point set and the calculation of the INNER_MINMAX cir-
cuit are completed, the approximate convex hull is obtained
by outputting the point IDs in a counterclockwise order while
eliminating duplication.

The xy coordinate values of the first input point P0
are stored in x0 and y0 registers depicted in Fig. 7. The
coordinates of the subsequent input points are transformed
so that P0 is the origin by subtracting x0 and y0. Each
INNER_MINMAX circuit reads n, x, y and updates the pro-
visional maximum and minimum points by calculating the
inner products. The signal “in_en” is an input enable sig-
nal, thus the register values are not updated when this port is
deasserted. The signal “in_complete” represents the comple-
tion of the input stream. Once this port is asserted, the sub-
sequent input signals are just ignored without being stored
in the registers.

The update of the INNER_MINMAX circuit is finished
several clock cycles after “in_complete” becomes 1, and

Fig. 8 INNER_MINMAX circuit (out_flag=0).

output of the result starts. After output starts, “out_flag” goes
to 1. Meanwhile, another flag “store_bram” becomes 1 for
(s+1) clock cycles. Then the point IDs in the region N0 (θ ∈
[0, π4 )) are outputted from “out_n” in the counterclockwise
order, while the point IDs in N1 ∼ N7 are stored in BRAM,
eliminating duplicates. Note that the point IDs in N1, N3,
N5, and N7 are stored from the θ = π

4 side, so that they are
obtained in the counterclockwise order.

The output of the IDs from N0 is completed as soon
as “store_bram” becomes 0, and the point IDs stored in
BRAM are outputted from “out_n” in the order of N1 ∼ N7
thereafter. Two clock cycles after the completion of N7
output, “out_complete” goes to 1 to show the completion of
the output.

For each INNER_MINMAX circuit,

v = (vx, vy)
T =

(
2Ws, b2Ws tan θc

)T
(7)

is assigned as a scan vector. Since the norm of v can be
changed to any value provided that the orientation is kept,
both vx and vy are right-shifted so that the LSBof vy becomes
1, aiming at hardware resource reduction. When “out_flag”
is 0, the circuit receives input points from “in_n”, “in_x”, and
“in_y”, and updates the maximum and minimum values of
the inner products and the point IDs as Fig. 8 shows. When
“out_flag” is 1, the point IDs given from the outside are
stored in the registers (n0, · · · ,n7), which are used to store
point IDs in Fig. 8, in order to form the shift register shown
in Fig. 7.

In this architecture, it takes (n + 4) clock cycles to pro-
cess all the input points with INNER_MINMAX circuits.
Since the maximum number of output points is 8s, which
corresponds to the situation there is no duplication in the
detected convex hull vertices, at most it takes (8s + 2) clock
cycles to output the results. Therefore, the theoretical exe-
cution time T can be expressed as

T ≤
n + 8s + 6

Fmax
(8)

where Fmax is the maximum clock frequency of the system.
Thus, the time complexity of the FPGA execution isO(n+s),
in contrast to the time complexity for sequential execution of
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O(ns).
Unlike to other convex hull algorithms, the proposed

method does not adopt preprocessing to decimate input
points. In general, the time complexity of the exact (non-
approximate) convex hull algorithms is O(n log n). Thus, it
is reasonable to perform preprocessing in O(n) to reduce the
number of points to be processed. On the other hand, the
proposed approach calculates an approximated convex hull
in O(n + s). Therefore, decimation of input points is not
considered for this approach.

4. Evaluation

The designed hardware was evaluated targeting on a Xilinx
Virtex UltraScale FPGA (xcvu095-ffva2104-2-e-es2). For
logic synthesis and mapping, Xilinx Vivado 2018.3 was
used. For simulation, Cadence Xcelium 18.9 was used. For
evaluation of execution time and approximation errors, the
benchmark point sets used in the related work [6] were used.
The benchmark sets consist of three groups: rbox, circle,
and model. The rbox group contains point sets generated
using Qhull’s rbox, and their sizes (the number of points)
are 0.1M, 0.2M, 0.5M, 1M, 2M, 5M, 10M, and 20M. The
circle group contains point sets randomly generated within
the unit circle, and their sizes are the same as those for the
rbox group. The model group contains point sets obtained
by projecting the vertices of 3D models onto the XY plane.
The 3D models and their sizes are shown in Table 2. These
models were obtained from the Stanford 3D Scan Repository
[18] and the GIT Large Geometry Models Archive [19].

For the circuit parameters shown in Table 1, we evalu-
ated four types of s = 50, 150, 250, and 350 (Ws = dlog2 se).
Wn is set to 25 bits so that the maximum size of evaluation
point sets (20M) can be addressed. Both Wx and Wy are set
to 32 bits. At each rising clock edge, one point ID and cor-
responding real type xy coordinate values are read from the
input point set. The coordinate values are multiplied by 220

and the integer values are given to the circuit by truncating
the fractional part.

For comparison, we evaluated the performance of soft-
ware execution using the Qhull library (2019) on a PC with
the following environments:

• CPU: Intel i9-9900K (3.6GHz), Memory: 16GB, OS:
CentOS Linux 7.6.1810

We also compare the performancewithGPU implementation
described in [6], where the following two computational
environments were used:

• GPU: GT640, CPU: Intel i5-3470, Memory: 8GB, OS:

Table 2 Models and size.
Model Size Model Size
Armadillo 0.17M Turbine blade 0.88M
Angel 0.24M Vellum manuscript 2.16M
Skeleton hand 0.33M Asian Dragon 3.61M
Dragon 0.44M Thai statue 5.00M
Happy Buddha 0.54M Lucy 14.03M

Window 7 Pro
• GPU: GTX660M, CPU: Intel i7-3610QM, Memory:
6GB, OS: Window 7 Pro

For the execution time of Qhull, the average of 18 runs was
used. The execution time for the FPGA implementation was
obtained by dividing the number of clock cycles from the
start of input to the end of output in HDL simulation with
the maximum operating frequency obtained by Vivado STA.

To evaluate accuracy of the proposed approximate con-
vex hull algorithm, we utilized several metrics as follows.
Let CH(P) be the convex hull obtained by Qhull for the
point set P, and CH′(P) be the approximate convex hull ob-
tained by this implementation. Let V = {v0, v1, · · · , vh−1}
and V ′ = {v ′0, v

′
1, · · · , v

′
h′−1} be the vertices of the convex

hull CH(P) and CH′(P), respectively. The order of both
vertex sets is counterclockwise. The boundaries ∂CH(P) of
CH(P) and ∂CH′(P) of CH′(P) are polygons that connect V
an V ′, respectively. We consider an approximation evalua-
tion metric r , which is defined as the ratio of the number of
points that belong to the vertices of the approximate convex
hull to the vertices of the exact convex hull, that is,

r =
‖{v ∈ V |v ∈ V ′}‖

‖V ‖
. (9)

The higher the value of r , the better approximation. Note
that we regard the convex hull obtained by Qhull as the exact
convex hull, in this evaluation.

However, this metric alone would not be enough to
assess the approximation quality. As an extreme example, if
only one point of the approximate convex hull is wrong and
that point is far away from the exact convex hull as shown in
Fig. 9, r takes a large value but it cannot be said to be good
approximation. Therefore, we also evaluated the value µ,
which is the maximum value of the shortest distances among
the vertices and boundaries between the exact convex hull
and the approximate hull as shown in Fig. 10. In addition,
to remove the effect of size of convex hulls, the value of µ is
normalized to the diameter of the point set P:

µ =

max
(
max
v∈V

d (v, ∂CH′ (P)) ,max
v′∈V ′

d
(
v ′, ∂CH (P)

) )
diam(P)

(10)

Fig. 9 Wrong detection example of approximate convex hull (red edges).
The exact convex hull is with blue edges.
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Fig. 10 Distance between boundaries and vertices.

Table 3 Resource usage and maximum operating frequency.
s Ws LUT [%] FF [%] BRAM Fmax[MHz]
50 6 27364 5.09 38036 3.54 3.5 300.21
150 8 93572 17.41 116611 10.85 3.5 188.79
250 8 156096 29.04 198608 18.47 3.5 189.29
350 9 225054 41.86 283405 26.36 3.5 188.47

d (P, ∂CH(P)) = min
0≤k<h

d(P,VkVk+1) (11)

d(P,VkVk+1) =


‖P − V k ‖, (α ≤ 0)
‖P − V k − αd‖, (0 < α < l)
‖P − V k+1‖, (l ≤ α)

(12)

where diam(P) is the diameter of the point set P, ` = | |V k+1−
V k | | is the length of the edge, d = (V k+1 −V k)/` is the unit
direction vector of the edge, and α = (P − V k)

T d is the
signed distance between the projected point of P and V k .
When µ ' 0, the approximation can be considered to be
good. In that case, the relative error η between the exact
convex hull area S and the approximate convex hull area S′:

η =
|S − S′ |

S
(13)

where

S =
1
2

�����h−1∑
k=0

det (vk vk+1)

����� (14)

S′ =
1
2

�����h′−1∑
k=0

det
(
v ′k v ′k+1

) ����� (15)

is also a useful evaluation metric.

4.1 Resource Usage and Execution Performance

The resource usage and the maximum operating frequency
(Fmax) of this implementation are listed in Table 3. When
s = 50, the resource usage was small and the maximum op-
erating frequency was close to 300MHz. When s = 150,
250, and 350, the maximum operating frequency was about
180MHz, which was 100MHz or more lower than that of
s = 50. This is because the increase in the number of IN-
NER_MINMAX circuits makes wiring congestion on the

Fig. 11 Speedup ratios to Qhull execution.

FPGA, resulting in an increase in wiring delays. Each time
s was increased by 100, LUT utilization and FF utilization
were increased by about 12 pt and 8 pt, respectively. Assum-
ing a linear relationship between resource usage and s, the
target FPGA (Virtex UltraScale xcvu095-ffva2104-2-e-es2)
will be able to configure the system up to s = 750.

Since the size of each stack is s+1, the requiredmemory
capacity is Wn × (s + 1) bits. Here, if Wn = 25 and s = 350,
the required capacity becomes 8,775 bits, which corresponds
to half of 0.5 BRAM (in this device, one BRAM can be
utilized as two memory module each contains 18,000 bits).
Therefore, as shown in Table 3, the total amount of BRAM
remained at 0.5 × 7 = 3.5 regardless of s. This does not
change even when s reaches 700, so BRAM usage does not
limit the solvable problem size on this system.

Figure 11 shows the speedup ratios for CudaChain and
our implementation to Qhull execution. Table 4 repre-
sents the execution times for implementations shown Fig. 11.
When s = 50, the maximum operating frequency was high,
and thus it was approximately 1.5 times faster than the de-
signs with s = 150, 250, and 350. When s = 150, 250,
and 350, there was almost no difference in terms of the
maximum operating frequency and the execution time. This
implementation is 18 to 30 times faster when s = 50, and
11 to 19 times faster when s = 150, 250, and 350 compared
to Qhull. Compared to the implementation for s = 50, the
performance was dropped when s = 150, 250 and 350. This
is due to the FPGA implementation. An increase in s also
increases the complexity of the FPGA circuit, resulting in
the slower clock frequency as shown in Table 3. In addition,
compared to CudaChain, it was more than 5 times faster
when s = 50 and more than 3 times faster when s = 150,
250, and 350. Related work [8] achieved up to 14 times
speedup to Qhull, and related work [10] achieved more than
10 times faster performance than Qhull. Since the point
sets and Qhull versions used for evaluation differ from these
GPU implementations in the literature, precise comparisons
cannot be made, but at least we achieved higher performance
than these GPU implementations.

4.2 Execution Efficiency

Table 5 shows power consumption, execution time, total
energy, and energy efficiency for this method and GPU im-
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Table 4 Execution times of Qhull, CudaChain and this method [ms].
CudaChain [6] This method

Group size Qhull GT640 GTX660M s50 s150 s250 s350

rbox

0.1M 10.00 25.5 42.5 0.33 0.53 0.53 0.53
0.2M 19.44 29.1 45.9 0.67 1.06 1.06 1.06
0.5M 40.00 40.4 65.6 1.67 2.65 2.64 2.65
1M 79.44 46.9 75.0 3.33 5.30 5.28 5.31
2M 159.44 83.5 129.1 6.66 10.59 10.57 10.61
5M 399.44 147.0 174.8 16.66 26.49 26.42 26.53
10M 799.44 321.9 351.8 33.31 52.97 52.83 53.06
20M 1705.00 544.4 587.4 66.62 105.94 105.66 106.12

circle

0.1M 9.44 25.9 54.0 0.33 0.53 0.53 0.53
0.2M 20.00 28.3 65.5 0.67 1.06 1.06 1.06
0.5M 47.78 33.3 78.1 1.67 2.65 2.64 2.66
1M 96.11 50.0 95.0 3.33 5.30 5.29 5.31
2M 197.22 74.6 126.8 6.66 10.60 10.57 10.62
5M 504.44 148.6 193.0 16.66 26.49 26.42 26.53
10M 1020.00 263.2 317.9 33.31 52.97 52.83 53.06
20M 2053.89 492.8 543.6 66.62 105.94 105.66 106.12

model

0.17M 10.56 26.5 39.7 0.58 0.92 0.92 0.92
0.24M 20.00 28.0 41.6 0.79 1.26 1.25 1.26
0.33M 25.56 29.6 45.4 1.09 1.73 1.73 1.74
0.44M 36.11 35.1 59.8 1.46 2.32 2.31 2.32
0.54M 40.00 42.1 68.7 1.81 2.88 2.87 2.89
0.88M 67.22 46.3 73.9 2.94 4.68 4.67 4.69
2.16M 161.11 78.5 90.6 7.18 11.42 11.39 11.44
3.61M 276.11 102.5 101.7 12.02 19.12 19.07 19.15
5.00M 369.44 105.5 106.0 16.66 26.49 26.42 26.53
14.03M 1033.89 248.8 245.2 46.73 74.31 74.11 74.43

Table 5 Performance and efficiency comparison.
Power [W] Exec. time [ms] Total energy [J] Efficiency [M points/J]

Platform 2M 10M 2M 10M 2M 10M
2009 [9] GTX 280 236 † 30.0 †180.0 7.08 42.48 0.28 0.24
2011 [8] GTX 280 236 † 30.0 †130.0 7.08 30.68 0.28 0.33
2012 [10] GTX 260 182 † 95.0 - 17.29 - 0.12 -

2016 [6] GTX 660M + i7-3610QM 95 129.1 351.8 12.26 33.42 0.16 0.30
GT 640 + i5-3470 142 83.5 321.9 11.86 45.71 0.17 0.22

2020 [20]
GT 640 + i5-3470 142 44.4 163.4 6.30 23.20 0.32 0.43
Quadro M5000 + Xeon E5-2650v3 255 33.4 93.6 8.52 23.87 0.23 0.42
Quadro M5000 × 2 + Xeon E5-2650v3 405 44.6 83.3 18.06 33.74 0.11 0.30

2020 [21] GTX 1650 75 - 210.2 - 15.76 - 0.63
This Virtex UltraScale xcvu095 s50 18 6.7 33.3 0.12 0.60 16.58 16.68

method s350 20 10.6 53.1 0.21 1.06 9.43 9.42

plementation in related work. Here, the energy efficiency
was defined as the number of points processed per unit en-
ergy consumption. Our design was implemented on a Xilinx
VCU108 evaluation board equipped with a Virtex UltraScale
xcvu095 FPGA and the power consumption of the entire
board was measured by a watt checker plugged in to the AC
power line. On the other hand, the power consumption for
the GPU implementation was estimated from the thermal
design power (TDP) of the devices.

Although the performance has not been reported in the
literature, the latest GPUs (such as RTX3080) might outper-
form the FPGA implementation. However, the latest GPU
consumes as much as 320W. On the other hand, the FPGA
implementation on the VCU108 evaluation board was about
20W. One of the advantages of the FPGA approach is a
high degree of energy efficiency with a relatively slow clock

frequency.

4.3 Accuracy Evaluation

Since the proposed approach is an approximate algorithm,
accuracy of results is an important factor. When two adjacent
scan vector S0 and S1 detect two convex hull vertices Vi and
Vi+1, let Ci be a cross point of the two perpendicular line as
shown in Fig. 12. If other convex hull vertices exist inside the
triangle ViVi+1Ci , they will be overlooked since the triangle
is a “shadow” of the projection. Qualitatively, an increase
in the number of scan vectors s will increase the accuracy
by reducing the angle between the two adjacent scan vectors
and the shadow area. However, the probability of overlook
largely depends on the shape of the convex hull and thus

†Estimated value from the graph.
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Fig. 12 Missing point area

Fig. 13 Evaluation results for approximation metric: r .

Fig. 14 Evaluation results for approximation metric: µ.

general formal modeling is not straightforward. Therefore,
we experimentally performed the accuracy evaluation.

Figures 13, 14, and 15 show the evaluation results of
approximation metrices r , µ, and η, respectively. Only four
approximate convex hulls achieved r of 100%. Especially,
r values for the rbox group were relatively low, ranging
36.5% to 84%. However, the maximum µ value was 3.809e-
04. This means that the maximum difference between the
polygons is 0.038% of the diameter, which is acceptable in
most practical applications. Furthermore, the value of η, the
maximum value of the relative error in the area, was only
3.770e-04. These results suggest that the proposed algorithm
can be used to find appropriate convex polygons to roughly
grab abstract object shapes in applications such as collision
detection. The largest error was observed when s = 50 for

Fig. 15 Evaluation results for approximation metric: η.

all the point sets. The error decreases as s increases, and the
smallest error was shown when s = 350 for most point sets.

In this paper, we discussed only for 2D cases. For three
or larger dimensions, theoretically, the vertices of the convex
hull can be computed inO(n+s). However, as the dimension
increases, the hardware size for inner product arithmetic
and coordinate registers will increase almost linearly to the
dimension size. As a result, the hardware amount will limit
the degree of parallelism and performance. In addition,
the resource limitation also severely affects the accuracy
of results, since more scan vectors are required in larger
dimension spaces.

5. Conclusion

In this paper, we proposed an approximate convex hull al-
gorithm, which is oriented for hardware implementation in
a sense that input points can be processed in a pipelined
manner without storing all the points in memory. Then, the
proposed algorithm was implemented on FPGA without ex-
ternal memory and the performance and accuracy were eval-
uated. Unlike the related work such as [11], our approach
does not need to sort the input point set in advance. In addi-
tion, by changing the design parameter s, which is a discrete
resolution of a scan vector, different trade-off points among
hardware resources, performance, and approximation quality
can be selected depending on application requirements. In
the case of s = 50, up to 30 times performance was achieved,
compared to the software library Qhull. The maximum ap-
proximation error metrices µ and η were only 3.809e-04 and
3.770e-04, respectively. The evaluation results suggest our
approach is effective in many practical real-time application
domains. Expansion of the proposed method to 3D convex
hull problems is one of our interesting future work.
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