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OnWeighted-Sum Orthogonal Latin Squares and Secret Sharing∗

Koji NUIDA† ,††a), Member and Tomoko ADACHI†††, Nonmember

SUMMARY Latin squares are a classical and well-studied topic of dis-
crete mathematics, and recently Takeuti and Adachi (IACR ePrint, 2023)
proposed (2, n)-threshold secret sharing based onmutually orthogonal Latin
squares (MOLS). Hence efficient constructions of as large sets of MOLS
as possible are also important from practical viewpoints. In this letter, we
determine the maximum number of MOLS among a known class of Latin
squares defined by weighted sums. We also mention some known prop-
erty of Latin squares interpreted via the relation to secret sharing and a
connection of Takeuti–Adachi’s scheme to Shamir’s secret sharing scheme.
key words: Latin squares, upper bounds, secret sharing

1. Introduction

A Latin square of size v × v (where v ≥ 2) is a v × v square
array of integers from 0 to v − 1 where each row/column
consists of every integer in the range [0, v − 1] appearing
only once. Latin squares are a classical well-studied topic
in discrete mathematics. One of the famous and efficient
constructions of Latin squares is one using weighted sums
with fixed weights; here we call them weighted-sum Latin
squares.

Recently, Takeuti and Adachi proposed in their preprint
[10] a (2,n)-threshold secret sharing scheme based on mu-
tually orthogonal Latin squares (MOLS). Secret sharing
[5], [9] is a cryptographic technology to protect distributed
data storage against both steals and deletion of data. By
their result, efficient constructions of as large sets of MOLS
as possible are important from not just theoretical but also
practical viewpoints.

Let M(v) and MWS(v) denote, respectively, the maxi-
mumcardinalities of generalMOLS and ofMOLS consisting
of weighted-sum Latin squares only (MOWSLS, in short) of
size v × v. A bound M(v) ≤ v − 1 for MOLS is well-
known. On the other hand, for MOWSLS, it is obvious that

Manuscript received September 12, 2023.
Manuscript revised December 6, 2023.
Manuscript publicized December 19, 2023.
†Institute of Mathematics for Industry (IMI), Kyushu Univer-

sity, Fukuoka-shi, 819-0395 Japan.
††National Institute of Advanced Industrial Science and Tech-

nology (AIST), Tokyo, 135-0064 Japan.
†††Department of Computer Science, Shizuoka Institute of Sci-

ence and Technology, Fukuroi-shi, 437-8555 Japan.
∗This work was supported by JSPS KAKENHI Grant Numbers

JP19H01109 and JP22K11906, Japan. This work was supported by
Institute of Mathematics for Industry, Joint Usage/Research Cen-
ter in Kyushu University (FY2023 Short-term Visiting Researcher
“Cryptography using Latin squares” (2023a016)).

a) E-mail: nuida@imi.kyushu-u.ac.jp
DOI: 10.1587/transfun.2023DML0002

MWS(v) ≤ M(v), and values of MWS(v) are evaluated for
small v’s by computer experiments in [7]. The main result
of this letter is the following that fully determines the value
of MWS(v) for any v ≥ 2 (see Sect. 3.1 for the proof):

Theorem 1. Let p0 be the smallest prime factor of v ≥ 2.
Then we have MWS(v) = p0 − 1.

Hence, the maximum cardinality v − 1 of MOLS is
achievable byweighted-sumLatin squares when v is a prime;
while considering composite v’s instead of prime ones has
no advantage in generating large sets of MOWSLS.

We also mention some known properties of Latin
squares and secret sharing, in connection to Takeuti–
Adachi’s secret sharing scheme. First, we mention in
Sect. 3.2 that the known bound M(v) ≤ v −1 is also deduced
by applying a known lower bound for share sizes in secret
sharing schemes to Takeuti–Adachi’s scheme. Secondly,
we point out in Sect. 4 that Takeuti–Adachi’s scheme using
MOWSLS can be interpreted as a variant of Shamir’s (t,n)-
threshold secret sharing with t = 2 (see Sect. 4.3 for details),
and mention that the known protocols for converting shares
of two secrets x, x ′ in Shamir’s scheme into shares of x + x ′

and of xx ′ [4] is extended to the case of Takeuti–Adachi’s
scheme. We note that instantiations of Latin squares for the
use in Takeuti–Adachi’s scheme different from weighted-
sum ones are searched by computer experiments in [8]. It is
a future research topic to establish similar share conversion
protocols based on MOLS not of weighted-sum type.

2. Notations and Definitions

Throughout the letter, v denotes a fixed integer with v ≥ 2.
Let [i, j] := {i, i + 1, . . . , j} for integers i ≤ j. For a,n ∈ Z
with n ≥ 1, let a mod n denote the remainder of a modulo
n, taken from the range 0 ≤ a mod n ≤ n − 1, which is also
regarded as an element of Z/nZ.

Let L = (L[x, y])x,y be an v × v array of integers
L[x, y] ∈ [0, v − 1], with row index x and column index
y running over [0, v − 1]. We say that L is a Latin square (of
size v × v) if for each row and each column, the entries of L
are all different (or equivalently, every number in [0, v − 1]
appears at least once).

Definition 2. We say that two Latin squares L1 and L2
are orthogonal, denoted here by L1 ⊥ L2, if the v2 pairs
(L1[x, y], L2[x, y]) ∈ [0, v − 1]2 are all different (or equiva-
lently, every pair from [0, v − 1]2 appears at least once).

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



LETTER
1493

The following definition and proposition (which is well-
known; proved here for the sake of completeness) are for a
famous and efficient construction of Latin squares.

Definition 3. For a, b ∈ [0, v − 1], we define an v × v array
La,b , which we call weighted-sum array, by

La,b[x, y] := a · x + b · y mod v for x, y ∈ [0, v − 1] .

Proposition 4. A weighted-sum array La,b is a Latin square
if and only if gcd(a, v) = 1 and gcd(b, v) = 1. When this is
satisfied, we call the La,b weighted-sum Latin square.

Proof. This follows by observing that for each c ∈ {a, b},
the values c · z mod v for z ∈ [0, v − 1] are all different if and
only if c ∈ (Z/vZ)×, i.e., gcd(c, v) = 1. �

Due to this property, in what follows we focus on the
case where gcd(a, v) = 1 and gcd(b, v) = 1.

We also consider the following kind of Latin squares.
Here LT denotes the transpose of a Latin square L, i.e.,
LT[x, y] = L[y, x]. Note that (La,b)T = Lb,a.

Definition 5. We say that a Latin square L is self-transpose-
orthogonal if L ⊥ LT.

3. On Upper Bounds for Mutually Orthogonal Sets

A sequence of Latin squares L1, . . . , L` satisfying that Li ⊥

Lj for any i , j is called mutually orthogonal Latin squares
(MOLS). We abbreviate mutually orthogonal weighted-sum
Latin squares (i.e., every Li is a weighted-sum Latin square)
as MOWSLS. We discuss about the maximum values of `
for MOLS and MOWSLS, denoted by M(v) and MWS(v).

3.1 The Case of Weighted-Sum Latin Squares

Let P = P(v) denote the set of all prime factors of v. Then
the condition stated in Proposition 4 is equivalent to that
gcd(a, p) = 1 and gcd(b, p) = 1 for every p ∈ P(v).

For a weighted-sum Latin square L = La,b , we define

λ[p] = λL[p] = λa,b[p] :=
b
a

mod p ∈ (Fp)×

for any p ∈ P(v), and define

λ = λL = λa,b := (λa,b[p])p∈P(v) .

Note that for any tuple η = (ηp)p∈P(v) ∈
∏

p∈P(v)(Fp)
×,

there is a weighted-sum Latin square L with λL = η; take
an integer b ∈ [0, v − 1] satisfying ηp = b mod p for every
p ∈ P(v) by using Chinese Remainder Theorem (note that
now gcd(b, v) = 1) and set a := 1. The following is the key
property to prove our main result:

Theorem 6. For two weighted-sum Latin squares L1 =
La1 ,b1 and L2 = La2 ,b2 , we have L1 ⊥ L2 if and only if
λL1 [p] , λL2 [p] for every p ∈ P(v).

Proof. First, we suppose that the latter condition does not

hold, i.e., λL1 [p] = λL2 [p] for some p ∈ P(v), and show that
L1 6⊥ L2. Fix an integer η ∈ [0, v−1]with λL1 [p] = λL2 [p] =
η mod p. Then for each µ ∈ {1,2}, we have

η · aµ ≡ bµ (mod p) ,

therefore, by putting v ′ := v/p ∈ Z, we have

ηv ′ · aµ ≡ v ′ · bµ (mod v) .

Note that 1 ≤ v ′ ≤ v − 1. Now we have

Lµ[0, v ′] − Lµ[ηv ′ mod v,0] ≡ v ′ · bµ − ηv ′ · aµ
≡ 0 (mod v) ,

therefore

(L1[0, v ′], L2[0, v ′])
= (L1[ηv

′ mod v,0], L2[ηv
′ mod v,0]) .

This implies that L1 6⊥ L2, as desired.
Now the remaining task is to show that the latter con-

dition in the statement is not satisfied if L1 6⊥ L2. By the as-
sumption, we have (L1[x, y], L2[x, y]) = (L1[u, w], L2[u, w])
for some different pair of indices (x, y) , (u, w). Then for
each µ ∈ {1,2}, we have

aµ · x + bµ · y ≡ aµ · u + bµ · w (mod v) .

Put ∆a := x − u and ∆b := w − y, which are independent of
µ. Then we have

aµ · ∆a ≡ bµ · ∆b (mod v) . (1)

This and the property gcd(aµ, v) = gcd(bµ, v) = 1 imply

d := gcd(∆a, v) = gcd(aµ · ∆a, v)
= gcd(bµ · ∆b, v) = gcd(∆b, v)

which is also independent of µ. Put ∆′a := ∆a/d ∈ Z and
∆′
b

:= ∆b/d ∈ Z. Then both ∆′a and ∆′
b
are coprime to

v ′ := v/d. Now by Eq. (1), we have

aµ · ∆′a ≡ bµ · ∆′b (mod v ′) ,

therefore (by noticing that both ∆′
b
and aµ are invertible

modulo v ′) we have

bµ
aµ
≡
∆′a

∆′
b

(mod v ′) .

The right-hand side is independent of µ, therefore we have

b1
a1
≡

b2
a2
(mod v ′) .

Moreover, the assumption (x, y) , (u, w) implies that at least
one of ∆a and ∆b is not a multiple of v, therefore we have
d < v. This implies that v ′ > 1, and by taking any prime
factor p of v ′, we have p ∈ P(v) and

b1
a1
≡

b2
a2
(mod p) ,
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i.e., λL1 [p] = λL2 [p]. Hence the latter condition in the
statement does not hold, as desired. �

By Theorem 6, members of any MOWSLS must have
different values of λ[p0] ∈ (Fp0 )

× where p0 := min P(v),
therefore MWS(v) ≤ |(Fp0 )

× | = p0 − 1; while L1,b for b ∈
[1, p0 − 1] form MOWSLS with cardinality p0 − 1. This
proves Theorem 1 in the introduction.

Theorem 6 also yields the following corollary:

Corollary 7. Let L = La,b be a weighted-sum Latin square.
Then all the following conditions are equivalent:

1. L is self-transpose-orthogonal.
2. λL[p] , ±1 in Fp for every p ∈ P(v).
3. gcd(a + b, v) = 1 and gcd(a − b, v) = 1.

Proof. By Theorem 6, we have La,b ⊥ Lb,a if and only
if λL[p] , λL[p]−1, i.e., λL[p] , ±1 in Fp , for every p ∈
P(v). This is also equivalent to that b2 . a2 (mod p), i.e.,
a2 − b2 = (a + b)(a − b) . 0 (mod p), for every p ∈ P(v).
The last condition means that gcd(a ± b, p) = 1 for every
p ∈ P(v), which is equivalent to gcd(a ± b, v) = 1. �

By this result, when we restrict MOWSLS further to
self-transpose-orthogonal ones, two values ±1 are excluded
from the values of λ[p], therefore the maximum cardinality
decreases to p0 − 3 (such a set does not exist when p0 ≤ 3).

3.2 The General Case

Takeuti and Adachi [10] proposed the following construction
of a (perfectly secure) (t,n)-threshold secret sharing ((t,n)-
SS, in short) scheme with parameter t = 2, which uses n − 1
MOLS L1, . . . , Ln−1 of size v × v as public parameters:

Share Generation Given a secret x ∈ [0, v−1] to be shared,
the algorithm chooses y ∈ [0, v − 1] uniformly at ran-
dom, and computes zi := Li[x, y] for each i ∈ [1,n−1].
Then zi is the share of x for party Pi , and y is the share
of x for party Pn.

Secret Reconstruction When a pair of shares zi and y from
parties Pi (i , n) and Pn is given, the algorithm outputs
the unique index x ′ with Li[x ′, y] = zi . When a pair
of shares zi and zj from parties Pi and Pj (i, j , n)
is given, the algorithm determines the unique pair of
indices (x ′, y′) with (Li[x ′, y′], Lj[x ′, y′]) = (zi, zj) and
outputs x ′.

On the other hand, the following lower bound for the
size of share spaces of (t,n)-SS schemes is known (it is
known as an unpublished work by J. Kilian and N. Nisan,
1990; see e.g., the fourth paragraph of Sect. 1.2.3 of [3]):

Proposition 8. For i ∈ [1,n], let Si be the set of possible
shares for i-th party in a (t,n)-SS scheme with 2 ≤ t ≤ n− 1.
Then

∑n
i=1 log2 |Si |/n ≥ log2(n − t + 2).

By applying Proposition 8 to Takeuti–Adachi’s (2,n)-
SS scheme where Si = [0, v − 1], it follows that log2 v ≥

log2 n, i.e., v ≥ n. Then, any MOLS of cardinality M(v)
gives a (2,n)-SS scheme with n = M(v) + 1 and therefore
satisfies that M(v)+1 ≤ v. This yields a known upper bound
M(v) ≤ v − 1 mentioned in the introduction.

4. Relation to Secure Multiparty Computation

In the research area of secure multiparty computation (MPC)
in cryptography, several methods of computing shares of
the addition/multiplication of two secrets from given shares
of each secret in various secret sharing schemes have been
proposed in the literature, e.g., [1], [2], [4]. Here we de-
scribe such a method for Takeuti–Adachi’s (2,n)-SS scheme
in Sect. 3.2 with n ≥ 3 when using MOWSLS where v is
a prime and the set [0, v − 1] is identified with Fv = Z/vZ.
Then we explain a relation to Shamir’s secret sharing [9].

Let (z1, . . . , zn−1, y) and (z′1, . . . , z
′
n−1, y

′) be tuples of
shares of secrets x and x ′, respectively.

4.1 Computing the Addition

By the construction of shares, we have

zi = ai · x + bi · y and z′i = ai · x ′ + bi · y′ (2)

for each i ∈ [1,n− 1] (where the equalities are considered in
Fv). Therefore we have

zi + z′i = ai · (x + x ′) + bi · (y + y′) .

This means that (z1 + z′1, . . . , zn−1 + z′
n−1, y + y

′), which can
be obtained by local addition of each party’s shares, forms a
tuple of shares for secret x + x ′.

4.2 Computing the Multiplication

First, for any i ∈ [1,n − 1], from Eq. (2), we have

ziz′i = ai2 · xx ′ + aibi · (xy′ + x ′y) + bi2 · yy′ . (3)

Note that the same relation also holds for i = n when we put
zn := y, z′n := y′, an := 0, and bn := 1.

Lemma 9. In the setting above, for any three distinct indices
i, j, k ∈ {1, . . . ,n}, we have

©­«
ai2 aj

2 ak2

aibi ajbj akbk
bi2 bj

2 bk2

ª®¬ ©­«
Ci;j ,k
Cj;k ,i
Ck;i, j

ª®¬ = ©­«
1
0
0

ª®¬ , (4)

where, for distinct indices α, β, γ ∈ [1,n],

Cα;β,γ :=
bβbγ

(aαbβ − aβbα)(aαbγ − aγbα)
∈ Fv . (5)

Proof. Let A denote the 3× 3 matrix in Eq. (4). By dividing
each column of A by bi2, bj

2, and bk2, respectively, we
obtain a Vandermonde-type matrix

©­«
(ai/bi)2 (aj/bj)

2 (ak/bk)2

ai/bi aj/bj ak/bk
1 1 1

ª®¬ .
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Therefore we have

det(A)
bi2bj

2bk2 =

(
ai
bi
−

aj

bj

) (
ai
bi
−

ak
bk

) (
aj

bj
−

ak
bk

)
which is non-zero by the orthogonality of Latin squares and
Theorem 6. Hence

det(A) = (aibj − ajbi)(aibk − akbi)(ajbk − akbj) .

Now Cramer’s rule to solve the system of linear equations
(4) yields the values of Ci;j ,k , Cj;k ,i , and Ck;i, j as follows:

Ci;j ,k = det(A)−1 det
(
ajbj akbk
bj

2 bk2

)
= det(A)−1bjbk(ajbk − akbj) ,

Cj;k ,i = − det(A)−1 det
(
aibi akbk
bi2 bk2

)
= − det(A)−1bkbi(aibk − akbi) ,

Ck;i, j = det(A)−1 det
(
aibi ajbj

bi2 bj
2

)
= det(A)−1bibj(aibj − ajbi) .

They are equal to the values as in Eq. (5). �

Nowwe obtain the following protocol for multiplication
of shared secrets, where i0, i1, i2 ∈ [1,n] are any three distinct
and publicly known indices:

1. For each µ ∈ {0,1,2}, party Piµ sets (α, β, γ) :=
(iµ, iµ+1 mod 3, iµ+2 mod 3), and computes

Xµ :=

{
Cα;β,γ · ziµ z′iµ if iµ , n ,

Cα;β,γ · yy
′ if iµ = n ,

where the coefficient Cα;β,γ is as defined in Lemma 9
(with an := 0 and bn := 1). Then Piµ generates
shares Z 〈µ〉1 , . . . , Z 〈µ〉

n−1,Y
〈µ〉 of Xµ (by the same (2,n)-SS

scheme), and sends Z 〈µ〉
`

to party Pk for k ∈ [1,n − 1]
and Y 〈µ〉 to party Pn.

2. Each party generates a new share by adding the three
shares received in the previous step.

By Eq. (3) and the additive property of the shares explained
in Sect. 4.1, the new share generated by the protocol is (by
putting zn := y and z′n := y′ as above) a share of

X0 + X1 + X2

=
(
xx ′ xy′ + x ′y yy′

) ©­«
ai0

2 ai1
2 ai2

2

ai0 bi0 ai1 bi1 ai2 bi2
bi0

2 bi1
2 bi2

2

ª®¬ ©­«
Ci0;i1 ,i2
Ci1;i2 ,i0
Ci2;i0 ,i1

ª®¬
=

(
xx ′ xy′ + x ′y yy′

) ©­«
1
0
0

ª®¬ = xx ′

as desired, where we used Lemma 9 at the second equality.

4.3 Relation to Shamir’s Secret Sharing

In the case where a1 = · · · = an−1 = 1, given a secret
x and party Pn’s share y of x, we consider a polynomial
f (T) := yT + x ∈ Fv[T] of degree at most one. Then the
share zi of x for party Pi (i , n) is given by

zi = ai · x + bi · y = y · bi + x = f (bi) ,

and the share for party Pn is the coefficient y of f (T) at the
highest degree, while the secret is x = f (0). This is the
same situation as “the point at infinity” variant of Shamir’s
(2,n)-SS scheme described in Sect. 11.7 of [6]. On the other
hand, for general a1, . . . ,an−1, by taking homogenization
f (T1,T0) = yT1 + xT0 of f (T), Pi’s share zi (i , n) is equal
to ai · x + bi · y = f (bi,ai) (corresponding to a non-infinity
point [bi : ai] in the projective line P1(Fv)), and Pn’s share y
is also equal to F(1,0) (corresponding to the point at infinity
[1 : 0] ∈ P1(Fv)). Hence Takeuti–Adachi’s (2,n)-SS scheme
using MOWSLS and the protocols in Sects. 4.1 and 4.2 can
be seen as a “homogeneous version” of Shamir’s scheme and
the corresponding MPC protocols [4].
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