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Rectangle-of-Influence Drawings of Five-Connected Plane Graphs

Kazuyuki MIURA†a), Member

SUMMARY A rectangle-of-influence drawing of a plane graph G is a
straight-line planar drawing of G such that there is no vertex in the proper
inside of the axis-parallel rectangle defined by the two ends of any edge. In
this paper, we show that any given 5-connected plane graph G with five or
more vertices on the outer face has a rectangle-of-influence drawing in an
integer grid such thatW +H ≤ n− 2, where n is the number of vertices in
G,W is the width and H is the height of the grid.
key words: algorithm, rectangle-of-influence drawing, graph drawing,
plane graph, five-connected

1. Introduction

Recently automatic aesthetic drawing of graphs has created
intense interest due to their broad applications, and as a
consequence, a number of drawing methods have come out
[1]–[13], [16]–[19], [22]–[24]. The most typical drawing
of a plane graph G is a straight-line drawing, in which all
vertices of G are drawn as points and all edges are drawn
as straight-line segments without any edge-intersection. A
straight-line drawing is called a grid drawing if all vertices
are put on grid points of integer coordinates. The integer
grid of size W × H consists of W + 1 vertical segments and
H + 1 horizontal segments, and has a rectangular contour.
W and H are called the width and height of the integer grid,
respectively. It is known that every plane graph of n ≥ 3
vertices has a grid drawing on an (n − 2) × (n − 2) grid,
and that such a grid drawing can be found in linear time
[3], [5], [6], [23]. Figure 1 depicts three grid drawings of
the same plane graph. On the other hand, a restricted class
of graphs has a more compact grid drawing. For example, if
G is a 4-connected plane graph and has at least four vertices
on its outer face, then G has a grid drawing on a W ×H grid
such that W = dn/2e − 1 and H = bn/2c, and one can find
such a grid drawing in linear time [19]. Furthermore, if G is
a 5-connected plane graph and has at least five vertices on its
outer face, then G has a grid drawing on a W × H grid such
that W + H ≤ n − 2, and one can find such a grid drawing
in linear time [16]. There are some special classes of plane
graphs which require small areas for straight line drawing
[7]. For example, a subclass of five connected plane graph
requires O(n) area [13]. Some outerplanar graphs require
areas smaller than quadratic area [8], [12].
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Fig. 1 (a) A closed RI-drawing, (b) an open RI-drawing, and (c) a non-
RI-drawing of an inner triangulated plane graph.

There are many results on straight-line drawings under
additional constraints. A proximity drawing of a graph is a
straight-line drawing where the points representing adjacent
vertices are deemed to be close according to some proximity
measure. Proximity drawings have been intensively studied
in recent years because they arise in many areas including
pattern recognition, geographic information systems, and
computer vision [10].

In the paper, we deal with a type of a proximity drawing
of a plane graph, known as a “rectangle-of-influence draw-
ing” [1], [15], [17], [18]. A rectangle-of-influence of an
edge e is an axis-parallel rectangle having e as one of its di-
agonals. In each of Figs. 1(a)–(c) a rectangle-of-influence is
shaded for an edge e = (u, v) drawn by a thick line. We call a
grid drawing a rectangle-of-influence drawing (or simply an
RI-drawing) if there is no vertex in a rectangle-of-influence
of any edge. Figures 1(a) and (b) depict RI-drawings, while
Fig. 1(c) depicts a grid drawing which is not an RI-drawing.
An RI-drawing often looks pretty, since vertices tend to be
separated from edges. A rectangle-of-influence of an edge e
is closed if it contains the boundary of a rectangle, and is open
if it does not contain the boundary. In a closed RI-drawing
every rectangle-of-influence is regarded as a closed one,
while in an open RI-drawing every rectangle-of-influence
is regarded as an open one. In a closed RI-drawing, there is
no vertex except the ends not only in the proper inside of a
rectangle-of-influence of each edge but also on the boundary,
as illustrated in Fig. 1(a). In an open RI-drawing, there may
be a vertex other than the ends on the boundary of a rectan-
gle, as illustrated in Fig. 1(b). Thus a closed RI-drawing is
an open RI-drawing, but an open RI-drawing is not always a
closed RI-drawing.

Biedl et al. showed that a plane graph G has a closed
RI-drawing on an (n− 1) × (n− 1) grid if there is no vertices
in the interior of an any 3-cycle [1]. Furthermore, Miura
et al. gave a sufficient condition for an inner triangulated
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Fig. 2 A five connected plane graph attaining the lower bounds.

plane graph G to have an open RI-drawing, and they also
gave an O(n1.5/log n)-time algorithm to construct an open
RI-drawing of G on an (n − 1) × (n − 1) grid, whenever G
has one [17]. It is also known that every 4-connected plane
graph with four or more vertices on the outer facial cycle has
an open RI-drawing on a smaller grid, that is, a W × H grid
with W + H ≤ n − 1, and such a drawing can be found in
linear time [18], where W and H are the width and height of
an integer grid, respectively. Since W + H ≤ n − 1, the area
W ×H satisfies W ×H ≤ d(n− 1)/2e · b(n− 1)/2c. The size
of an integer grid required by an open RI-drawing would be
smaller than (d(n − 1)/2e) × (b(n − 1)/2c) for 5-connected
plane graphs, but it has not been known how small the grid
size is.

In this paper, we show that the grid drawing of a 5-
connected plane graph G found by the algorithm in [16] is
always an open RI-drawing of G, and hence one can find in
linear time an open RI-drawing of G on a W × H grid such
thatW +H ≤ n−2 if G has five or more vertices on the outer
face. Since W +H ≤ n−2, W ·H ≤ d(n−2)/2e · b(n−2)/2c
and hence our bounds on W + H and W · H are (slightly)
better than Miura, et al.’s bounds [18]. Actually, it is known
that there exists an infinite number of five-connected plane
graphs of n vertices, for example the nested pentagons-like
graph as illustrated in Fig. 2, which needs a grid of size at
least {b2(n − 6)/5c + 2} × {b2(n − 6)/5c + 2} for any open
RI-drawing. It will be conjectured that every 5-connected
plane graph G has an open RI-drawing on a b2n/5c × b2n/5c
grid, that is W + H ≤ 4n/5, and hence there is still a gap
between our bounds and the lower bounds.

The remainder of this paper is organized as follows.
In Sect. 2 we give some definitions and a known lemma.
In Sect. 3 we present the linear-time algorithm in [16] for
finding a grid drawing of a 5-connected plane graph. In
Sect. 4 we prove that the grid drawing is an open RI-drawing.
Finally we conclude in Sect. 5.

2. Preliminaries

In this section, we give some definitions and a known lemma.
Let G = (V,E) be a simple connected graph having no

multiple edge or loop. V is the vertex set and E is the edge
set of G. Let n be the number of vertices of G. An edge
joining vertices u and v is denoted by (u, v). The connectivity
κ(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected graph or a single-vertex
graph K1. A graph G is k-connected if κ(G) ≥ k.

A graph is planar if it can be embedded in the plane so
that no two edges intersect geometrically except at a vertex to
which they are both incident. A plane graph is a planar graph
with a fixed embedding in the plane. A plane graph divides
the plane into connected regions called faces. We denote the
boundary of a face by a clockwise sequence formed by the
vertices and edges on the boundary. We call the boundary of
the outer face of a plane graphG the contour ofG, and denote
it by Co(G). A plane graph G is internally triangulated if all
inner faces of G are triangles. We can assume without loss
of generality that a given graph G is internally triangulated.
Otherwise, we internally triangulate G by adding some new
edges to G, find a drawing of the resulting graph, and finally
remove the added edges to obtain a drawing of G. Let
x(v) and y(v) be the x- and y-coordinates of vertex v ∈ V ,
respectively. We denote the current position of a vertex v
by P(v); P(v) is expressed by its x- and y-coordinates as
(x(v), y(v)). We say that a curve in the plane is x-monotone
if the intersection of the curve and any vertical line is a single
point when it is nonempty.

We then introduce the definition of a 5-canonical de-
composition of a plane graph G [20], [21], which plays a
crucial role in the algorithm in [16]. It is a generaliza-
tion of two well-known concepts: the “canonical ordering,”
which is used to find a grid drawing of triangulated plane
graph [4]–[6], [11]; and the “4-canonical ordering,” which
is used to find a grid drawing of 4-connected plane graph
[9], [14], [19]. Let G = (V,E) be a 5-connected internally
triangulated plane graph with five designated distinct ver-
tices a1,a2,a3,a4 and a5 on Co(G). We may assume that
the five vertices a1,a2,a3,a4 and a5 appear on Co(G) in this
order. Let Co(G) = (z1 = a1, z2, · · · , za = a2, za+1, · · · , zb =
a3, zb+1, · · · , zc = a4, zc+1, · · · , zd = a5, zd+1, · · · ). We add
to G one vertex r and three edges (a1,a3), (a4,r) and (a5,r)
so that a1,a3,a4,r and a5 appear on the outer face of the
resulting plane graph. Let G′ be the resulting plane graph.
(See Fig. 3(b).) For a set U1,U2, · · · ,Uk of pairwise dis-
joint subsets of V , we denote by Gk the subgraph of G′

induced by U1
⋃

U2
⋃
· · ·

⋃
Uk , and by Gk the subgraph

of G′ induced by (V
⋃
{r}) − (U1

⋃
U2

⋃
· · ·

⋃
Uk). Espe-

cially for k = 0 we define Gk = G′. We say that a partition
Π = (U1,U2, · · · ,Ul) of V is a 5-canonical decomposition of
G if the following four conditions (co1)–(co4) are satisfied.

(co1) U1 = Uo
1
⋃

Ui
1 where Uo

1 = {z2, z3, · · · , zb−1} and Ui
1

is the set of vertices having at least one neighbor in Uo
1 ,

(So a1,a2,a3 ∈ U1. See Fig. 3(b).)
(co2) Ul = {zc, zc+1 · · · , zd},
(co3) For each k, 1 ≤ k ≤ l, Gk is triconnected, and for

each index k, 0 ≤ k ≤ l − 1, Gk is biconnected, and
(co4) For each k, 2 ≤ k ≤ l − 1, one of the following two

conditions holds (See Fig. 4. The vertices in Uk are
drawn in black dots.):

(a) |Uk | = 1, the vertex u ∈ Uk is both on Co(Gk)

and Co(Gk−1), and satisfies d(u,Gk) ≥ 3 and
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Fig. 3 (a) Five-connected internally triangulated plane graph G and (b)
its 5-canonical decomposition.

Fig. 4 Two conditions for (co4).

d(u,Gk−1) ≥ 2. (See Fig. 4(a).)
(b) |Uk | ≥ 2, the vertices in Uk appear consecutively

both on Co(Gk) and Co(Gk−1), and each vertex
u ∈ Uk satisfies d(u,Gk) = 3 and d(u,Gk−1) ≥ 3.
(See Fig. 4(b).)

Although the definition above of a 5-canonical decom-
position is slightly different from that in [20], [21] (condi-
tions (co4)(a) and (b) have been swapped), they are effec-
tively equivalent to each other. A 5-canonical decomposition
Π = (U1,U2, · · · , U12) of the graph in Fig. 3(a) is illustrated
in Fig. 3(b). Note that since G is internally triangulated
(co4)(b) means the vertices in Uk share a common neighbor
on Co(Gk−1).

The following lemma is known.

Lemma 1: [20], [21] Let G = (V,E) be a 5-connected
internally triangulated plane graph with five designated dis-
tinct vertices S = {a1,a2,a3,a4,a5} on Co(G). Then G has
a 5-canonical decomposition Π = (U1,U2, · · · ,Ul). Further-
more Π can be found in linear time.

By the conditions (co1), (co2) and (co4), all the vertices
inUk , 1 ≤ k ≤ l, consecutively appear clockwise onCo(Gk).
So we first assume that all the vertices in U1 consecutively
appear clockwise on Co(Gk) starting from a1 = z1. We then
number all vertices of G by 1,2, · · · ,n where 1 = a1, so that
they appear in U1,U2, · · · ,Ul in this order, as illustrated in
Fig. 3(b), and let n(v) be the number of v. Thus one can
define an order < among the vertices in G.

For any vertices u, v ∈ V , we write u ≺ v iff 1 ≤ n(u) <

n(v) ≤ n, and write u � v iff 1 ≤ n(u) ≤ n(v) ≤ n. We say
that a vertex u in a graph G is a smaller neighbor of v if u is
a neighbor of v and n(u) is smaller than n(v), that is u ≺ v.
Similarly, we say that u is a larger neighbor of v if u is a
neighbor of v and u � v.

3. Drawing Algorithm in [16]

In this section, we present the algorithm in [16], and give
some known lemmas. Before giving the detail of the algo-
rithm, we need some preparation.

Let G be a 5-connected internally triangulated
plane graph with five designated distinct vertices S =
{a1,a2,a3,a4,a5} on Co(G) and let Π = (U1,U2, · · · ,Ul)

be a 5-canonical decomposition of G. Throughout the re-
mainder of this paper, we replace for simplicity the defini-
tions of Gk and Gk , as follows. For a set U1,U2, · · · ,Uk of
5-canonical decomposition of G, we denote by Gk the sub-
graph of G (instead of G′) induced by U1

⋃
U2

⋃
· · ·

⋃
Uk ,

and by Gk the subgraph of G (instead of G′) induced by
V − (U1

⋃
U2

⋃
· · ·

⋃
Uk).

The algorithm in [16] will add to a drawing the vertices
in set Uk , one by one, in the order U1,U2, · · · ,Ul , adjusting
the drawing at each step, as illustrated in Fig. 5, by using
so-called the “shift methods” given by Chrobak and Kant
[3] and de Fraysseix et al. [6]. With each vertex v, a set
of vertices need to be moved whenever the position of v is
adjusted. We denote by L(v) the set of such vertices. Let
D(Gk), 1 ≤ k ≤ l, be the drawing of Gk obtained by the
algorithm. For each index k, 2 ≤ k ≤ l, y-coordinates of
all vertices in Uk = {u1,u2, · · · ,ur } are decided as the same
integer, which is denoted by y(Uk).

We are now ready to present the algorithm in [16]. It
suffices to decide only the coordinates of all vertices of G,
because one can immediately find a straight line drawing
from the coordinates. We are now explain how to decide the
x- and y-coordinates of the vertices inUk for each 1 ≤ k ≤ l.
There are the following three cases to consider.
Case 1: k = 1. (See Fig. 5(a).)

We draw Co(G1) = (w1(= a3), w2, · · · , w f−1, w f (= a1),
w f+1, · · · , wt ) as follows. We set P(w1) = (0,0), P(w f ) =

( f −1,0), P(wi) = (i−1,1) for all indices i = 2,3, · · · , f −1,
P(wt ) = (1,0) and P(wj) = (x(wj+1) + 1,0) for all indices
j = t − 1, t − 2, · · · , f + 1, as illustrated in Fig. 5(a) for the
graph in Fig. 3(a). Also we set L(wi) = {wi} for each index
i = 1,2, · · · , t.
Case 2: 2 ≤ k ≤ l − 1. (See Figs. 6 and 7.)

There are the following two cases to consider.
Case 2(a): Uk satisfies condition (a) of (co4) as illustrated
in Fig. 6.

Let Uk = {u}. Let Co(Gk−1) = (w1, w2, · · · , w f , · · · ,
wt ) be the outer cycle of Gk−1 where w1 = a3 and w f = a1
and let wp, wp+1, · · · , wq be the smaller neighbors of u.

We first set L(u) = {u}
⋃
(
⋃q−1

i=p+1 L(wi)). The algo-
rithm puts u above one of its smaller neighbors so that the
width W of the drawing of G becomes as small as possible.
Let ws be the smallest vertex among wp+1, wp+2, · · · , wq−1.
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Fig. 5 Some of the drawing processes of the algorithm.

Fig. 6 Illustrations for Case 2(a).

We then set x(u) = x(ws).
We then explain how to decide y(Uk) = y(u). Let ymax

be the maximum value of y-coordinates of wp, wp+1, · · · , wq ,
then one can easily know that either ymax = y(wp) or ymax =

y(wq) by Lemma 4(b) as described later. Clearly we must
decide y(Uk) so that y(Uk) ≥ ymax , in order to obtain a
straight line drawing of Gk . The algorithm decides y(Uk)

to be either ymax or ymax + 1 so that the height H of the
drawing of G becomes as small as possible. There are the
following two cases to consider.
Case 2(a)(i): Either ymax = y(wp) = y(wp+1) or ymax =

y(wq−1) = y(wq). (See Figs. 6(a) and (c).)
In this case, if we set y(Uk) = ymax , then D(Gk) would

Fig. 7 Illustrations for Case 2(b).

not be a straight line drawing. Therefore we set y(Uk) =

ymax + 1, as illustrated in Figs. 6(b) and (d).
Case 2(a)(ii): Otherwise. (See Figs. 6(e) and (g).)

In this case, one of the following (1) or (2) holds and
we set y(Uk) = ymax , as illustrated in Figs. 6(f) and (h).

(1) Either ymax = y(wq) > y(wp) or ymax = y(wp) >
y(wq). (See Fig. 6(e).)

(2) ymax = y(wp) = y(wq). (See Fig. 6(g).)
Case 2(b): Uk satisfies condition (b) of (co4) as illustrated
in Fig. 7.

Let Uk = {u1,u2, · · · ,ur } and let Co(Gk−1) =
(w1, w2, · · · , w f , · · · , wt ) be the outer cycle of Gk−1 where
w1 = a3 and w f = a1. Let wp+1 be the common neighbor of
all vertices u1,u2, · · · ,ur in Uk and let wp and wp+2 be the
preceding and the succeeding vertex of wp+1 on Co(Gk−1),
respectively.

We first set L(ur ) = {ur }
⋃

L(wp+1), and L(ui) = {ui}
for all indices i = 1,2, · · · ,r − 1. The shift operation on
a vertex wj , denoted by shi f t(wj), is achieved by increas-
ing the x-coordinate of each vertex u ∈

⋃ f
i=j L(wi) by 1

[3]–[6], [9], [11], [19]. Then, we execute shi f t(wp+1) by
r − 1 times, that is, we increase the x-coordinates of all ver-
tices L(wp+1), L(wp+2), · · · , L(w f ) by r − 1, as illustrated in
Figs. 7(b), (d), (f) and (h). For each i = 1,2, · · · ,r , we set
x(ui) = x(wp) + i, as illustrated in Figs. 7(b), (d), (f) and
(h). Since x(wp+2) − x(wp) ≥ 2 in D(Gk−1) and x(wp+2) in-
creases by r − 1 in D(Gk), we have x(wp+2) − x(wp) ≥ r + 1
in D(Gk).

We then explain how to decide y(Uk). Let ymax be the
maximum value of y-coordinates of wp, wp+1, wp+2. Clearly
we must decide y(Uk) so that y(Uk) ≥ ymax , in order to
obtain a straight line drawing of Gk . The algorithm decides
y(Uk) to be either ymax or ymax + 1 similarly as Case 2(a)
above. There are the following two cases:
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Case 2(b)(i): ymax = y(wp+1). (See Figs. 7(a) and (c).)
In this case, if we set y(Uk) = ymax , then D(Gk) would

not be a straight line drawing. Therefore we set y(Uk) =

ymax + 1, as illustrated in Figs. 7(b) and (d).
Case 2(b)(ii): Otherwise. (See Figs. 7(e) and (g).)

In this case, one of the following (1) or (2) holds and
we set y(Uk) = ymax , as illustrated in Figs. 7(f) and (h).

(1) Either ymax = y(wp+2) > y(wp) or ymax =

y(wp) > y(wp+2). (See Fig. 7(e).)
(2) ymax = y(wp) = y(wp+2). (See Fig. 7(g).)

Case 3: k = l.(See Fig. 5(f).)
Let Ul = {u1,u2, · · · ,ur }, and let Co(Gl−1) =

(w1, w2, · · · , w f , · · · , wt ) be the outer cycle of Gl−1 where
w1 = a3 and w f = a1. Let wi

s be the smallest vertex of
ui ∈ Ul , for each i = 1,2, · · · ,r . For each i = 1,2, · · · ,r , we
set x(ui) = x(wi

s), as illustrated in Fig. 5(f).
We then explain how to decide y(Ul). Let ymax be the

maximum value of y-coordinates of w1, w2, · · · , w f . We set
y(Ul) = ymax + 1, as illustrated in Fig. 5(f).

The following lemmas are known for the drawing ob-
tained by the algorithm.

Lemma 2: [16] Let Π = (U1,U2, · · · ,Ul) be a 5-canonical
decomposition of G. Let 1 ≤ k ≤ l − 1 and let Co(Gk) =

(w1, w2, · · · , w f , · · · , wt ) be the outer cycle of Gk where w1 =
a3 and w f = a1. Then, for each index k, 1 ≤ k ≤ l − 1, the
drawing of the path going clockwise on Co(Gk) from w1 to
w f is x-monotone.

Lemma 3: [16] If (u, v) is an edge in G and u � v, then the
y-coordinates of vertices u and v decided by the algorithm
satisfy y(u) ≤ y(v).

Lemma 4: [16] Let Π = (U1,U2, · · · ,Ul) be a 5-canonical
decomposition of G. Let 2 ≤ k ≤ l and let wp, wp+1, · · · , wq

be the smaller neighbors of a vertex u ∈ Uk . Then the
following (a) and (b) hold:

(a) there is no index t such that p < t < q and wt−1 ≺
wt � wt+1; and

(b) wp � wp+1 � · · · � wm � · · · � wq , and y(wp) ≥

y(wp+1) ≥ · · · ≥ y(wm) ≤ · · · ≤ y(wq) where wm is the
smallest vertex among wp, wp+1, · · · , wq .

Lemma 5: [16] Let G be a five-connected internally trian-
gulated plane graph having at least five vertices on Co(G).
Then the algorithm finds a grid drawing of G on a W × H
grid such that W + H ≤ n − 2 in linear time.

4. Proof for Open RI-Drawing

In this section, we prove the grid drawing of a 5-connected
plane graph G found by the algorithm in [16] is an open
RI-drawing of G.

We have the following lemmas.

Lemma 6: Let D(Gk), 2 ≤ k ≤ l be the drawing of Gk

obtained by the algorithm in [16], and let e be an edge in
Gk but not in Gk−1. Then there is no vertex in an open
rectangle-of-influence of e in D(Gk).

Fig. 8 Illustrations for Lemma 6.

Proof: Suppose for a contradiction that there is a vertex in
the open rectangle-of-influence of e in D(Gk). We only con-
sider the case whereUk satisfies either condition (a) of (co4)
or (co2), because the other case is identical. Let Uk = {u}.
Let Co(Gk−1) = (w1, w2, · · · , w f , · · · , wt ) be the outer cycle
of Gk−1 where w1 = a3 and w f = a1, let wp, wp+1, · · · , wq

be the smaller neighbors of u, and let ws be the smallest
vertex among wp+1, wp+2, · · · , wq−1. We may assume with-
out loss of generality that e is drawn as a line segment of
positive slope as illustrated in Fig. 8. The edge e divides the
open rectangle of e into two right-angled triangles, the upper
triangle and the lower one.

We first consider the case where there is a vertex in
the upper triangle of the open rectangle of e. In this case,
one can observe that there is a vertex wr on Co(Gk−1), such
that x(wr ) ≥ x(wr+1), as illustrated in Fig. 8(a), and hence
contrary to Lemma 2.

We then consider the case where there is a vertex in the
lower triangle of the open rectangle of e. In this case, one
can observe that there is a vertex wr on Co(Gk−1), such that
y(wr−1) < y(wr ) ≥ · · · > y(ws), as illustrated in Fig. 8(b),
and hence contray to Lemma 4(b). �

Lemma 7: Let D(Gk), 1 ≤ k ≤ l − 1 be the drawing
obtained by the algorithm in [16]. Let Co(Gk) = (w

′
1(=

a3), w
′
2, · · · , w

′
f ′−1, w

′
f ′(= a1), w

′
f ′+1, · · · , w

′
t′), let b is any in-

dex, 1 ≤ b ≤ f ′, and let e be an edge in Gk . If D(Gk) is
an open RI-drawing of Gk and we execute an arbitrary num-
ber of operations shi f t(wb), then we again obtain an open
RI-drawing of Gk .

Proof: The proof is by induction on k. For D(G1) the
lemma is obvious. So suppose that it holds for D(Gk−1),
k ≥ 2. Let Co(Gk−1) = (w1(= a3), w2, · · · , w f−1, w f (=

a1), w f+1, · · · , wt ) as in the algorithm. We are about to add
Uk to D(Gk−1). One can observe that D(Gk) is an open RI-
drawing of Gk by induction and by Lemma 6. Let wp and wq

be the leftmost and rightmost neighbors of Uk in Co(Gk−1).
Let Uk = {u1,u2, · · · ,ur }, r ≥ 1, Then the outer cycle of Gk

is Co(Gk) = w
′
1, w
′
2, · · · , w

′
t′ where

t ′ = t + γ,
γ = r − q + p + 1,

and

w ′i =


wi if 1 ≤ i ≤ p;

ui−p if p + 1 ≤ i ≤ p + r;
wi−γ if p + r + 1 ≤ i ≤ t ′.
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If b ≥ p+ r + 2, then shi f t(wb) in D(Gk) is equivalent
to shi f t(wb) in D(Gk−1) since Uk does not move, and the
lemma follows directly by induction. If b ≤ p, then the
lemma also follows from the inductive assumption, since Uk

shifts rigidly with the rest of the graph.
Let us assume now that Uk satisfies condition (co4)(a),

that is, Uk = {u1}. The proof when Uk satisfies condition
(co4)(b) is similar. Then it suffices to consider the two cases
b = p + 1 and b = p + 2: wb = u1 and wb = wq .

Executing shi f t(wq) in D(Gk) is equivalent to
shi f t(wq) in D(Gk−1), but in D(Gk) it also stretches the edge
(u1, wq). In the triangle wq−1u1wq , by Lemmas 2 and 3, we
have x(u1), x(wq−1) < x(wq) and y(wq−1) ≤ y(wq) ≤ y(u1),
so the lemma follows by induction.

Executing shi f t(u1) in D(Gk) is equivalent to
shi f t(wp+1) in D(Gk−1) and increasing x(u1) by 1, but in
D(Gk) it also stretches the edge (u1, wp). In the triangle
wp+1u1wp , by Lemmas 2 and 3, we have x(u1), x(wp+1) >
x(wp) and y(wp+1) ≤ y(wp) ≤ y(u1), so the lemma follows
by induction. �

By lemmas 5, 6 and 7, we have the following main
theorem.

Theorem 1: Let G be a five-connected internally triangu-
lated plane graph having at least five vertices onCo(G). Then
the algorithm in [16] finds an open RI-drawing of G on a
W × H grid such that W + H ≤ n − 2 in linear time.

5. Conclusions

In this paper, we show that any given 5-connected plane
graph G has an open RI-drawing on an integer grid such that
W+H ≤ n−2 ifG has five or more vertices on the outer face.
It will be conjectured that every 5-connected plane graph G
has an open RI-drawing on a b2n/5c × b2n/5c grid, that is
W + H ≤ 4n/5, but it is left as an open problem.
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