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Quantum Collision Resistance of Double-Block-Length Hashing

Shoichi HIROSE†a), Member and Hidenori KUWAKADO††b), Senior Member

SUMMARY In 2005, Nandi introduced a class of double-block-length
compression functions hπ (x) := (h(x), h(π(x))), where h is a random
oracle with an n-bit output and π is a non-cryptographic public permutation.
Nandi demonstrated that the collision resistance of hπ is optimal if π has
no fixed point in the classical setting. Our study explores the collision
resistance of hπ and the Merkle-Damgård hash function using hπ in the
quantum random oracle model. Firstly, we reveal that the quantum collision
resistance of hπ may not be optimal even if π has no fixed point. If π is
an involution, then a colliding pair of inputs can be found for hπ with only
O(2n/2) queries by the Grover search. Secondly, we present a sufficient
condition on π for the optimal quantum collision resistance of hπ . This
condition states that any collision attack needs Ω(22n/3) queries to find a
colliding pair of inputs. The proof uses the recent technique of Zhandry’s
compressed oracle. Thirdly, we show that the quantum collision resistance
of the Merkle-Damgård hash function using hπ can be optimal even if π
is an involution. Finally, we discuss the quantum collision resistance of
double-block-length compression functions using a block cipher.
key words: hash function, compression function, double-block-length,
Grover’s search, Zhandry’s compressed oracle

1. Introduction

1.1 Background

In the field of cryptography, hash functions play a crucial
role and are used in almost all cryptographic schemes. SHS,
which stands for Secure Hash Standard, is a standardized
family of hash functions [1]. They are called iterated hash
functions because of their sequential chaining structure of
a compression function, as proposed by Merkle [2] and
Damgård [3]. Each hash function in SHS has its own ded-
icated compression function. Another common method of
constructing a compression function is to use a block cipher,
as seen in examples likeMDC-2 andMDC-4 [4]. MDC-2 has
been standardized in ISO/IEC 10118-2 [5], and bothMDC-2
and MDC-4 use double-block-length (DBL) construction to
achieve a high level of collision resistance. Essentially, the
output length of a DBL compression function is double the
output length of the underlying block cipher.

In a study by Nandi [6], the security of a specific type
of DBL compression functions in the random oracle model
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was explored. These compression functions were defined as
hπ(x) := (h(x), h(π(x))), where h : {0,1}m → {0,1}n and π
is a non-cryptographic public permutation over {0,1}m. It
was discovered that the collision resistance of hπ is optimal
if h is a random oracle and π has no fixed point. In other
words, any attack on hπ would require Ω(2n) queries to h.

With the recent surge in post-quantum cryptography,
analyzing the security of cryptographic schemes against
quantum attacks has become a crucial research topic.

1.2 Our Contribution

We analyze the quantum collision resistance of the class of
DBL compression functions hπ and the Merkle-Damgård
hash functions using them assuming that h is a random or-
acle. We assume that adversaries are allowed to make su-
perposition queries to their oracles. Firstly, we show that
an adversary can find a colliding pair of inputs for hπ with
only O(2n/2) queries simply by using the Grover search [7]
if π is an involution. It implies that the quantum collision
resistance of hπ is not optimal. Secondly, we present a suffi-
cient condition on π for the quantum collision resistance of
hπ to be optimal, that is, for any adversary to need Ω(22n/3)
queries to find a colliding pair of inputs for hπ . The proof
uses the technique of Zhandry’s compressed oracle [8], and
it is similar to the proof for the lower bound of quantum colli-
sion resistance by Liu and Zhandry [9]. We give two simple
examples of π satisfying the sufficient condition. Thirdly, we
show that we can construct an optimally quantum-collision-
resistant Merkle-Damgård hash function by using hπ even
if π is an involution. As far as we know, no result has been
reported on the quantum collision resistance of the Merkle-
Damgård hash function using a DBL compression function.
Finally, we make some remarks on DBL compression func-
tions using a block cipher. In particular, we show that the
quantum collision resistance of the DBL compression func-
tions proposed by Lai and Massey [10] and by Hirose [11] is
not optimal. A Grover oracle of the collision attack is also
presented, which is similar to that of the quantum exhaustive
key search of a block cipher [12], [13].

This paper is an extended version of our conference
paper [14]. It extends the sufficient condition on π for the
optimal quantum collision resistance of hπ . It discusses
the quantum collision resistance of Merkle-Damgård hash
functions using Nandi’s DBL compression functions, while
our conference paper did not discuss it. It also includes
the analysis of the quantum collision resistance of the DBL

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



HIROSE and KUWAKADO: QUANTUM COLLISION RESISTANCE OF DOUBLE-BLOCK-LENGTH HASHING
1479

compression functions by Lai and Massey.

1.3 Other Related Work

Brassard et al. [15] presented an algorithm that can find a
colliding pair of inputs for any r-to-one hash function by
making O((Nd/r)1/3) quantum queries, where Nd is the size
of the domain of the given hash function. Zhandry [16] later
demonstrated that the quantum query complexity to detect a
colliding pair of inputs for any hash function with a range of
size Nr is Θ(N1/3

r ).
Chauhan et al. [17] presented a quantum collision attack

on the DBL compression function [11] that is instantiated
with AES-256. The attack employs a quantum version [18],
[19] of the rebound attack [20].

DBL compression functions that use a tweakable block
cipher are employed by the leakage-resilient AEAD mode
TEDT [21] and a family of lightweight cryptographic
schemes called Romulus [22].

1.4 Organization

In Sect. 2, necessary notations and definitions are introduced
for the upcoming discussions. The construction of DBL
compression functions proposed by Nandi and their classi-
cal collision resistance are described in Sect. 3. Section 4
discusses the quantum collision resistance of Nandi’s DBL
compression functions, while Sect. 5 focuses on the quantum
collision resistance of Merkle-Damgård hash functions us-
ing Nandi’s DBL compression functions. In Sect. 6, remarks
are made on the quantum collision resistance of DBL com-
pression functions using a block cipher. A brief concluding
remark is given in Sect. 7.

2. Preliminaries

Let [n1,n2] be the set of integers between n1 and n2 inclusive,
where n1 and n2 are integers such that n1 ≤ n2.

2.1 Collision Resistance

For a hash function, a pair of inputs are called colliding if
they are distinct and mapped to the same output by the hash
function. Collision resistance is the intractability of finding
a colliding pair of inputs.

Let HP be a hash function using a component P. The
collision resistance of HP is often discussed under the as-
sumption that P is an ideal primitive such as a random oracle
or an ideal block cipher [23]. It is measured by the number
of queries to P required to find a colliding pair of inputs for
HP .

2.2 Merkle-Damgård Hash Function

TheMerkle-Damgård construction of a hash function [2], [3]
simply iterates a compression function. Let MDF :

{0,1}∗ → {0,1}` be a Merkle-Damgård hash function us-
ing a compression function F : {0,1}m → {0,1}` , where
m > `. MDF is described in Algorithm 1. pad : {0,1}∗ →
({0,1}m−`)+ is called a padding function. It usually appends
a sequence to an input so that the output length is a multiple
of m − `. MDF first applies pad to an input M ∈ {0,1}∗ and
divides the resultant sequence into blocks of length m − `.

pad is called suffix-free if, for every distinct M,M ′ ∈
{0,1}∗, each of pad(M) and pad(M ′) is not a suffix of
the other. Namely, there exists no u ∈ {0,1}∗ satisfying
pad(M) = u‖pad(M ′) or pad(M ′) = u‖pad(M). MDF

with suffix-free pad is collision-resistant if F is collision-
resistant [24]. Thus, we assume that pad is suffix-free.

2.3 Quantum Computation

We assume the quantum circuit model for quantum computa-
tion [25]. We further assume that any unitary transformation
can be accomplished by a quantum circuit. For a unitary
transformation U, let U† be its Hermitian conjugate.

There are specific quantum gates that are present in the
remaining parts. The quantum gates I, X , and H are applied
to a single qubit and are defined as follows:

I := |0〉 〈0| + |1〉 〈1| ;
X := |1〉 〈0| + |0〉 〈1| ;

H :=
|0〉 + |1〉
√

2
〈0| +

|0〉 − |1〉
√

2
〈1| .

The controlled NOT is a quantum gate for two qubits defined
as |0〉 〈0| ⊗ I+ |1〉 〈1| ⊗ X . The Toffoli gate is a quantum gate
for three qubits defined as (I⊗I−|11〉 〈11|)⊗I+ |11〉 〈11|⊗X .

2.3.1 Grover Search

The Grover search [7] is a quantum algorithm to find an el-
ement in f −1(1) := {x | f (x) = 1} for a given Boolean func-
tion f : {0,1}m → {0,1}. The Grover search uses a unitary
operator O f such that O f (|x〉 ⊗ |z〉) := |x〉 ⊗ |z ⊕ f (x)〉,
where x ∈ {0,1}m and z ∈ {0,1}. Thus, O f (|x〉 ⊗ |−〉) =
(−1) f (x) |x〉 ⊗ |−〉, where |−〉 := (|0〉 − |1〉)/

√
2. O f is called

the Grover oracle.
The Grover search proceeds as follows. It first prepares

the state

H⊗(m+1)(I⊗m ⊗ X)(|0m〉 ⊗ |0〉) =
1
√

2m
∑

x∈{0,1}m
|x〉 ⊗ |−〉 .



1480
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.9 SEPTEMBER 2024

Then, it repeatedly applies the Grover operator

G := ((H⊗m(2 |0m〉 〈0m | − I⊗m)H⊗m) ⊗ I)O f

to the state. Finally, it measures the first m qubits. By
applying theGrover operator q times, one can find an element
in f −1(1) with probability O(q2 | f −1(1)|/2m).

2.3.2 Zhandry’s Compressed Oracle [8]

Suppose that a quantum adversary A has access to a random
oracle R : {0,1}m → {0,1}` . Let |x, z, w〉 be a basis state
of A, where x ∈ {0,1}m is a query register, z ∈ {0,1}`
is a response register, and w ∈ {0,1}l is a private working
register. Additionally, let |TR〉 be a basis state of the random
oracle R, defined as |R(0)〉 ⊗ |R(1)〉 ⊗ · · · ⊗ |R(2m − 1)〉. TR

is a binary string of length `2m.
A unitary operator StO such that

StO(|x, z, w〉 ⊗ |TR〉) := |x, z ⊕ R(x), w〉 ⊗ |TR〉

represents a query ofA to R and the corresponding response.
Zhandry introduced a unitary operator PhO such that

PhO(|x, z, w〉 ⊗ |TR〉) := |x, z, w〉 ⊗
(
(−1)R(x)·z |TR〉

)
,

which is equivalent to StO in that

PhO = (I⊗m ⊗ H⊗` ⊗ I⊗l ⊗ I⊗`2
m

) ◦ StO

◦ (I⊗m ⊗ H⊗` ⊗ I⊗l ⊗ I⊗`2
m

).

Zhandry named StO and PhO a standard oracle and a phase
oracle, respectively. For these oracles, the random oracle is
initialized to the uniform superposition of all the basis states:

1
√

2`2m
∑

TR ∈{0,1}`2m
|TR〉 .

Zhandry further introduced the compressed standard or-
acle and the compressed phase oracle, which both implement
the lazy evaluation of a quantum random oracle. He con-
firmed that these oracles are equivalent to the standard and
phase oracles. Here, we will only focus on the compressed
phase oracle.

The compressed phase oracle simulates the random
oracle by a superposition of databases. Suppose that A
is allowed to make at most q quantum queries to the
random oracle. Then, a database D is an element in
(({0,1}m ∪ {⊥}) × {0,1}`)q . Specifically, D is represented
as

((x1, y1), (x2, y2), . . . , (xk, yk), (⊥,0`), . . . , (⊥,0`)︸                                                        ︷︷                                                        ︸
q elements in ({0, 1}m ∪ {⊥}) × {0, 1}`

),

where xi , ⊥ for i ∈ [1, k] and x1 < x2 < · · · < xk . For
(xi, yi) ∈ {0,1}m × {0,1}` , let (xi, yi) ∈ D and D(xi) = yi
represent that (xi, yi) appears in D. For xi ∈ {0,1}m, let
D(xi) = ⊥ represent that (xi, yi) < D for any yi ∈ {0,1}` .
D(xi) = yi means that the random oracle R is specified to

output yi for the input xi . D(xi) = ⊥ means that the output
of the random oracle R is not yet specified for the input xi .
Let |D | represent the number of elements (x, y) in D such
that x , ⊥.

For a database D such that D(x) = ⊥ and |D| < q,
let D ∪ (x, y) represent that (⊥,0`) is removed from D and
(x, y) is added to D in its appropriate position. To describe
how the compressed phase oracle processes a query, a unitary
operatorStdDecompx over a database is introduced. It works
as follows:

• For D such that D(x) = ⊥ and |D| < q,

StdDecompx |D〉 =
1
√

2`

∑
y∈{0,1}`

|D ∪ (x, y)〉 .

• For D such that D(x) = ⊥ and |D| < q,

StdDecompx

( 1
√

2`

∑
y∈{0,1}`

(−1)z ·y |D ∪ (x, y)〉
)

=


1
√

2`

∑
y∈{0,1}`

(−1)z ·y |D ∪ (x, y)〉 if z , 0`,

|D〉 if z = 0` .

Let StdDecomp be a unitary operator over |x, z, w〉 ⊗ |D〉
defined as follows:

StdDecomp(|x, z, w〉 ⊗ |D〉)
:= |x, z, w〉 ⊗ (StdDecompx |D〉).

Let CPhO′ be a unitary operator such that

CPhO′(|x, z, w〉 ⊗ |D〉) := (−1)z ·D(x) |x, z, w〉 ⊗ |D〉 ,

where D(x) , ⊥. The compressed phase oracle CPhO is
defined as follows:

CPhO := StdDecomp ◦CPhO′ ◦ StdDecomp .

Initially, only (⊥,0`)’s appear in the database.
Zhandry showed the relationship between the output

of an adversary on the random oracle and the entries of
compressed standard/phase oracle database:

Lemma 1 ([8]) Let F be a random oracle producing an `-bit
output for each input. Let A be a quantum algorithm making
queries to F and outputting a tuple (x1, . . . , xk ; y1, . . . .yk).
Let R be a collection of such tuples. Suppose that, with
probability p, A outputs a tuple such that (1) the tuple is in
R and (2) F(xi) = yi for every i ∈ [1, k]. Consider running
A with the compressed standard/phase oracle and suppose
that the database D is measured after A produces its output.
Let p′ be the probability that (1) the tuple is in R and (2)
D(xi) = yi for every i ∈ [1, k]. Then, √p ≤

√
p′ +

√
k/2` .

3. Nandi’s Class of DBL Compression Functions

Let h : {0,1}m → {0,1}n be a compression function such
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that m > 2n. Let π be a permutation over {0,1}m. An
element a ∈ {0,1}m is called a fixed point of π if π(a) = a.

Nandi [6] studied the classical collision resistance of a
class ofDBLcompression functions hπ : {0,1}m → {0,1}2n
such that

hπ(x) := (h(x), h(π(x)))

assuming that h is a random oracle. He showed that the
classical collision resistance of hπ is optimal if π has no
fixed points:

Theorem 1 (Theorem 1 [6]) Suppose that h is a random or-
acle and that π has no fixed points. Then, the probability that
any classical adversary making at most q queries succeeds
in finding a colliding pair of inputs for hπ is O((q/2n)2) if
π ◦ π has no fixed points, and O(q/2n) otherwise.

Strictly speaking, for Theorem 1, the collision resis-
tance is optimal if the success probability is not O(q/2n) but
O((q/2n)2). However, in both of the cases, any classical ad-
versary needs Ω(2n) queries to find a colliding pair of inputs
with some constant probability, and the collision resistance
is said to be optimal.

The classical collision resistance of the MD hash func-
tion MDhπ was also studied. It can be optimal even if π has
fixed points:

Theorem 2 (Theorem 2 [6]) Suppose that h is a random
oracle and that π is a permutation over {0,1}m such that
|{v | π(v‖w) = v‖w ∧ v ∈ {0,1}2n}| = O(2n). Then, the
probability that any classical adversary making at most q
queries succeeds in finding a colliding pair of inputs for
MDhπ is O(q/2n).

The classical collision resitance of MDhπ can be strictly
optimal even if π is an involution, that is, π ◦ π is the identity
permutation:

Theorem 3 (Theorem 2 [11]) Suppose that h is a random
oracle and that π is an involution over {0,1}m without fixed
points such that π(v‖w) := πcv(v)‖w, where v ∈ {0,1}2n.
Suppose that πcv(v0‖v1) , v1‖v0 for every (v0, v1) ∈ {0,1}n×
{0,1}n. Then, the probability that any classical adversary
making at most q queries succeeds in finding a colliding pair
of inputs for MDhπ is O((q/2n)2).

An example of πcv is v0‖v1 7→ (v0⊕c0)‖(v1⊕c1), where
c0 and c1 are distinct constants in {0,1}n.

4. Quantum Collision Resistance of Nandi’s DBL Com-
pression Functions

Let π be a permutation over {0,1}m. Then, for every x ∈
{0,1}m, there exists some positive integer i satisfying

πi(x) := (π ◦ π ◦ · · · ◦ π)︸              ︷︷              ︸
i

(x) = x.

Let π
∼ be the relation between elements in {0,1}m such

that x π
∼ x ′ if and only if there exists some positive in-

teger i′ such that πi′(x) = x ′. Then, π
∼ is an equiva-

lence relation, and Cπ(x) := {x ′ | x π
∼ x ′} is an equiva-

lence class. The equivalence classes form a partition of
{0,1}m. Namely, Cπ(x) ∩ Cπ(x̃) = ∅ if Cπ(x) , Cπ(x̃), and⋃

x∈{0,1}m C
π(x) = {0,1}m.

In the remaining parts of this paper, it is assumed that
all the equivalence classes for π

∼ have the same cardinality
greater than 1. Then, there exists some positive integer γ
such that |Cπ(x)| = 2γ for every x, and π has no fixed points.

A colliding pair of inputs for hπ are divided into two
classes based onwhether they belong to the same equivalence
class for π∼ or not. We call them an intraclass colliding pair if
they belong to the same equivalence class and an interclass
colliding pair otherwise.

4.1 Finding an Intraclass Colliding Pair

The quantum complexity to find an intraclass colliding pair
of inputs differs depending on whether the cardinality of the
equivalence classes equals 2 or not.

Notice that π is an involution with no fixed points if and
only if |Cπ(x)| = |{x, π(x)}| = 2 for every x. An intraclass
colliding pair of inputs for hπ can be found with O(2n/2)
queries if π is an involution with no fixed points:

Theorem 4 Suppose that h is a random oracle and that π
is an involution with no fixed points. Then, an adversary
making at most q quantum queries is able to find an intra-
class colliding pair of inputs for hπ with respect to π

∼ with
probability O(q2/2n).

Proof Since π is an involution,

hπ(π(x)) = (h(π(x)), h(π2(x))) = (h(π(x)), h(x)).

Thus, if h(x) = h(π(x)), then hπ(x) = hπ(π(x)). Let f :
{0,1}m → {0,1} be a Boolean function such that f (x) = 1
if and only if h(x) = h(π(x)). Then, since h is a random
oracle, the expected cardinality of {x | f (x) = 1} is 2m−n.
Thus, the probability that a colliding pair of inputs for hπ are
found by the Grover search to f is O(q2/2n), where q is the
number of its iterations. �

LetXπ := {x | x ∈ {0,1}m is the lexicographically first
element in Cπ(x)}. Then, |Xπ | = 2m−γ. Let g : Xπ →
{0,1}2γn be a function such that

g(x) := (h(x), h(π(x)), h(π2(x)), . . . , h(π2γ−1(x))).

Then, g is a random oracle if h is a random oracle.
The problem to find an intraclass colliding pair of inputs

for hπ with respect to π
∼ is equivalent to the problem to find

an input x ∈ Xπ for g satisfying (h(π j1 (x)), h(π j1+1(x))) =
(h(π j2 (x)), h(π j2+1(x))) for some j1 and j2 such that 0 ≤ j1 <
j2 ≤ 2γ − 1, where π0(x) = π2γ (x) = x.

If the cardinality of the equivalence classes with respect
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to π
∼ equals 2γ for some constant integer γ ≥ 2, then, any

quantum adversary needs Ω(2n) queries to find an intraclass
colliding pair of inputs for hπ :

Theorem 5 For π, suppose that there exists a constant γ ≥ 2
such that |Cπ(x)| = 2γ for every x ∈ {0,1}m. Then, the
probability that any adversary making at most q quantum
queries to g succeeds in finding an intraclass colliding pair
of inputs for hπ with respect to π

∼ is O((q/2n)2).

Proof Let Yc1 be the sets of y := (y0, y1, . . . , y2γ−1) ∈
({0,1}n)2γ satisfying (yj1, yj1+1 mod 2γ ) = (yj2, yj2+1 mod 2γ )
for some j1 and j2 such that 0 ≤ j1 < j2 ≤ 2γ − 1. Then,
|Yc1 | ≤ 2γ−1(2γ − 1)2(2γ−2)n.

Let Pc1 be the projection spanned by all the states con-
taining a database D for g including at least one tuple in
Xπ × Yc1. Then,

Pc1 =
∑
x,z,w

∑
D∈Dc1

|x, z, w,D〉 〈x, z, w,D| ,

where Dc1 = {D | D has at least one tuple in Xπ × Yc1}.
For k ∈ [1,q], let |ψk−1〉 be the state right before the

k-th oracle query is made and
��ψ ′

k

〉
be the state right after

the k-th oracle query is made. Let
��ψ ′0〉 be the initial state

and
��ψq

〉
be the state right before the measurement. Let

Og be the operator making an oracle query to g. Then,��ψ ′
k

〉
= Og |ψk−1〉. For k ∈ [0,q], let Uk be the operator

such that |ψk〉 = Uk

��ψ ′
k

〉
. Thus, Uk represents the local

computation on |x, z, w〉 by the adversary and it does not
affect the database.

The probability that a colliding pair of inputs for hπ

in the same equivalence class is found is ‖Pc1
��ψq

〉
‖2 :=〈

ψq

�� P†c1Pc1
��ψq

〉
=

〈
ψq

�� Pc1
��ψq

〉
.

Let us evaluate an upper bound on ‖Pc1 |ψk〉 ‖. Since
Uk does not affect the database,

‖Pc1 |ψk〉 ‖ = ‖Pc1Uk

��ψ ′k〉 ‖ = ‖Pc1
��ψ ′k〉 ‖.

In addition,

‖Pc1
��ψ ′k〉 ‖ = ‖Pc1Og |ψk−1〉 ‖

= ‖Pc1Og(Pc1 + (I⊗L − Pc1)) |ψk−1〉 ‖

≤ ‖Pc1OgPc1 |ψk−1〉 ‖ + ‖Pc1Og(I⊗L − Pc1) |ψk−1〉 ‖

≤ ‖Pc1 |ψk−1〉 ‖ + ‖Pc1Og(I⊗L − Pc1) |ψk−1〉 ‖,

where L is the number of qubits in |ψk−1〉. For the last term,
let

|ψk−1〉 =
∑
x,z,w

∑
D

αx,z,w,D |x, z, w〉 ⊗ |D〉 .

Then,

‖Pc1Og(I⊗L − Pc1) |ψk−1〉 ‖

=




Pc1Og

∑
x,z,w

∑
D<Dc1

αx,z,w,D |x, z, w〉 ⊗ |D〉



.

For any D < Dc1, if D(x) , ⊥, then D(x) < Yc1. Thus,


Pc1Og

∑
x,z,w

∑
D<Dc1

αx,z,w,D |x, z, w〉 ⊗ |D〉





=




Pc1
∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc1 ,
D(x)=⊥

1
√

22γn

∑
y′

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=




 1
√

22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc1 ,
D(x)=⊥

∑
y′∈Yc1

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=
( 1
22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc1 ,
D(x)=⊥

∑
y′∈Yc1

|αx,z,w,D |
2
)1/2

≤

(2γ−1(2γ − 1)2(2γ−2)n

22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc1 ,
D(x)=⊥

|αx,z,w,D |
2
)1/2

≤

√
2γ−1(2γ − 1)

2n
.

Thus,

‖Pc1 |ψk〉 ‖ ≤ ‖Pc1 |ψk−1〉 ‖ + 2γ−1/2/2n,

which implies ‖Pc1
��ψq

〉
‖ = O(q/2n) since γ is constant.

This completes the proof together with Lemma 1. �

4.2 Finding an Interclass Colliding Pair

The following theorem implies that, to find an interclass
colliding pair of inputs for hπ , any quantum adversary needs
Ω(22n/3) queries. The proof is similar to that of Theorem 4
by Liu and Zhandry [9].

Theorem 6 For π, suppose that there exists a constant in-
teger γ ≥ 1 such that |Cπ(x)| = 2γ for every x ∈ {0,1}m.
Then, for any adversary making at most q quantum queries
to g, the probability that it succeeds in finding an interclass
colliding pair of inputs for hπ with respect to π

∼ isO(q3/22n).

Proof The problem to find an interclass colliding pair of
inputs for hπ with respect to π

∼ is equivalent to the problem
to find a pair of inputs x, x ′ ∈ Xπ for g satisfying Cπ(x) ,
Cπ(x ′) and (h(πi(x)), h(πi+1(x))) = (h(π j(x ′)), h(π j+1(x ′)))
for some i, j ∈ [0,2γ − 1], where π0(x) = π2γ (x) = x and
π0(x ′) = π2γ (x ′) = x ′.

Let Pc2 be the projection spanned by all the states
containing a database D for g including at least a pair
of tuples (x∗, y∗) and (x∗∗, y∗∗) in Xπ × ({0,1}n)2γ such
that (y∗i , y

∗
i+1 mod 2γ ) = (y

∗∗
j , y

∗∗
j+1 mod 2γ ) for some i, j ∈

[0,2γ − 1], where y∗ = (y∗0, y
∗
1, . . . , y

∗
2γ−1) and y∗∗ =

(y∗∗0 , y
∗∗
1 , . . . , y

∗∗
2γ−1). Then,
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Pc2 =
∑
x,z,w

∑
D∈Dc2

|x, z, w,D〉 〈x, z, w,D | ,

whereDc2 is the set of the databases including at least a pair
of tuples described above.

For k ∈ [1,q], let |ψk−1〉 be the state right before the k-th
oracle query is made and

��ψ ′
k

〉
be the state right after the k-th

oracle query is made. Let
��ψ ′0〉 be the initial state and ��ψq

〉
be

the state just before the measurement. LetOg be the operator
making an oracle query. Then,

��ψ ′
k

〉
= Og |ψk−1〉. For

k ∈ [0,q], let Uk be the operator such that |ψk〉 = Uk

��ψ ′
k

〉
.

Thus, Uk represents the local computation on |x, z, w〉 by the
adversary and it does not affect the database.

A colliding pair of inputs x and x ′ for hπ satisfy-
ing Cπ(x) , Cπ(x ′) is found with probability at most
‖Pc2

��ψq

〉
‖2. In the remaining parts, an upper bound on

‖Pc2 |ψk〉 ‖ is evaluated.
Since Uk does not affect the database,

‖Pc2 |ψk〉 ‖ = ‖Pc2Uk

��ψ ′k〉 ‖ = ‖Pc2
��ψ ′k〉 ‖.

In addition,

‖Pc2
��ψ ′k〉 ‖ = ‖Pc2Og |ψk−1〉 ‖

= ‖Pc2Og(Pc2 + (I⊗L − Pc2)) |ψk−1〉 ‖

≤ ‖Pc2OgPc2 |ψk−1〉 ‖ + ‖Pc2Og(I⊗L − Pc2) |ψk−1〉 ‖

≤ ‖Pc2 |ψk−1〉 ‖ + ‖Pc2Og(I⊗L − Pc2) |ψk−1〉 ‖,

where L is the number of qubits in |ψk−1〉. For the last term,
let

|ψk−1〉 =
∑
x,z,w

∑
D

αx,z,w,D |x, z, w〉 ⊗ |D〉 .

Then,

‖Pc2Og(I⊗L − Pc2) |ψk−1〉 ‖

=




Pc2Og

∑
x,z,w

∑
D<Dc2

αx,z,w,D |x, z, w〉 ⊗ |D〉



.

If D(x) , ⊥, then D < Dc2 and the database after the
application of Og has no pair of tuples containing a colliding
pair of inputs for hπ . For D < Dc2, let YD be the set of
y′ = (y′0, y

′
1, . . . , y

′
2γ−1) ∈ ({0,1}

n)2
γ such that there exists

(x∗, y∗) ∈ D satisfying (y∗i , y
∗
i+1 mod 2γ ) = (y

′
j, y
′
j+1 mod 2γ ) for

some i, j ∈ [0,2γ − 1]. Then,


Pc2Og

∑
x,z,w

∑
D<Dc2

αx,z,w,D |x, z, w〉 ⊗ |D〉





=




Pc2
∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc2 ,
D(x)=⊥

1
√

22γn

∑
y′

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=




 1
√

22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc2 ,
D(x)=⊥

∑
y′∈YD

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=
( 1
22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc2 ,
D(x)=⊥

∑
y′∈YD

|αx,z,w,D |
2
)1/2

≤

(22γ · 2(2γ−2)n(k − 1)
22γn

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc2 ,
D(x)=⊥

|αx,z,w,D |
2
)1/2

≤
2γ
√

k − 1
2n

.

Altogether,

‖Pc2 |ψk〉 ‖ ≤ ‖Pc2 |ψk−1〉 ‖ + 2γ
√

k − 1/2n.

Thus,

‖Pc2
��ψq

〉
‖ ≤

1
2n−γ

q−1∑
k=1

√
k ≤
(q − 1)

√
q − 1

2n−γ
,

which implies ‖Pc2
��ψq

〉
‖ = O(q3/2/2n) since γ is constant.

This completes the proof together with Lemma 1. �

4.3 Summary

The quantum collision resistance of hπ is not optimal if π is
an involution with no fixed points:

Corollary 1 Suppose that h is a random oracle and that π is
a permutation satisfying |Cπ(x)| = 2 for every x ∈ {0,1}m.
Then, an adversary making at most q quantum queries
can find a colliding pair of inputs for hπ with probability
O(q2/2n).

Corollary 1 directly follows from Theorems 4 and 6. An
example of an involution with no fixed points is x 7→ x ⊕ c,
where c is a non-zero constant.

The following corollary implies that the quantum col-
lision resistance of hπ is optimal if the cardinality of the
equivalence classes with respect to π

∼ equals 2γ for some
constant integer γ ≥ 2. Namely, to find a colliding pair of
inputs for hπ with some constant probability, any quantum
adversary needs Ω(22n/3) queries:

Corollary 2 For π, suppose that there exists a constant γ ≥ 2
such that |Cπ(x)| = 2γ for every x ∈ {0,1}m. Then, for any
adversary making at most q quantum queries, the probability
that it succeeds in finding a colliding pair of inputs for hπ is
O(q3/22n).

Corollary 2 directly follows from Theorems 5 and 6. A
permutation π is interesting for instantiation of hπ if it is
very easy to compute and the cardinality of the equivalence
classes with respect to π

∼ equals 4.

Example 1 Let m be an even integer. Let c ∈ {0,1}m/2 \{0}
be a constant. Then, the following permutations over {0,1}m
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satisfy that the cardinality of their equivalence classes equals
4: (x0, x1) 7→ (x0 ⊕ x1, x1 ⊕ c), where x0, x1 ∈ {0,1}m/2.

Example 2 Let γ ≥ 2 and suppose that 2γ−1 di-
vides m. Let c ∈ {0,1}m/2γ−1

\ {0} be a constant.
Then, the following permutations over {0,1}m satisfy
that the cardinality of their equivalence classes equals
2γ: (x0, x1, . . . , x2γ−1−1) 7→ (x1, . . . , x2γ−1−1, x0 ⊕ c), where
x0, x1, . . . , x2γ−1−1 ∈ {0,1}m/2

γ−1 .

5. Quantum Collision Resistance of Merkle-Damgård
Hash Functions Using Nandi’s DBL Compression
Functions

If there exists some integer γ ≥ 2 such that the cardinality
of the equivalence classes for π∼ equals 2γ, then the quantum
collision resistance of MDhπ is optimal:

Corollary 3 Suppose that h is a random oracle. For π, sup-
pose that there exists a constant integer γ ≥ 2 such that
|Cπ(x)| = 2γ for every x ∈ {0,1}m. Then, the probabil-
ity that any adversary making at most q quantum queries
succeeds in finding a colliding pair of inputs for MDhπ is
O(q3/22n).

Proof The notation in Algorithm 1 is used in the proof.
Suppose that a colliding pair of inputs M and M ′ are

found for MDhπ . Let M1‖M2‖ · · · ‖Ml ← pad(M) and
M ′1‖M

′
2‖ · · · ‖M

′
l′
← pad(M ′). Then, since pad is suffix-

free, there exists some t ∈ [0,min{l, l ′} − 1] such that
Vl−t−1‖Ml−t and V ′

l′−t−1‖M
′
l′−t

are a colliding pair of inputs
for hπ . Thus, the corollary follows from Theorems 5 and 6.

�

The quantumcollision resitance ofMDhπ can be optimal
even if π is an involution. Corollary 4 is a quantum version
of Theorem 3.

Corollary 4 Suppose that h is a random oracle and that π
is an involution over {0,1}m without fixed points such that
π(v‖w) := πcv(v)‖w, where v ∈ {0,1}2n. Suppose that
πcv(v0‖v1) , v1‖v0 for every (v0, v1) ∈ {0,1}n × {0,1}n.
Then, the probability that any quantum adversary making at
most q queries succeeds in finding a colliding pair of inputs
for MDhπ is O(q3/22n).

Proof The notation in Algorithm 1 is used in the proof.
Notice that |Cπ(x)| = 2 for every x ∈ {0,1}m and πcv

has no fixed points.
Suppose that a colliding pair of inputs M and M ′ are

found for MDhπ . Let M1‖M2‖ · · · ‖Ml ← pad(M) and
M ′1‖M

′
2‖ · · · ‖M

′
l′
← pad(M ′). Without loss of general-

ity, suppose that l ≥ l ′. Then, since pad is suffix-free,
there exists some t ∈ [0, l ′ − 1] such that Vl−t−1‖Ml−t and
V ′
l′−t−1‖M

′
l′−t

are a colliding pair of inputs for hπ . Let t∗ :=
min{t |Vl−t−1‖Ml−t and V ′

l′−t−1‖M
′
l′−t

are a colliding pair}.

Suppose that Vl−t∗−1‖Ml−t∗ and V ′
l′−t∗−1‖M

′
l′−t∗

are an
interclass colliding pair. Then, from Theorem 6, the success
probability in finding them is O(q3/22n).

Suppose that Vl−t∗−1‖Ml−t∗ and V ′
l′−t∗−1‖M

′
l′−t∗

are an
intraclass colliding pair. Then,

π(Vl−t∗−1‖Ml−t∗ ) = πcv(Vl−t∗−1)‖Ml−t∗ = V ′l′−t∗−1‖M
′
l′−t∗ .

Thus, if t∗ = l ′ − 1, then Ml−l′+j = M ′j for every j ∈ [1, l ′].
It contradicts the assumption that pad is suffix-free. Thus,
t∗ ≤ l ′ − 2. Since πcv(Vl−t∗−1) = V ′

l′−t∗−1, Vl−t∗−1 , V ′
l′−t∗−1.

Thus,

πcv(hπ(Vl−t∗−2‖Ml−t∗−1)) = hπ(V ′l′−t∗−2‖M
′
l′−t∗−1),

and Vl−t∗−2‖Ml−t∗−1 , V ′
l′−t∗−2‖M

′
l′−t∗−1. In addition, since

πcv(v0‖v1) , v1‖v0 for every (v0, v1),

Cπ(Vl−t∗−2‖Ml−t∗−1) , C
π(V ′l′−t∗−2‖M

′
l′−t∗−1).

The problem to find such an interclass pseudo-colliding pair
of inputs for hπ with respect to π

∼ is equivalent to the prob-
lem to find a pair of inputs x, x ′ ∈ Xπ for g (with γ = 1)
satisfying Cπ(x) , Cπ(x ′) and πcv(h(πi(x))‖h(πi+1(x))) =
h(π j(x ′))‖h(π j+1(x ′)) for some i, j ∈ [0,1], where π0(x) =
π2(x) = x and π0(x ′) = π2(x ′) = x ′.

Let Pc3 be the projection spanned by all the states con-
taining a database D for g including at least a pair of tuples
(x∗, y∗) and (x∗∗, y∗∗) in Xπ × ({0,1}n × {0,1}n) such that
πcv(y

∗
i ‖y

∗
i+1 mod 2) = y∗∗j ‖y

∗∗
j+1 mod 2 for some i, j ∈ [0,1],

where y∗ = (y∗0, y
∗
1) and y

∗∗ = (y∗∗0 , y
∗∗
1 ). Then,

Pc3 =
∑
x,z,w

∑
D∈Dc3

|x, z, w,D〉 〈x, z, w,D | ,

whereDc3 is the set of the databases including at least a pair
of tuples described above.

For k ∈ [1,q], let |ψk−1〉 be the state right before the k-th
oracle query is made and

��ψ ′
k

〉
be the state right after the k-th

oracle query is made. Let
��ψ ′0〉 be the initial state and ��ψq

〉
be

the state just before the measurement. LetOg be the operator
making an oracle query. Then,

��ψ ′
k

〉
= Og |ψk−1〉. For

k ∈ [0,q], let Uk be the operator such that |ψk〉 = Uk

��ψ ′
k

〉
.

Thus, Uk represents the local computation on |x, z, w〉 by the
adversary and it does not affect the database.

A pseudo-colliding pair of inputs for hπ is found with
probability ‖Pc3

��ψq

〉
‖2. In the remaining parts, an upper

bound on ‖Pc3 |ψk〉 ‖ is evaluated.
Since Uk does not affect the database,

‖Pc3 |ψk〉 ‖ = ‖Pc3Uk

��ψ ′k〉 ‖ = ‖Pc3
��ψ ′k〉 ‖.

In addition,

‖Pc3
��ψ ′k〉 ‖ = ‖Pc3Og |ψk−1〉 ‖

= ‖Pc3Og(Pc3 + (I⊗L − Pc3)) |ψk−1〉 ‖

≤ ‖Pc3OgPc3 |ψk−1〉 ‖ + ‖Pc3Og(I⊗L − Pc3) |ψk−1〉 ‖

≤ ‖Pc3 |ψk−1〉 ‖ + ‖Pc3Og(I⊗L − Pc3) |ψk−1〉 ‖,
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where L is the number of qubits in |ψk−1〉. For the last term,
let

|ψk−1〉 =
∑
x,z,w

∑
D

αx,z,w,D |x, z, w〉 ⊗ |D〉 .

Then,

‖Pc3Og(I⊗L − Pc3) |ψk−1〉 ‖

=




Pc3Og

∑
x,z,w

∑
D<Dc3

αx,z,w,D |x, z, w〉 ⊗ |D〉



.

If D(x) , ⊥, then D < Dc3 and the database after the
application of Og has no pair of tuples containing a pseudo-
colliding pair of inputs for hπ . For D < Dc3, let YD be the
set of y′ = (y′0, y

′
1) ∈ {0,1}

n × {0,1}n such that there exists
(x∗, y∗) ∈ D satisfying πcv(y

∗
i ‖y

∗
i+1 mod 2) = y′j ‖y

′
j+1 mod 2

for some i, j ∈ [0,1]. Then,


Pc3Og

∑
x,z,w

∑
D<Dc3

αx,z,w,D |x, z, w〉 ⊗ |D〉





=




Pc3
∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc3 ,
D(x)=⊥

1
√

22n

∑
y′

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=




 1
√

22n

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc3 ,
D(x)=⊥

∑
y′∈YD

(−1)z ·y
′

αx,z,w,D |x, z, w〉 ⊗ |D ∪ (x, y′)〉





=
( 1
22n

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc3 ,
D(x)=⊥

∑
y′∈YD

|αx,z,w,D |
2
)1/2

≤

(22(k − 1)
22n

∑
x,z,w,

x∈Xπ ,z,0

∑
D<Dc3 ,
D(x)=⊥

|αx,z,w,D |
2
)1/2

≤
2
√

k − 1
2n

.

Altogether,

‖Pc3 |ψk〉 ‖ ≤ ‖Pc3 |ψk−1〉 ‖ + 2
√

k − 1/2n.

Thus,

‖Pc3
��ψq

〉
‖ ≤

1
2n−1

q−1∑
k=1

√
k ≤
(q − 1)

√
q − 1

2n−1 ,

which implies ‖Pc3
��ψq

〉
‖2 = O(q3/22n). This completes

the proof together with Lemma 1. �

6. Observation on DBL Compression Functions Using
a Block Cipher

Let E : {0,1}2n × {0,1}n → {0,1}n be a block cipher

Fig. 1 DBL compression functions using a block cipher. The message
block input is x1 for abreast Davies-Meyer and Hirose and x2 for Jonsson-
Robshaw.

Fig. 2 Grover oracle for the collision attack.

with its key space {0,1}2n. Some observations are given on
three DBL compression functions using the block cipher E ,
which are depicted in Fig. 1. Let hE : ({0,1}n)3 → {0,1}n
be the compression function such that hE (x0, x1, x2) :=
E((x0, x1), x2) ⊕ x2.

6.1 The Hirose Construction

Let $ be a permutation over ({0,1}n)3 such that
$(x0, x1, x2) := (x0, x1, x2 ⊕ c), where c ∈ {0,1}n is a non-
zero constant. Then, h$E represents the DBL compression
function proposed by Hirose [11]. It is depicted in Fig. 1(c).

The DBL compression function h$E can be attacked
using the collision attack presented in the proof of The-
orem 4, since $ is an involution. The Grover oracle of
this attack is similar to that of the exhaustive key search
for a block cipher by Jaques et al. [13] and is depicted
in Fig. 2. The components of the oracle are specified in
Fig. 3. UE is the unitary operator of E . In Fig. 3(b), eq
is a predicate such that eq(u, c) = 1 if and only if u = c,
and the component is constructed using a controlled NOT
gate, O(n) Toffoli gates, O(n) X gates, and O(n) additional
qubits [25]. Notice that E((x0, x1), x2) = E((x0, x1), x2⊕c)⊕c
if hE (x0, x1, x2) = hE ($(x0, x1, x2)). The plaintext inputs to
UE in the Grover oracle in Fig. 2 are fixed constants 0n and
c.

6.2 The Abreast Davies-Meyer Construction

Let ξ be a permutation over ({0,1}n)3 such that
ξ(x0, x1, x2) := (x1, x2, x0 ⊕ 1n). Then, h̃ξE (x0, x1, x2) :=
(hE (x0, x1, x2), hE (ξ(x0, x1, x2)) ⊕ 1n) represents the abreast
Davies-Meyer (DM)DBLcompression function proposed by
Lai andMassey [10]. It is depicted in Fig. 1(a), where the op-
eration ‘◦’ is bitwise negation. Though ξ is not an involution,
ξ6 is the identity permutation and, for every x0 ∈ {0,1}n,
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Fig. 3 Components of the Grover oracle in Fig. 2.

ξ(x0, x0⊕1n, x0) = (x0⊕1n, x0, x0⊕1n) , (x0, x0⊕1n, x0) and
ξ2(x0, x0 ⊕ 1n, x0) = (x0, x0 ⊕ 1n, x0). Thus, (x0, x0 ⊕ 1n, x0)

and ξ(x0, x0 ⊕ 1n, x0) are colliding pair of inputs for h̃ξE if
and only if

hE (x0, x0 ⊕ 1n, x0) = hE (ξ(x0, x0 ⊕ 1n, x0)). (1)

If there exists x0 satisfying Eq. (1) for E , then one can find a
colliding pair of inputs for the abreastDavies-Meyer h̃ξE using
the Grover search withO(2n/2) iterations. The Grover search
is applied to the Boolean function f : {0,1}n → {0,1} such
that f (x0) = 1 if and only if x0 satisfies Eq. (1). Eq. (1) holds
if and only if E((x0, x0⊕1n), x0) = E((x0⊕1n, x0), x0⊕1n)⊕
1n. The number of unordered pairs, ((x0, x0 ⊕ 1n), x0)) and
((x0 ⊕ 1n, x0), x0 ⊕ 1n), is 2n−1 for x0 ∈ {0,1}n. Suppose
that E is chosen uniformly at random. Then, the probability
that there exists x0 satisfying Eq. (1) is 1 − (1 − 2−n)2n−1

≈

1 − e−1/2 ≈ 0.3935.

6.3 The Jonsson-Robshaw Construction

Let δ be a permutation over {0,1}n applying addition of 1
modulo 4 to the two most significant bits of an input. Then,
ĥδE (x0, x1, x2) := (E((x0, x1), x2) ⊕ x2,E((x0, x1), δ(x2)) ⊕ x2)
represents the DBL compression function proposed by Jon-
sson and Robshaw [26], which is depicted in Fig. 1(b).

Addition of 1 modulo 4 to (b1, b0) ∈ {0,1}2 can
be represented by a permutation shown in Example 1:
(b1, b0) 7→ (b1 ⊕ b0, b0 ⊕ 1). Thus, δ satisfies the suf-
ficient condition for optimal quantum collision resistance.
However, it is still an open question if ĥδE is optimally colli-
sion resistant against quantum adversaries in the ideal cipher
model.

7. Conclusion

We have analyzed the quantum collision resistance of
Nandi’s class of compression functions hπ and the Merkle-
Damgård hash functions MDhπ assuming that h is a random
oracle. Though our analysis has covered some permutations
π of practical interest, it leaves the quantum collision resis-
tance for the other permutations as an open question. It is
also an open question if there exists an optimally collision
resistant DBL compression function using a block cipher
against quantum adversaries in the ideal cipher model.
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