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Dispersion in a Polygon

Tetsuya ARAKI†a) and Shin-ichi NAKANO†b), Members

SUMMARY The dispersion problem is a variant of facility location
problems, that has been extensively studied. Given a polygon with n edges
on a plane we want to find k points in the polygon so that the minimum
pairwise Euclidean distance of the k points is maximized. We call the
problem the k-dispersion problem in a polygon. Intuitively, for an island,
we want to locate k drone bases far away from each other in flying distance
to avoid congestion in the sky. In this paper, we give a polynomial-time
approximation scheme (PTAS) for this problem when k is a constant and
ε < 1 (where ε is a positive real number). Our proposed algorithm runs
in O(((1/ε )2 + n/ε )k ) time with 1/(1 + ε ) approximation, the first PTAS
developed for this problem. Additionally, we consider three variations of
the dispersion problem and design a PTAS for each of them.
key words: facility location problem, algorithm, dispersion problem

1. Introduction

The facility location problem and many of its variants have
been studied [17], [18]. Typically, given a set of points on
which facilities can be placed and an integer k, we want to
place k facilities on some points so that a designated ob-
jective function is minimized. By contrast in the dispersion
problem, we want to place facilities so that a designated
objective function is maximized.
Our results In this paper we consider four dispersion prob-
lems on a plane and design a PTAS for each of them for a
fixed constant k.

A PTAS (Polynomial-Time Approximation Scheme) is
a type of approximation algorithm for optimization problems
that computes a (1+ ε)-approximate solution within polyno-
mial time. A PTAS allows for the adjustment of the ε value,
enabling the precision of the approximate solution to be set
arbitrarily. Therefore, designing a PTAS is important, as it
can quickly compute rough approximate solutions or spend
longer times computing refined approximate solutions, de-
pending on the requirements.

Given a polygon P with n edges on a plane, we want to
find k points in P so that the minimum pairwise Euclidean
distance of the k points is maximized. We call the problem
the k-dispersion problem in a polygon. See an example
in Fig. 1. Note that the k points may contain a point in a
polygon which is not on the boundary, for instance if we
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Fig. 1 A solution of a k-dispersion problem in a polygon with k = 4.

choose 5 points in a square, the 5 points consist of the four
corner points and the center of the square.

Intuitively, for an island, we want to locate k drone
bases far away from each other to avoid congestion in the
sky.

In this paperwe give anO(((1/ε)2+n/ε)k) time 1/(1+ε)
approximation algorithm to solve the problem, where ε < 1
is a positive number. Thus the problem has a PTAS.

The algorithm first computes a set of (grid) points in P
and computes optimal k points among the set of points by a
brute force algorithm. By choosing the gap size of the grid
suitably, we ensure the approximation ratio.

If k is a part of the inputs, i.e., not a constant, then a
similar problem has no PTAS [8].

We consider the following three more problems.

1. Given a polygon with n edges on a plane we want to
find k points in the polygon so that the minimum length
of paths inside the polygon (where a path is a sequence
of straight line segments in the polygon) connecting
any two of the k points is maximized. See an example
in Fig. 2. Intuitively, for an island, we want to locate
k coffee shops far away from each other to avoid self
competition for walking customers. We call the prob-
lem the k-dispersion problem in a polygon with the
geodesic distance.

2. Given a set of n (connected) straight line segments on a
plane we want to find k points on the straight line seg-
ments so that the minimum pairwise Euclidean distance
of the k points is maximized. See an example in Fig. 3.
Intuitively, for some road network, we want to locate k
drone bases far away from each other to avoid conges-
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Fig. 2 A solution of a k-dispersion problem in a polygon with k = 4
where the minimum length of paths inside the polygon connecting two
points among the k points is maximized.

Fig. 3 A solution of a k-dispersion problem in a set of straight line
segments with k = 4.

tion in the sky so that each base faces a road(s). We call
the problem the k-dispersion problem on straight line
segments.

3. Consider a game space inwhich the same squares are ar-
ranged in a rectangular array of L rows and L columns.
The side length of the square is one. For each square
s an integer weight w(s) is assigned. We assume that
w(s) ∈ {1,2, · · · ,W}. A point can repeatedly move
in a square s either horizontally or vertically at speed
distance 1 per w(s) seconds. A point can move the com-
mon boundary of two squares s and s′ at speed distance
1 per min{w(s), w(s′)} seconds. (A point can move
in the faster square.) We want to find k points in the
game space so that the minimum time to move from one
point to other point in the k points is maximized. See an
example of the problem and its solution in Fig. 4. Intu-
itively, for the game space, we want to locate k hunters
far away from each other to avoid fighting over prey.
We call the problem the k-dispersion in a game space
problem.

In the well-known k-center problem, research on poly-
gons [7], [27] and line segments [28] has also been con-
ducted. Therefore, considering polygons and line segments
in the context of the dispersion problem is a natural exten-
sion.
Related results

Given a set C of n points, a distance function d, and

Fig. 4 An example of the dispersion in a game space problem and its
solution with k = 5.

an integer k with k < n, the max-min k-dispersion problem
computes a subset S ⊂ C with |S | = k such that the cost
cost(S) = min{u,v }⊂S{d(u, v)} is maximized. Several re-
sults are known for the max-min k-dispersion problem. The
problem is NP-hard [20]. If d is a metric (the distance satis-
fies the triangle inequality) a polynomial-time approximation
algorithm with approximation ratio two is known [29], and
it is NP-hard to compute a solution with approximation ratio
less than two [29]. An exponential time exact algorithm is
known [3]. If P is a set of n points on a line one can solve
the problem inO(kn) time by dynamic programming [31], in
O(n log log n) time by sorted matrix search method [2], and
in O((2k2)kn) time by the pigeonhole principle [4]. For the
max-sum version several results are also known [10], [12]–
[14], [21], [25], [29]. For a variety of related problems, see
[8], [14]. See more applications, including result diversifi-
cation, in [13], [29], [30].

Given a set of n disjoint intervals on a line the max-min
dispersion problem on intervals computes one point from
each interval so that the minimum pairwise distance of the
n points is maximized. If the disjoint intervals are given
in the sorted order on the line, two O(n) time algorithms
to solve the problem are known [9], [26]. Given a set of
n disjoint intervals on a line and a constant integer k with
k < n, even if the intervals are given in any (unsorted) order,
one can compute k points from the intervals in O((2k2)kn)
time so that the minimum pairwise distance of the k points
is maximized [5].

Given a set of disjoint disks with arbitrary radii, the
dispersion problem on disks is the problem to compute one
point in each disk so that the minimum distance among the
points is maximized. The problem is NP-hard, and some
approximation algorithms are known [11], [19], [22], also
an O((n/ε2)k) time 1/(1 + ε) approximation algorithm is
known [5].

The dispersion problem in a polygon is similar to the
following packing problem. Given an integer k and a disk,
the disk packing in a disk problem computes the maximum
radius of k identical disks which can be packed without
overlapping into the given disk. Given an integer k, a disk
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with radius r and a number dist, if we have an algorithm to
decide whether one can locate k points in the disk so that
the minimum distance among them is dist or more, then, by
using the algorithm, we can decide whether one can pack
k identical disks with radii dist/2 or more into a disk with
radius r + dist/2. Only the following result is known for the
time complexity of the disk packing in a disk problem. It
is in EXPTIME, whereas whether it is in PSPACE or not is
open [1]. For similar problems the followings are known.
It is NP-complete to decide whether a given set of (possibly
not identical) disks can be packed into a given square [16,
Corollary 7.2]. It is NP-complete to decide whether a given
set of (possibly not identical) disks can be packed into a
given disk [23, Corollary 6.2].

The remainder of this paper is organized as follows.
In Sect. 2 we give an O(((1/ε)2 + n/ε)k) time 1/(1 + ε)
approximation algorithm for the k-dispersion problem in a
polygon with n edges. In Sects. 3–5 we design algorithms
for three variant problems. Finally Sect. 6 is a conclusion.

The preliminary version of the paper appeared in [6].

2. k-Dispersion in a Polygon

Fix a constant integer k. Given a polygon P with n edges
on a plane, we would like to find k points in P so that
the minimum pairwise Euclidean distance of the k points is
maximized. Let ε < 1 be a positive number. In this section
we give an O(((1/ε)2 + n/ε)k) time 1/(1+ ε) approximation
algorithm for this problem.

We need some notations. For a set S of points let
cost(S) be the minimum pairwise Euclidean distance among
the points in S. Let P∗ be a set of k points in P with the
maximum cost(P∗).

Let W be the difference between the x-coordinates of a
leftmost point and a rightmost point in P. Similarly let H be
the difference between the y-coordinates of a topmost point
and a bottommost point in P. Without loss of generality we
can assume that W ≥ H.

We have the following lemma.

Lemma 1. cost(P∗) > W/k

Proof. Fix a directed path starting at a leftmost point p`
and ending at a rightmost point pr in P. Let p0 =
p`, p1, · · · , pk−1 = pr be the points on the directed path
such that pi is the first point having its x-coordinate
x(p`) +Wi/(k − 1) for i = 0,1, · · · , k − 1. Now the distance
between any two points of the k points is at least W/(k − 1),
so more than W/k. �

Now we describe the algorithm.
By a standard plane sweep algorithm (see page 1022

of textbook [15]) we can sweep P by a horizontal sweep
line from top to bottom in O(n log n) time, and during the
sweepwe canmaintain the edges of P intersecting the current
horizontal sweep line with the left-to-right order of the inter-
section points with the current horizontal sweep line. During
the sweep we construct a set G of points in P, as follows. We

Fig. 5 An example of the set G of points in P.

consider a grid of gap size Wε/ck on P, where a constant c
is explained later, and stop the horizontal sweep line at each
horizontal line on the grid, that is, when the y-coordinate of
the horizontal sweep line is Wεi/ck for each integer i, and
append to G the points on the current horizontal sweep line
which are (1) the intersection points with the vertical grid
lines (the number of such points is at most (1 + ck/ε)2 in
total), and (2) the intersection points with edges of P (the
number of such points is at most (1 + ck/ε)n in total). Sim-
ilarly we sweep P by a vertical sweep line from left to right,
and append to G the points on the current vertical sweep line
which are (3) the intersection points with edges of P. Now
|G | ≤ (1 + ck/ε)2 + 2(1 + ck/ε)n holds. An example of G
is shown in Fig. 5.

LetG(P∗) be the set of points derived from P∗ by choos-
ing a nearest point in G for each point in P∗. We choose c
large enough so that [c1] cost(G(P∗)) > cost(P∗)/(1 + ε)
holds and [c2] no two points in P∗ have the common nearest
point in G. (If two points in P∗ have the common nearest
point in G then cost(G(P∗)) = 0. This case is prohibited
because the approximation ratio becomes infinite.)

If we set c as c ≥ 2
√

2(1 + ε) then the following holds
by Lemma 1.

1
c
≤

1
2
√

2(1 + ε)
2
√

2
c
(1 + ε) ≤ 1

2
√

2
c

W(1 + ε)
k

≤
W
k
< cost(P∗)

2
√

2Wε

ck
< cost(P∗)

ε

1 + ε

= cost(P∗)
(1 + ε) − 1

1 + ε

= cost(P∗) −
1

1 + ε
cost(P∗)

1
1 + ε

cost(P∗) < cost(P∗) −
2
√

2Wε

ck
≤ cost(G(P∗))

Thus [c1] holds. Note that cost(P∗)− 2
√

2Wε
ck ≤ cost(G(P∗))

holds, since the distance between a point in P∗ and its nearest
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point in G is at most
√

2Wε
ck .

If we set c as c ≥ (1 + 2
√

2)ε then the following holds.

1
(1 + 2

√
2)ε
≥

1
c

1 ≥
(1 + 2

√
2)ε

c
W
k
≥
(1 + 2

√
2)Wε

ck
W
k
−

2
√

2Wε

ck
≥

Wε

ck

Now the following holds by Lemma 1.

cost(G(P∗)) ≥ cost(P∗)−
2
√

2Wε

ck
>

W
k
−

2
√

2Wε

ck
≥

Wε

ck

Note that again cost(P∗) − 2
√

2Wε
ck ≤ cost(G(P∗)) holds.

Thus, for any two points p and q in P∗, let p′ and q′

be the nearest points in G, respectively, then the distance
between p′ and q′ is at least Wε/ck, so (c2) holds.

We set c large enough to satisfy the above two condi-
tions.
Algorithm Let GA be the set G′ of k points in G maxi-
mizing cost(G′). If we find a set GA in O(|G |k) time by a
brute force algorithm we have cost(GA) ≥ cost(G(P∗)) ≥
cost(P∗)/(1 + ε).

Now we have the following theorem. Note that k is a
constant.

Theorem 1. One can compute a setGA of k points in a given
polygon P with n edges with cost(GA) ≥ cost(P∗)/(1 + ε)
in O((1/ε2 + n/ε)k) time, where P∗ is a set of k points in P
maximizing cost(P∗).

3. k-Dispersion Problem in a Polygon with the Geodesic
Distance

In the k-dispersion problem in a polygon, by replacing the
Euclidean distance by the length of a shortest path inside a
polygon, we can define the following problem.

Given a polygon P with n edges on a plane, we want to
find k points in P so that the minimum length of the shortest
paths inside P (where a path is a sequence of straight line
segments in the polygon) connecting two points among the
k points is maximized.

By preprocessing the polygon in O(n log n) time, one
can compute, for any pair of query points in P, the length of
the shortest path inside P in O(log n) time [24]. Thus given
a set of k points in P we can compute in O(k2 log n) time the
minimum length of the shortest paths inside P connecting
two points among the k points.

For a set S of points in P let cost ′(S) be the minimum
length of the shortest paths inside P connecting two points
among S. Let P∗ be a set of k points in P with the maximum
cost ′(P∗).

We can solve the problem as follows. First by a standard
plane sweep algorithm we sweep P by a horizontal sweep
line from top to bottom in O(n log n) time and by a vertical
sweep line from left to right inO(n log n) time, and construct
a set of points G in P as the algorithm in Sect. 2. For
this problem we additionally append to G the end points of
each segment of P. So |G | increased by n. Now |G | ≤
(1 + ck/ε)2 + (3 + 2ck/ε)n holds. We need to append these
points to G to ensure cost ′(P∗) − 2

√
2Wε
ck ≤ cost ′(G(P∗)) for

this problem. Then by a brute force algorithm compute GA

which is the set G′ of k points in G maximizing cost ′(G′).
We can find GA in O(|G |k) time.

We again choose c large enough so that [c1”]
cost ′(G(P∗)) > cost ′(P∗)/(1 + ε) holds and [c2”] no two
points in P∗ have the common nearest point in G.

We have the following theorem.

Theorem 2. One can compute a setGA of k points in a given
polygon P with n edges with cost ′(GA) ≥ cost ′(P∗)/(1 + ε)
in O((1/ε2 + n/ε)k k2 log n) time, where d ′(u, v) is the length
of the shortest path inside P connecting two points u and
v, and cost ′(S) = min{u,v }⊂S{d ′(u, v)} and P∗ is a set of k
points in P maximizing cost ′(P∗).

Proof. One can use the proof of Theorem 1 to prove the
Theorem 2. �

4. k-Dispersion Problem on Straight Line Segments

Given a set L of n straight line segments on a plane, we want
to find k points in L so that the minimum pairwise Euclidean
distance of the k points is maximized. We assume that L
is connected, that is, for any pair of points in L, there is
a path in L from a point to the other point. We set W ′ as
the difference between the x-coordinate of a leftmost end
point and the x-coordinate of a rightmost end point in L.
Similarly let H ′ be the difference between the y-coordinate
of a topmost end point and the y-coordinate of a bottommost
end point in L. Without loss of generality we can assume
that W ′ ≥ H ′.

Similarly to the previous section, we define that for a set
S of points, let cost(S) be the minimum pairwise Euclidean
distance among the points in S. Let P∗ be a set of k points
in L with the maximum cost(P∗).

We have the following lemma.

Lemma 2. cost(P∗) > W ′/k

Proof. One can use the proof of Lemma 1 to prove the
Lemma 2. �

Now we describe the algorithm.
By a standard plane sweep algorithm, we sweep L by a

horizontal sweep line from top to bottom in O(n log n) time.
During the sweep we construct a set G of points in L, as
follows. We consider a grid of gap size W ′ε/ck on L, where
c is a constant, and stop the horizontal sweep line at each
horizontal line on the grid, and append to G the points on the
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current horizontal sweep line which are (1’) the intersection
points with straight line segments in L (the number of such
points is at most (1 + ck/ε)n in total). Similarly we sweep
L by a vertical sweep line from left to right, and append to
G the points on the current vertical sweep line which are
(2’) the intersection points with straight line segments in L.
Now |G | ≤ 2(1+ ck/ε)n holds. Then again, by a brute force
algorithm, we compute GA which is the set G′ of k points in
G maximizing cost(G′).

Now we have the following theorem.

Theorem 3. Given a set L of n straight line segments on
a plane, one can compute a set PA of k points on L with
cost(PA) ≥ cost(P∗)/(1 + ε) in O((n/ε)k) time, where P∗ is
a set of k points on L with maximum cost(P∗).

Proof. One can use the proof of Theorem 1 to prove the
Theorem 3. �

5. k-Dispersion in a Game Space

In the previous sections, we discussed three dispersion prob-
lems with a constant cost of movement, regardless of lo-
cation. However, in practical, moving through rivers and
forests can take longer than moving over plains. Therefore,
in this section, we consider the dispersion problems where
moving costs differ depending on their individual locations.
We can define the following problem.

A game space is composed of identical squares arranged
in a rectangular array of L rows and L columns. An inte-
ger weight w(s) ∈ {1,2, · · · ,W} is assigned to each square,
where W is a constant. A point can repeatedly move in a
square s either horizontally or vertically at speed distance
1 per w(s) seconds. We assume that a point can move the
common boundary of two squares s and s′ at speed distance
1 per min{w(s), w(s′)} seconds. The goal is to find k points
in the game space so that the minimum time to move from
one point to other point in the k points is maximized.

Let ε < 1 be a positive number. In this section we
give an O((1/ε)2k) time 1/(1 + ε) approximation algorithm
to solve the problem.

For a set S of points, letT be the set of minimum time to
move from a points in S to other points in S, and let cost(S)
be the minimum in T . Let P∗ be a set of k points in the game
space with the maximum cost(P∗).

We also regard the game space as a graph, in which
each vertex is the corner of each square and each edge is one
of line segment on the boundary of each square. The weight
of each edge is the lighter weight of two incident squares. (If
the edge is on the outer face then its weight is the weight of
the unique incident square.) An example of the graph of the
game space is shown in Fig. 6.

We have the following lemma.

Lemma 3. cost(P∗) > 1/k

Proof. Let S = {p1, p2, · · · , pk} be the k points on the line
segment from the lower right corner point to the upper right

Fig. 6 An example of the graph of the game space.

corner point of some square s in which they are evenly
spaced. Now the minimum time from one point to other
point in S is at least 1/(k − 1) since w(s) ≥ 1, then the
lemma follows. �

We compute a set G of points as follows. We divide
each square s into grids of gap size ε/(ckW), a constant c
is explained later, and append to G each corner point on the
grids. Now |G | ≤ (ckWL/ε + 1)2 holds. We also regard
those grids as a graph. Each point in |G | is a vertex in the
graph. The number of edges in this graph is at most 4|G |.
Since c, k, andW are constants, |G | is O((L/ε)2).

We have the following lemma.

Lemma 4. (a) The time for a point to move from a grid point
to the nearest grid point is at most ε

ckW/
1
W =

ε
ck .

(b) The time for a point to move from a point p to a point
among the four grid points surrounding p is at most 2 ε

ck .

Proof. (a) Since the distance to move is ε/(ckW) and the
speed is at least 1/W.

(b) Since the distance to move is at most 2ε/(ckW) and
the speed is at least 1/W. �

Let G(P∗) be the set of k points derived from P∗ by
choosing a nearest point inG for each point in P∗. We choose
c large enough so that [c1] cost(G(P∗)) > cost(P∗)/(1 + ε)
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Fig. 7 Illustration for Lemma 4.

holds and [c2] no two points in P∗ have the common nearest
point in G. (If two points in P∗ have the common nearest
point in G then cost(G(P∗)) = 0. This case is prohibited
because the approximation ratio becomes infinite.)

Now, we describe how we set the constant c. If we set
c as c ≥ 4(1 + ε), then the following inequality holds by
Lemma 3.

1
c
≤

1
4(1 + ε)

4
c
(1 + ε) ≤ 1

4
c
(1 + ε)

k
≤

1
k
< cost(P∗)

4ε
ck

< cost(P∗)
ε

1 + ε

= cost(P∗)
(1 + ε) − 1

1 + ε

= cost(P∗) −
1

1 + ε
cost(P∗)

1
1 + ε

cost(P∗) < cost(P∗) −
4ε
ck
≤ cost(G(P∗))

Thus [c1] holds. Note that cost(P∗) − 4ε
ck ≤ cost(G(P∗))

holds, since the time for a point to move from a point p in
P∗ to a point among the four grid points surrounding p is at
most 2ε

ck by Lemma 4 (b). For a better comprehension, see
Fig. 7.

If we set c as c ≥ 5ε , then the inequality following
holds.

1
5ε
≥

1
c

1 ≥
5ε
c

1
k
≥

5ε
ck

1
k
−

4ε
ck
≥

ε

ck

Now the following holds by Lemma 3.

cost(G(P∗)) ≥ cost(P∗) −
4ε
ck

>
1
k
−

4ε
ck
≥

ε

ck

Note again that cost(P∗) − 4ε
ck ≤ cost(G(P∗)) holds by

Lemma 4 (b).
For any two points p and q in P∗, let p′ and q′ be the

nearest points in G, respectively. Then, the time for a point
to move from p′ to q′ is at least ε/ck, that is, they are distinct
grid points by Lemma 4 (a), so (c2) holds.

We set c large enough to satisfy the above two condi-
tions.
Algorithm

Let GA be the set G′ of k points in G maximizing
cost(G′). We can find GA in O(|G |k k4|G | log |G |) time by
the following algorithm. For every possible k points in G,
we compute the minimum time for a point to move from a
point to other point among the k points, by running a single
source shortest path algorithm k times. Since the degree of
vertices is at most 4, so the number of edges is at most 4|G |,
then Dijkstra’s algorithm finds a solution in O(4|G | log |G |)
time for each and O(|G |k k4|G | log |G |) time in total. We
have cost(GA) ≥ cost(G(P∗)) ≥ cost(P∗)/(1 + ε).

Now we have the following theorem.

Theorem 4. One can compute a set GA of k points in a
given game space with cost(GA) ≥ cost(P∗)/(1 + ε) in
O((L/ε)2k(L/ε)2 log(L/ε)) time, where P∗ is a set of k points
in the game space with maximizing cost(P∗).

6. Conclusion

In this paper we designed an algorithm to solve the k-
dispersion problem in a polygon. For a fixed constant in-
teger k, given a polygon with n edges, our algorithm com-
putes a set GA of k points in the polygon with cost(GA) ≥

cost(P∗)/(1 + ε) in O(((1/ε)2 + n/ε)k) time, where P∗ is an
optimal solution. Thus the problem has a PTAS.

Then we have defined three natural dispersion prob-
lems. For a constant integer k we can design a PTAS to
compute k points in a given polygon so that the minimum
length of the shortest paths inside P connecting two points
among the k points is maximized, and a PTAS to compute
k points on given straight line segments on a plane so that
the minimum pairwise Euclidean distance of the k points
is maximized, and a PTAS to compute k points on given a
game world consisting of square with different travel times
for each square so that the minimum time to move from one
point to other point in the k points is maximized.

Each algorithm is simple but the first PTAS to solve a
natural problem. We hope further improvements continue.
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