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An Investigation on LP Decoding of Short Binary Linear Codes
With the Subgradient Method∗

Haiyang LIU†a), Xiaopeng JIAO††b), Nonmembers, and Lianrong MA†††c), Member

SUMMARY In this letter, we investigate the application of the subgra-
dient method to design efficient algorithm for linear programming (LP)
decoding of binary linear codes. A major drawback of the original for-
mulation of LP decoding is that the description complexity of the feasible
region is exponential in the check node degrees of the code. In order to
tackle the problem, we propose a processing technique for LP decoding
with the subgradient method, whose complexity is linear in the check node
degrees. Consequently, a message-passing type decoding algorithm can be
obtained, whose per-iteration complexity is extremely low. Moreover, if the
algorithm converges to a valid codeword, it is guaranteed to be a maximum
likelihood codeword. Simulation results on several binary linear codes
with short lengths suggest that the performances of LP decoding based on
the subgradient method and the state-of-art LP decoding implementation
approach are comparable.
key words: binary linear codes, linear programming (LP) decoding, sub-
gradient method

1. Introduction

As a relaxation of maximum likelihood (ML) decoding, lin-
ear programming (LP) decoding [1] of linear codes is a
promising technique that has satisfactory theoretical guaran-
tee on decoding performance. However, solving the problem
in LP decoding through general-purpose LP solvers is infea-
sible, especially for codes with high check node degrees.
In order to address the problem, the implementation of LP
decoding through the iterative alternate direction method
of multipliers (ADMM) technique has been proposed in the
recent years [2]–[11]. However, these implementation meth-
ods still involve complicated operations (e.g., the polytope
projection).

The subgradient method [12] is an iterative algorithm
for solving nondifferentiable optimization problems. In his
seminal work [1], Feldman has introduced the idea of solv-
ing the LP decoding problem using the subgradient method.
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However, with the exception of [13], this line of works do
not seem to have been further considered to the best of our
knowledge. (In fact, the authors in [13] have presented a
subgradient-based approach for decoding a particular class
of codes, i.e., single parity-check product codes.) From the
optimization point of view, the subgradient method has the
following advantages, which makes it attractive in LP de-
coding. First, compared with other optimization methods
(e.g., interior-point method), the storage requirement of the
subgradient method is much smaller. Besides, the operations
involved in the method are very simple. Second, LP decod-
ing with the subgradient method outputs a binary vector in
each iteration. Hence, the decoding output for each bit is
more interpretable compared with solving the LP decoding
problem through general-purpose LP solvers.

In this letter, we focus on short binary linear codes,
which are amicable in low-latency wireless communication
systems where short packets are preferred [14]. Despite the
importance, how to develop efficient soft-decision decoding
algorithms that can achieve ML or near-ML performances
for these codes is challenging. Although their lengths are
short, the exact ML decoding is intractable for these codes
in general. For some families of algebraic codes, we can
design soft-decision decoding algorithms (e.g., Chase al-
gorithm) whose performances are close to ML decoding
[15]. However, these approaches do not work well for non-
algebraic codes such as random low-density parity-check
(LDPC) codes. Since the performance of LP decoding is
close to ML decoding when the channel noise is low [1] and
the subgradient method has advantages mentioned above, it
is deserved to investigate the design of efficient LP decoding
algorithm based on the subgradient method for short binary
linear codes, which motivates our work.

It is known that the description complexity of the feasi-
ble region of the original LP decoding problem is exponential
in the check node degrees of the code [1]. In order to ad-
dress the problem, we develop a processing method whose
complexity is linear in the check node degree for LP decod-
ing with the subgradient method. The obtained decoding
approach has lower per-iteration complexity compared with
the ADMM-based LP decoding. Moreover, if the algorithm
converges to a codeword, it is an ML codeword. Simula-
tion results on several short binary codes suggest that the
error rate performance of the proposed method is close to
that of the ADMM-based LP decoding. In addition, the pro-
posed method also has advantages in the average decoding
time of a codeword for the tested codes, which suggests that
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the method is suitable for applications where low decoding
latency is required.

2. Background

In this section, we introduce the background knowledge of
our work. For any vector a = [ai], the set {i : ai , 0} is
called the support of a. For a given set S, denote |S| by the
cardinality of S.

An [n, k] binary linear code C can be specified as the
null space of a parity-check matrix H = [hji] of size m × n
over F2 = {0,1}, where m ≥ n − k, with equality if and
only if H is full-rank. Suppose I and J are the indices
for the columns and rows of H . DefineM(i) = { j ∈ J :
hji = 1} and N( j) = {i ∈ I : hji = 1}. In particular, if
|M(i)| = dv (resp., |N( j)| = dc) holds for each i ∈ M(i)
(resp., j ∈ N( j)), the code is said to be (dv, dc)-regular. For
convenience, we associate H with a bipartite graph G(H),
called Tanner graph [15], which consists of two sets of nodes:
The set of n bit nodes that correspond to the indices in I and
the set of m check nodes that correspond to the indices in J .
There is an edge (i, j) ⊆ I × J in G(H) connecting the i-th
bit node and the j-th check node if and only if hji = 1.

Suppose a codeword x ∈ C is transmitted over a mem-
oryless binary-input output-symmetric channel and r is the
received vector. It can be shown that the ML codeword x̂ML
is the solution of the following minimization problem:

min
x∈conv(C)

γTx, (1)

where conv(C) is the convex hull of C when C is embedded
inRn and γ is the log-likelihood ratio vector whose i-th entry
is γi = log

[
Pr(ri |xi=0)
Pr(ri |xi=1)

]
(i ∈ I).

Due to the daunting complexity of describing conv(C),
the problem in (1) is practically intractable. Feldman has
proposed an approximation of the problem [1]. Suppose Cj
is the single parity-check code defined by the j-th row of
H . Define the polytope P =

⋂
j∈J

conv(Cj) and construct the

minimization problem:

min
x∈P

γTx. (2)

Then LP decoding is to find the optimal solution x̂LP of the
minimization problem in (2).

Every codeword of C corresponds to one vertex of P.
Conversely, not all vertices of P are codewords of C in gen-
eral, which is due to the fact that P could have non-integral
vertices. The optimum of an LP problem can always be
reached at one vertex of the polytope P. When the solution
x̂LP is at an integer vertex, it must be the optimal solution of
the problem in (1) and thus is an ML codeword. In contrast,
if x̂LP is non-integral, then LP decoder detects a decoding
error. We call this fact the ML certificate property of an
LP decoder, which makes the performance of the decoder
amenable to theoretical analysis [1].

3. LP Decoding with the Subgradient Method

3.1 Formulation

Now we review LP decoding with the subgradient method,
which has been originally presented in [1]. The polytope
P can be reformulated by introducing auxiliary variables.
Define

E j = {S ⊆ N( j) : |S| is even} (3)

for each j ∈ J . Note that ∅ ∈ E j .
By inspection, we obtain that |E j | = 2 |N(j) |−1. An

auxiliary variable wj ,S is associated to eachS in E j , which is
an indicator for the codeword inCj corresponding toS. Then
conv(Cj) can be represented using the following constraints:

xi =
∑

S∈E j ,S3i

wj ,S,∀ i ∈ N( j), (4)

0 ≤ xi ≤ 1, ∀ i ∈ I, (5)∑
S∈E j

wj ,S = 1 and wj ,S ≥ 0, ∀ S ∈ E j . (6)

Using the Lagrange multiplier method [12], we con-
struct

L(m) = γTx +
∑
i, j

mi j


∑

S∈E j ,S3i

wj ,S − xi

 (7)

by moving the equality constraints in (4) into the objective
function, where m = [mi j], and the coefficients mi j are La-
grange multipliers. Denote Q by the set of points (x,w)
satisfying the constraints in (5) and (6). Note that the pro-
jection of Q onto x is the polytope P. Define

L∗(m) = min
(x,w)∈Q

L(m). (8)

From the duality theory [12], we have

min
(x,w)∈Q

γTx = max
m
L∗(m) (9)

The problem max
m
L∗(m) can be solved in an iterative

manner by using the subgradient method, i.e., a sequence
{m(k)} can be generated, where k is the iteration number.
The iterative process can be treated as a message passing
process, and the Lagrange multiplier m(k)i j can be viewed as
the message from the i-th bit node to the j-th check node in
the k-th iteration. This can facilitate the implementation of
the decoding process. In general, we perform the following
steps until a prescribed maximum number Kmax of iterations
is reached [1].

Step 1: Check message processing.
Calculate m(k)ji , the message from the j-th check node

to the i-th bit node in the k-th iteration, by

m(k)ji =
{

1, i ∈ S−j ,
0, i < S−j ,

(10)
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where

S−j = argminS∈E j

∑
i∈S

m(k)i j . (11)

Step 2: Bit message processing.
Estimate the transmitted codeword y (k) = [y(k)i ] ac-

cording to

y
(k)
i =

{
1, γi −

∑
j∈M(i) m

(k)
i j < 0,

0, γi −
∑

j∈M(i) m
(k)
i j ≥ 0.

(12)

Update m(k)i j for each edge (i, j) such that y(k)i , m(k)ji
using the following equation:

m(k+1)
i j =

{
m(k)i j + α

(k), y
(k)
i = 0,

m(k)i j − α
(k), y

(k)
i = 1,

(13)

where {α(k)} is a sequence of prescribed positive real num-
bers satisfying lim

k→∞
α(k) = 0 and

∞∑
k=1

α(k) = ∞ [12].

Step 3: Termination decision.
If y(k)i = m(k)ji for all the edges (i, j), then terminate the

iterative process and output y (k).
It is known from the above description that the algo-

rithm outputs a binary vector in each iteration. Moreover, if
the output of LP decoder (2) is integral, y (k) is the same out-
put for sufficiently large k, in which the algorithm converges
to an ML codeword [1].

3.2 Proposed Check Message Processing Procedure

From the previously described algorithm, we know that the
most complicated procedure is to find the set S−j in (11),
whose complexity is exponential in |N( j)| using traditional
methods since we have |E j | = 2 |N(j) |−1. This is particularly
troublesome for check nodes with high degrees. In the fol-
lowing, we develop a low-complexity procedure (Algorithm
1) for finding S−j . At first our algorithm constructs the set
I−j = {i ∈ N( j) : m(k)i j < 0}. If the size of I−j is even, we
haveS−j = I

−
j and the algorithm terminates. If the size ofI−j

is odd, we compare |m(k)ip j
| and |m(k)in j

| and let S−j = I
−
j \ {in}

if |m(k)ip j
| > |m(k)in j

| andS−j = I
−
j ∪{ip} otherwise, where m(k)ip j

(resp., m(k)in j
) has the minimum absolute value among all m(k)i j

that are positive (resp., negative). The steps of our procedure
are provided in Algorithm 1, whose correctness is proved in
Proposition 1.

Proposition 1: The output of Algorithm 1 is S−j given
in (11).

Proof: Let T be a subset of N( j). Assume I−j = {i ∈
N( j) : m(k)i j < 0} and I+j = N( j)\I

−
j . By inspection, we

know that
∑

i∈T m(k)i j achieves the minimum when T = I−j .
We distinguish between two cases.

Case 1: |I−j | is even. In this case, we have I−j ∈ E j .

Hence, S−j = I
−
j .

Case 2: |I−j | is odd. Let in = argmini∈I−j |m
(k)
i j | and ip =

argmini∈I+j |m
(k)
i j |. In this case, the setsI

−
j \{in} andI

−
j ∪{ip}

are both in E j . If
∑

i∈I−j
m(k)i j − m(k)in j

<
∑

i∈I−j
m(k)i j + m(k)ip j

,

the sum in (11) achieves the minimum
∑

i∈I−j
m(k)i j − m(k)in j

and S−j = I
−
j \{in}. Otherwise, the sum in (11) achieves the

minimum
∑

i∈I−j
m(k)i j + m(k)ip j

and S−j = I
−
j ∪ {ip}. �

We can check that our Algorithm 1 needs at most
2|N( j)| + 1 comparisons to find S−j for a check node j
of degree |N( j)|. Hence, the complexity of the procedure
is linear in the check node degree. Moreover, the addition
operations are avoided in the check message processing.

3.3 Complexity Analysis

In this subsection, the per-iteration complexity of LP decod-
ing with the subgradient method is analyzed for a (dv, dc)-
regular code. Note that we have mdc = ndv in this case. As
previously discussed, at most m(2dc + 1) real comparisons
are needed to find S−j given by (11) in one iteration. For
bit message processing, we need ndv real additions to calcu-
late y (k) in (12) in one iteration. Then we need ndv integer
comparisons and at most ndv real additions for update the
Lagrange multiplier m(k)i j as well as the termination decision
in one iteration. Hence, the per-iteration complexity of the
proposed method in the worst case is linear in dc and n if dv
and dc are independent of n.

The ADMM approach is also an iterative method for
the implementation of LP decoding. The most complicated
part of the ADMM-based LP decoding in each iteration is
the polytope projection, which usually involves a sorting
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Fig. 1 Error rate performances of the three codes. (a) Performances of C1 for the proposed method
under different values of Kmax. (b) Performances of C1 for the proposed method and the ADMM-based
LP decoding method. (c) Performances of C2 for the proposed method and the ADMM-based LP
decoding method. (d) Performances of C3 for the proposed method and the ADMM-based LP decoding
method.

Table 1 Comparisons of ANI values and ADT (ms) of a codeword at different SNR values for the
three codes.

operation whose complexity depends on the distribution of
the input values. It is believed that the worst-case complexity
of the exact polytope projection is quadratic in the check node
degree dc [3], [4]. (We mention that some recent works have
considered approximate polytope projection methods, e.g.,
[8], [11], whose complexity can be linear in the check node
degree.) In addition to the polytope projection, we need
about ndv + 2mdc real additions and 2n real multiplications
in one iteration of the ADMM-based LP decoding [2], [6].
Hence, we conclude that the proposed method has lower
per-iteration complexity†.

4. Simulation Results

In this section, we verify the performance of the proposed
method through simulations, which are performed with the
Microsoft Visual C++ 6.0 development tool on computers
whose configurations are i5-3470 3.2GHz CPU and 4GB
RAM. The parameters α(k) in (13) are chosen as α(k) = 1/k.
We choose the algorithm in [2], i.e., theADMMLPdecoding
without penalty, for comparison with the proposed method.
There are two main reasons for our choice. First, the algo-
rithm in [2] has the lowest per-iteration complexity among all
the ADMM-based LP decoding methods. Hence, we com-
pare the per-iteration complexities of the proposed method
and this algorithm. Second, it has been shown in [5] that
the ADMM LP decoding without penalty can achieve better
performances than certain ADMM penalized LP decoding

†Note that the proposed method has lower per-iteration com-
plexity can also be verified by our simulation results, which are
provided in the next section.

method when the channel noise is low.
Three codes are used in our simulations. The first code

C1 is a [120,100] random LDPC code described by a (3,18)-
regular parity-check matrix H1 with size 20 × 120, which
is constructed using the progressive edge-growth algorithm
[16]. The second code C2 is a [64,45] EG-LDPC code
described by a (3,8)-regular parity-check matrix H2 with
size 24 × 64, which is constructed from EG(2,8), the two-
dimensional Euclidean geometry (EG) over GF(8), accord-
ing to the methods provided in [15, Example 17.22]. The
code C3 is a [127,120] Hamming code. It is known that
its dual C⊥3 is a [127,7] simplex code whose 127 nonzero
codewords all have weight 64 [15]. We use all the nonzero
codewords in C⊥3 to construct a (64,64)-regular parity-check
matrix H3 with size 127 × 127 for C3. It is worth mention-
ing that these three codes have relatively large check node
degrees.

Figure 1(a) illustrates the frame error rate (FER) and bit
error rate (BER) performances of C1 under different values
of Kmax. It is known from the figure that the performance
gap between Kmax being 500 and 2000 is smaller than that
between Kmax being 100 and 500 for the proposed method.
Figure 1(b) compares the performances of C1 for the pro-
posed algorithm and the ADMM-based LP decoding algo-
rithm, where the maximum numbers of iterations are set as
2000 for both decoding algorithms. As shown in the figure,
the FER or BER performance of the proposed method is
close to that of the ADMM-based LP decoding method. It
is worth mentioning that the performances of the proposed
method and the ADMM-based LP decoding method should
be identical if Kmax goes to infinity. In our simulations, there
are some differences in the performances of the twomethods,
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which is due to the fact that Kmax is finite.
In order to evaluate the complexities of the twomethods

for decoding C1, we compare the average number of itera-
tions (ANI) values and the average decoding time (ADT) of a
codeword, where the maximum numbers of iterations are set
as 2000 for both methods. The results are listed in Table 1.
We can see from the table that the ANI values of the pro-
posed method are larger than those of the ADMM-based LP
decoding method. However, the ADT of a codeword for the
proposed method is lower than that for the ADMM-based LP
decoding method. Due to this fact, the maximum numbers
of iterations are set as 2000 for both decoding methods in
the evaluations of C2 and C3.

Figure 1(c) and (d) illustrate the performances of C2
and C3, respectively. Using the results in [17], [18], we can
conclude that H2 and H3 have good pseudocodeword prop-
erty, namely, the minimum weight of pseudocodewords of
H2 (resp., H3) is equal to the minimum distance of C2 (resp.,
C3), which indicates that LP decoding is asymptotically op-
timal for C2 and C3 [17], [18]. We can see from the figures
that the performances of the two methods are comparable for
each code. This indicates that the parity-check matrix with
good pseudocodeword property may be helpful to the pro-
posed method. In addition, it is known from Table 1 that the
ADT of a codeword for the proposed method is lower than
that for the ADMM-based LP decoding method for all the
test cases except for one signal-to-noise ratio (SNR) value
of C3. This, together with the ANI values, indicates that
the per-iteration complexity of the proposed method is much
lower than that of the ADMM-based LP decoding method.

5. Conclusion and Future Work

In this letter, we investigated the application of the subgra-
dient algorithm for LP decoding and proposed a processing
technique with linear complexity in the check node degrees.
The per-iteration complexity of the obtained decoding al-
gorithm is extremely low. In each iteration, the proposed
method outputs a binary vector. If the output is a valid code-
word, it is an ML codeword. Simulation results on several
codes with short lengths suggest that the performance of the
proposed method is close to that of the ADMM-based LP
decoding. Moreover, the proposed method has advantages
in the average decoding time of a codeword.

A major problem of the proposed method is that it has
relatively large ANI values. As a future work, we will try
to design effective schemes to reduce the ANI values of the
proposed method. Moreover, it is interesting to investigate
the performance of the proposed method as the code length
increases. Finally, it is deserved to further improve the per-
formance of LP decoding with the subgradient method and
compare with the ADMM penalized LP decoding methods.
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