
1404
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

LETTER
Delay Improvement in Hierarchical Multi-Access Edge Computing
Networks

Ngoc-Tan NGUYEN†, Member, Trung-Duc NGUYEN†, Nam-Hoang NGUYEN†a),
and Trong-Minh HOANG††, Nonmembers

SUMMARY Multi-access edge computing (MEC) is an emerging tech-
nology of 5G and beyond mobile networks which deploys computation
services at edge servers for reducing service delay. However, edge servers
may have not enough computation capabilities to satisfy the delay require-
ment of services. Thus, heavy computation tasks need to be offloaded to
other MEC servers. In this paper, we propose an offloading solution, called
optimal delay offloading (ODO) solution, that can guarantee service delay
requirements. Specificially, this method exploits an estimation of queu-
ing delay among MEC servers to find a proper offloading server with the
lowest service delay to offload the computation task. Simulation results
have proved that the proposed ODO method outperforms the conventional
methods, i.e., the non-offloading and the energy-efficient offloading [10]
methods (up to 1.6 times) in terms of guaranteeing the service delay under
a threshold.
key words: MEC, service delay, offloading, server selection

1. Introduction

Multi-access edge computing (MEC) is one of the advanced
technologies in 5G mobile networks because it is con-
sidered as the convergence of IT and telecommunications
networking [1]–[3]. MEC provides the feature of cloud-
computing to users by integrating with the radio access net-
work (RAN) [1], [2]. By that way, it helps to solve the exist-
ing problem of cloud computing, i.e., service delay [3], [4].

With the feature of MEC, its architecture can be de-
ployed in IoT systems where computation offloading is pro-
vided from IoT devices to edge servers. Consequently, IoT
devices cannot only reduce processing delay and energy con-
sumption, but also increase quality of service and lifetime.
However, the deployment of MEC systems also have tech-
nical challenges in terms of resource allocation, scalability,
security, user mobility, etc. [5], when providing computa-
tion offloading. Recent research activities on computation
offloading in MEC systems have focused on server selection
for offloading to enhance energy efficiency of users [6]–[8].
In particular, the authors in [6] study aminimization problem
of energy consumption while ensuring the latency constraint
by studying the energy cost of both computing and trans-
missionss tasks. A competitive game model is proposed
in [7] which allows users to minimize its energy consump-

Manuscript received June 11, 2023.
Manuscript revised September 14, 2023.
Manuscript publicized March 5, 2024.
†VNU-University of Engineering and Technology, Vietnam.
††Posts and Telecommunications Institute of Technology

(PTIT), Vietnam.
a) E-mail: hoangnn@vnu.edu.vn (Corresponding author)
DOI: 10.1587/transfun.2023EAL2048

tion subject to real-time constraints. The work [8] presents a
minimization problem of theweighted sum energy consump-
tion subject to the computation latency constraint. However,
all of the aforementioned works deploy a single-layer MEC
architecture that is no longer efficient with high offloading
load. The authors in [10] propose an efficient server selec-
tion solution for the hierarchical MEC architecture which
can optimize the energy consumption. Yet this work cannot
guarantee the delay requirements under high system load.

In this paper, we first consider deploying a practical hi-
erarchical MEC architecture [4], [9], [10]. We then propose
an optimal delay offloading solution to support the guaran-
tee of service delay. In particular, the queuing time of MEC
servers is regularly updated and used to select an offloading
server which is able to provide the minimum service delay.

2. System Model

The hierarchical MEC network model illustrated in Fig. 1
includes three layers of servers where 1st layer servers have
point-to-point links to 2nd layer servers. The 2nd and 3rd layer
servers are connected in a mesh topology. MEC servers
at different layers have different computation capabilities
depending on their deployment layer and performance [10].
High performance servers are deployed at the core network
(the 3rd layer) whereas lower capacity servers are deployed
at the radio access networks (the 1st layer). In the scope
of this paper, we consider the system deployment scenario
with fixed users located in the coverage of their access MEC
server for a long duration, i.e., no mobility.

A computation task is represented by a tuple [10], i.e.,
T = {rC,rN, τM}, where rC is the computing resource required
for performing the computation task, e.g., CPU cycles. rN

denotes the size of computation task measured in megabits,
while τM is the maximum allowable service delay of the
computation task measured in milliseconds. To represents
the complexity of the computation task and its computing re-
source requirement, a parameter should be considered, called
Computational Intensity (CI), which is the number of CPU
cycles per computation unit. With a given CI, the required
computing resource for a computation task is estimated as
rC = rNCI.Service delay of performing a computation task
includes the computation time, transmissions time, and queu-
ing delay [10]. Note that the transmissions time between the
users and the 1st layer servers can be ignored because they
are typically deployed close to each other. The computation

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



LETTER
1405

Fig. 1 System model of hierarchical MEC networks.

time of a task at server j can be calculated by:

tcomp
j =

rC

xCj
, (1)

where xCj is the compute resource of server j allocated for a
computation task, which is measured in the number of CPU
cycles per second (CPU cycles/s). The transmissions time
from server i to server j is calculated as follows:

ttransi, j =
rN

xN
i, j

. (2)

Assume that each server only performs one computation
task at a time, the queuing model M/M/1 is applied in our
proposed system. The system load is ρj = λj/µj, whereλ is
the arrival rate of computing tasks to server j. Meanwhile,
the average speed of processing is expressed as follows:

µj =
CCPU
j

r̄NCI
, (3)

where CCPU is the speed of the server’s CPU in cycles per
second. CI denotes the computation intensity in cycles per
bit, while r̄N is the average size of computing tasks in bits.
Thus, the queuing delay at server j can be estimated by:

tqueuej =
ρj

µj − λj
=

ρj

µj(1 − ρj)
. (4)

FromEqs. (1), (2), and (4), the total service delay to complete
an offloading task of server j can be expressed by:

ttotalj = 2.ttransi, j + tcomp
j + tqueuej . (5)

3. Optimal Delay Offloading Approach

In this section, we propose an optimal delay offloading
(ODO) solution which optimizes both the transmissions de-
lay and queuing delay by selecting a proper server to guar-
antee the service delay requirement. The hierarchical MEC
network is modeled as a graph G(s, e) where s is the set of

servers and e is the set of connections between servers. The
cost of each connection ei j between server i and server j is
defined as the transmissions delay. Each server sj has the
cost calculated as the sum of the queuing delay and comput-
ing time of the requested task. Assume that the information
about the queuing delay of each server is estimated and up-
date regularly to the access server. Note that each computing
task requires a specific delay, i.e., τM . Thus, the selected
offloading server j must satisfy the following constraint:

ttotalj < τM . (6)

In the case that the access server cannot ensure the service
delay requirement, it offloads its computing tasks to a server
at higher layers. The detail of the server selection offloading
approach is summarized as follows:

1. Access server selection (at users)

• Step 1: A user firstly measures signals of broad-
cast channels of nearby base stations to make a list
of available access servers that it can connect to.

• Step 2: It then selects one server in the 1st layer
that has the strongest signal to be its access server.

2. Offloading server selection (at access servers)

• Step 1: The access server firstly receives a com-
puting request with the delay requirement (τM)
from the user, then makes a decision whether se-
lecting an offloading server to tackle the request.

• Step 2: It then implements the Dijkstra algorithm
to find an offloading server satisfying the con-
dition that the total delay (ttotal) of offloading the
user’s request to the offloading server isminimum.

• Step 3: It validates the total delaywhether satisfies
the constraint (6). If the constraint (6) is satisfied,
the offloading procedure is implemented. Other-
wise, it sends a reject response to the user.

To evaluate the system performance of our proposed
solution, we leverage the energy-efficient offloading solution
proposed in [10] for performance comparison. In this ap-
proach, the system energy consumption, which is caused by
transmissions and computation, is taken as the optimization
objective of the offloading problem.

4. Numerical Results

In this section, numerical simulations are provided to evalu-
ate the performance of the optimal delay offloading (ODO)
method for the multi-tier MEC networks. We consider a
simulation area of 1000m × 1000m with 1000 users dis-
tributed homogeneously. There are 9 access servers which
is distributed homogeneously in the 1st-layer. The size of
computing tasks is generated randomly in an exponential
distribution with the mean of 1 Mbits. Bandwidth of links
between the 1st and 2nd layers, and between the 2nd and 3rd



1406
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

Fig. 2 Probability of guaranteeing service delay as (a) CI = 25, (b) CI = 55, and (c) CI = 95 in the
case of low system load.

Table 1 Percentage of processed requests.

layers are 600 and 1000 Mbps, respectively. CPU resources
of the 1st-, the 2nd-, and the 3rd-layer servers are 6, 12, and 30
(GHz), respectively. Other setting parameters can be found
in [10]. For the benchmark, other solutions, i.e., the energy-
efficient offloading (EEO) [10] and non-offloading solutions
are used to compare with the proposed ODO solution.

4.1 Scenario 1: When the System Load Is Low

We first evaluate the performance of the proposed ODO
scheme under the setting that the system load is low, i.e.,
ρ ∈ (0,0.3). In Figs. 2(a), 2(b), and 2(c), we show the
variation of the probabilities of guaranteeing service delay
requirement corresponding with different levels of computa-
tional intensity (CI = (25,55,95)). In general, the probabil-
ities of guaranteeing delay obtained by the proposed ODO,
EEO, and non-offloading solutions increase as the service
delay increases in the range of 5 ms to 30ms.

Considering the computational intensity at medium and
high levels, i.e., CI = 55 and CI = 95, as illustrated in
Fig. 2(b) and Fig. 2(c), the non-offloading solution obtains
the lower performance compared with the proposed ODO
and EEO solutions. It is due to the fact that in the non-
offloading solution, only the servers deployed at the 1st layer
process the computational load, while the others perform
offloading the computational load to the 2nd and 3rd layer
servers. Thus, the non-offloading has the lower probabilities
of guaranteeing the service delay requirement than the other
solutions. By contrast, when CI = 25, the probability of
guaranteeing service delay requirement of the EEO solution
is lower than those of the other solutions. It is because
the EEO solution tends to process the computational load
at high layer servers to optimize the consumption energy.
Meanwhile, when the CI = 25, the non-offloading solution
offers a slightly higher probability of guaranteeing service
delay requirement than the proposed solution as it does not
suffer the transmissions delay among servers.

In Table 1, we demonstrate the percentage of the re-
quests processed by servers at different levels of CI. It can be

seen that the EEO solution prefers selecting the high-layer
servers to handle the user requests rather than processing
them at the lower-layer servers. It is because the high-layer
servers have high computing energy efficiency. Thus, it can
help this method optimized in terms of energy consump-
tion. In particular, with the low computational intensity, i.e.,
CI = 25, 100% of user requests are processed at the 3rd layer
servers to guarantee the energy requirement as shown in Ta-
ble 1. However, this causes a high delay due to information
exchange between layers. By contrast, the proposed ODO
offloading solution processes 86% and 14% user requests at
the 1st layer and 2nd layer servers, respectively. By this way,
our proposed solution can obtain higher QoS in terms of ser-
vice delay than the EEO solution. When the computational
intensity increases, the 1st layer servers cannot handle user
requests. Thus, in the proposed ODO solution, the compu-
tational tasks are offloaded to the 2nd and 3rd layer servers.
Specifically, when CI = 55, 59% and 49% of requests are
processed at the 2nd and 3rd layer servers, respectively. Sim-
ilarly, when CI = 95, 90% and 10% of requests are handled
at the 2nd and 3rd layer servers, respectively. Meanwhile,
the EEO solution assigns 100% computational tasks for the
3rd layer servers. However, as the system load is small, i.e.,
ρ = (0,0.3), the queuing delay is small and insignificant
when compared with the other delays. Therefore, the per-
formance of both solutions is as the same at high CI levels
when the required delay is greater than or equal to 15 ms.

4.2 Scenario 2: When the System Load Is Medium

We then investigate the performance of our proposed ODO
solution when the system load is medium, i.e., ρ ∈ (0.3,0.6).
Generally, the ODO solution always obtains higher probabil-
ity of guaranteeing service delay requirement than the others.
In particular, as CI = 25, the EEO solution achieves the low-
est performance among three solutions. That is because it
prefers handling user requests at high-layer servers. Thus,
it suffers a higher transmissions delay than the others using
low-layer servers to perform the computation tasks. How-



LETTER
1407

Fig. 3 Probability of guaranteeing service delay as (a) CI = 25, (b) CI = 55, and (c) CI = 95 with the
medium system load.

Fig. 4 Probability of guaranteeing service delay as (a) CI = 25, (b) CI = 55, and (c) CI = 95 in the
case of high system load.

ever, when computation intensity increase, i.e.,CI= {55,95},
the queuing delay is superior to the transmissions delay be-
tween servers and thus, the service delay increases. There-
fore, the non-offloading solution shows a significantly lower
performance compared with the others. That is because the
non-offloading solution uses the 1st layer servers that have
low computing capacity, to compute user requests. Thus, it
suffers a higher queuing delay than the others.

4.3 Scenario 3: When the System Load Is High

Finally, we perform simulations to evaluate the performance
of all solutions when the system load is high, i.e., ρ = (0.6,1)
as shown in Fig. 4. In general, our proposed ODO solution
continues showing the highest probability of guaranteeing
service delay requirement among the others. That is because
it has an optimized offloading strategy to share the computa-
tion tasks to servers under different levels of CI. Meanwhile,
the EEO solution is no longer efficient in guaranteeing ser-
vice delay requirement. It is because this method prefers us-
ing only servers at high layer that always overloaded. Thus,
it leads to the high queuing delay.

5. Conclusion

In this paper, we have studied the offloading strategies in the
hierarchical MEC networks. To improve the service delay
in the MEC networks, we have proposed the server selection
offloading scheme that optimizes both the queuing delay at
servers and transmissions delay among servers under differ-
ent levels of computational intensity. Numerical analyses
have shown that the higher the system load and computa-
tional intensity, themore efficient the proposed optimal delay

offloading method is compared with other baseline methods.

References

[1] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, “A survey on
the computation offloading approaches in mobile edge computing: A
machine learning-based perspective,” Comp. Net., vol.182, 107496,
2020.

[2] Y.C. Hu, et al., “Mobile edge computinga key technology towards
5G,” ETSI white paper, vol.11, no.11, pp.1–16, 2015.

[3] ETSI, “Mobile-Edge Computing–Introductory Technical White Pa-
per,” Available at: https://portal.etsi.org/Portals/0/TBpages/MEC/
Docs/Mobileedge_Computing_-_Introductory_Technical_White_Pa
per_V1%2018-09-14.pdf

[4] J. Guo, Z. Song, Y. Cui, Z. Liu, and Y. Ji, “Energy-efficient resource
allocation for multi-user mobile edge computing,” IEEE GLOBE-
COM, Singapore, pp.1–7, 2017.

[5] S.J. Bigelow, “What is edge computing? Everything you need
to know,” Dec. 2021. Available at: https://www.techtarget.com/
searchdatacenter/definition/edge-computing

[6] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S.
Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5G heterogeneous networks,” IEEEAccess, vol.4,
pp.5896–5907, 2016.

[7] E. Meskar, T.D. Todd, D. Zhao, and G. Karakostas, “Energy-efficient
offloading for competing users on a shared communication channel,”
IEEE ICC, pp.3192–3197, June 2015.

[8] C.You, K.Huang, H.Chae, andB.H.Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans.
Wireless Commun., vol.16, no.3, pp.1397–1411, March 2017.

[9] S. Wang, M. Zafer, and K.K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE
Access, vol.5, pp.2514–2533, 2017.

[10] S. Thananjeyan, C.A. Chan, E. Wong, and A. Nirmalathas,
“Mobility-aware energy optimization in hosts selection for compu-
tation offloading in multiaccess edge computing,” IEEE Open J.
Commun. Soc., vol.1, pp.1056–1065, July 2020.

http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
http://dx.doi.org/10.1109/glocom.2017.8254044
http://dx.doi.org/10.1109/glocom.2017.8254044
http://dx.doi.org/10.1109/glocom.2017.8254044
https://www.techtarget.com/searchdatacenter/definition/edge-computing
https://www.techtarget.com/searchdatacenter/definition/edge-computing
https://www.techtarget.com/searchdatacenter/definition/edge-computing
http://dx.doi.org/10.1109/access.2016.2597169
http://dx.doi.org/10.1109/access.2016.2597169
http://dx.doi.org/10.1109/access.2016.2597169
http://dx.doi.org/10.1109/access.2016.2597169
http://dx.doi.org/10.1109/icc.2015.7248815
http://dx.doi.org/10.1109/icc.2015.7248815
http://dx.doi.org/10.1109/icc.2015.7248815
http://dx.doi.org/10.1109/twc.2016.2633522
http://dx.doi.org/10.1109/twc.2016.2633522
http://dx.doi.org/10.1109/twc.2016.2633522
http://dx.doi.org/10.1109/access.2017.2665971
http://dx.doi.org/10.1109/access.2017.2665971
http://dx.doi.org/10.1109/access.2017.2665971
https://doi.org/10.1109/OJCOMS.2020.3008485
https://doi.org/10.1109/OJCOMS.2020.3008485
https://doi.org/10.1109/OJCOMS.2020.3008485
https://doi.org/10.1109/OJCOMS.2020.3008485

