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Reservoir-Based 1D Convolution: Low-Training-Cost AI

Yuichiro TANAKA†a) and Hakaru TAMUKOH† ,††, Members

SUMMARY In this study, we introduce a reservoir-based one-
dimensional (1D) convolutional neural network that processes time-series
data at a low computational cost, and investigate its performance and train-
ing time. Experimental results show that the proposed network consumes
lower training computational costs and that it outperforms the conventional
reservoir computing in a sound-classification task.
key words: edge computing, reservoir computing, reservoir-based convo-
lution, voice recognition

1. Introduction

Most current artificial intelligence (AI) technologies are
based on deep learning (DL) [1], [2]. DL achieves state-
of-the-art results in various tasks because it uses a signifi-
cant amount of training data to maximize performance, and
high-performance computers with graphics processing units
(GPUs), to accelerate the computation. However, it is diffi-
cult to apply DL in edge AI because the amount of training
data is insufficient. Additionally, because the power of the
edge systems is limited, GPUs, which consume considerable
power, are unsuitable. Thus, a low-training-cost AI that re-
quires little training data and has low computational costs,
resulting in a low-power implementation, is necessary for
edge AI.

Reservoir computing (RC) [3], [4] can be a solution
for low-training-cost AI because only part of the weight con-
nections has plasticity, whereas normal neural networks opti-
mized by backpropagation [5] update all weight connections
during training. As a reservoir-based approach, Tanaka and
Tamukoh proposed a reservoir-based convolutional neural
network (CNN) [6], which is an extended version of RC and
an effective neural network to process images. The reservoir-
based CNNoutperforms existing reservoir-based approaches
in some image-recognition tasks while maintaining a low
training cost.

Toward the realization of a low-training-cost AI for not
only image processing but also time-series data processing,
this study proposes a reservoir-based one-dimensional (1D)
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convolution, an extended version of the previously proposed
reservoir-based two-dimensional (2D) convolution, and in-
vestigates its classification performances for time-series data
and its computational costs during training.

2. Proposed Method

The reservoir-based 1D convolution operation uses several
reservoirs, as shown in Fig. 1. When an input with Nch
channels is provided to the reservoir-based 1D convolution
layer, the reservoirs receive a region of interest (ROI) of
width T from the input, and process the ROI as time-series
data u(t) ∈ RNch , where t indicates a discrete time-step
(t = 1,2, . . . ,T), according to the following equation,

x(t) = (1− δ)x(t − 1)+ δ f (Wchu(t)+Wresx(t − 1)) (1)

where x(t) ∈ RNres is a state of one of the reservoirs; its
initial state is set as x(0) = 0. Wch ∈ R

Nres×Nch and Wres ∈
RNres×Nres denote a weight connection between the ROI and
reservoir and a recurrent weight connection in the reservoir,
respectively. f indicates a nonlinear function; a hyperbolic
tangent function was used in this study. δ (0 < δ < 1)
indicates a leak rate, which controls the updating speed of
the reservoir. After feeding theROI to the reservoirs, only the
final states of the reservoirs are adopted as elements of feature
maps. If the number of reservoirs in the operation is R, the
feature maps have R×Nres channels. The ROI is shifted, and
the above computation is repeated in the same manner as
the 1D convolutional operation to compute the entire feature
map. Therefore, the reservoir-based 1D convolution can
be seen as a time-domain operating version of the ordinary
convolution.

Reservoirs in the operation have several leak rates to
extract various features from inputs. As mentioned in [6],

Fig. 1 Reservoir-based 1D convolution.
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Fig. 2 Network construction.

a reservoir with a small leak rate works as a rough feature
extractor because the reservoir updating speed is slow and
the reservoir cannot follow the fast changes in the inputs.
Conversely, a reservoir with a large leak rate works as a fine
feature extractor. Because of such a structure, the reservoir-
based 1D convolution has a stronger feature-extracting func-
tion compared to the ordinary RC.

3. Experiment

We constructed a reservoir-based 1D CNN consisting of a
reservoir-based 1D convolution, max-pooling, and linear lay-
ers, as shown in Fig. 2, where only the weight connections
between the max-pooling and linear layers (indicated by the
red arrow in Fig. 2) have plasticity, and verified the network
performance in sound-classification tasks. Table 1 shows the
parameters used in the network where kernel size and stride
size indicate the ROI widthT and the amount of shift of ROI,
respectively. The reservoir-based 1D convolution layer had
five reservoirs, each with 30 nodes. The leak rate of the i-th
reservoir was set as 0.2 × (i − 1) + 0.1.

We used the Free Spoken Digit Dataset (FSDD) [7]
as a dataset for verification. This dataset consists of 3,000
audio data of English digits spoken by six persons, recorded
at 8 kHz. We used 300 FSDD data samples as test data
and the remaining 2,700 data samples as training data. The
audio data were preprocessed using Lyon’s auditory model
[8] and converted to a cochleagram, a time-series data of
signal intensities of quantized frequency channels. In our
experiment, each cochleagramhad 64 channels and 100 time-
steps (the preprocessing included decimation).

We trained the network using the following procedure:
We fed the training data into the network and checked the
output from the max-pooling layer. By using the output of
the max-pooling layer and target signals where labels were
represented by one-hot vectors, we computed an optimized
weight connection between themax-pooling and linear layers
Wlin using ridge regression, as follows,

Wlin = Z M>(M M> + λI)−1 (2)
M = [m1,m2, . . . ,m j, . . . ,m2700] (3)
Z = [z1, z1, . . . , z j, . . . , z2700] (4)

where m j and z j are the j-th output vector from the max-
pooling layer and j-th target signal, respectively. λ is a

Table 1 Parameters of the reservoir-based 1D CNN.

Table 2 Comparison of classifiers for FSDD (digit classification) in terms
of accuracy and training time.

Table 3 Comparison of classifiers for FSDD (speaker classification) in
terms of accuracy and training time.

coefficient of the regularization term of the ridge regres-
sion and I is an identity matrix. Additionally, we measured
the computation time during training when Intel Xeon @
2.20GHz was used for processing. Because FSDD has two
types of labels—digit and speaker—we conducted a digit-
classification task (ten-class classification) and a speaker-
classification task (six-class classification) in this experi-
ment.

We verified the accuracy of the trained network using
the test data. For comparison, we also verified the accuracy
and training time of a support vector machine (SVM) [9],
random forest [10] with 50 and 100 trees, and an echo state
network (ESN) [3] with 600 reservoir nodes, using the same
conditions as those of the reservoir-based 1D CNN. The
SVMand random forest were implemented using scikit-learn
[11]. Tables 2 and 3 show the results of the digit and speaker-
classification tasks.

To verify the feature-extracting function of the
reservoir-based 1D convolution, we visualized the feature
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Fig. 3 Featuremap generated by the reservoir-based 1D convolution layer
receiving a cochleagram of FSDD.

map generated by the reservoir-based 1D convolution layer
receiving a cochleagram of FSDD as shown in Fig. 3. On
the horizontal axis of the figure is the time of the input and
the channels are on the vertical axis. Channels 0 to 29 cor-
respond to the output of the reservoir with a leak rate of 0.1,
Channels 30 to 59 correspond to the output of the reservoir
with a leak rate of 0.3, · · · , and Channels 120 to 149 corre-
spond to the output of the reservoir with a leak rate of 0.9.
As shown in the figure, reservoirs with low leak rates tended
to extract rough features, and reservoirs with high leak rates
tended to extract fine features from the input.

4. Discussion

In the case of the digit-classification task, the accuracy of the
reservoir-based 1D CNN was better than that of the SVM,
random forest with 50 trees, and ESN, but not as good as
that of the random forest with 100 trees, as shown in Table 2.
In the case of the speaker-classification task, the accuracy
of the reservoir-based 1D CNN was better than that of the
SVM, but less than that of the random forests and ESN, as
shown in Table 3. In both tasks, the reservoir-based 1DCNN
had the shortest training time among the verified classifiers.

Although ridge regression was used to optimize both
the reservoir-based 1D CNN and ESN, and the number of
optimized parameters was common in both networks, the
training time of the reservoir-based 1DCNNwas shorter than
that of the ESN because of the difference in the matrix sizes
used in the optimizations. The ESN used all reservoir states
(each reservoir state was a 600-dimensional vector) when
the input time-series data was being fed (2,700 data samples,
each of the 100 time-steps) for the optimization. Therefore,

the size of the matrix M used in the ridge regression was 600
× 270,000. Conversely, the reservoir-based 1D CNN used
only the final states of the reservoirs so that the size of the
matrix M was 600 × 2,700.

Apossible reason for the accuracy of the reservoir-based
1D CNN being less than that of the random forests and ESN
in the speaker-classification task is overfitting. We checked
the weight connections between the max-pooling and linear
layers Wlin after training for both cases of the digit- and
speaker-classification tasks, and found that the maximum
value ofWlin for the speaker-classification task was 1.3 times
as large as that for the digit-classification task. Because
overfitting increases the values of the weight connections
in general, we concluded that the reservoir-based 1D CNN
overfitted the training data in the speaker-classification task.

5. Conclusion

This study proposed a reservoir-based 1D convolutional op-
eration and a neural network using the operation. The exper-
imental results showed that the computation time for training
the proposed network was shorter than that for the conven-
tional RC. Additionally, the network had a strong feature-
extracting function and achieved accuracies of 95.5% and
98.2% in the digit-classification and speaker-classification
tasks, respectively.

Because the proposed network consumes low compu-
tational costs in training, the network could be applied to
edge AI where not only inference but also training must be
executed on the edge. Although this study verified the net-
work performance in sound-classification tasks, the network
is expected to be used in other tasks where time-series data
are provided and high performance is expected.

Hardware implementation is an effective solution to
realize a low-power system. Several studies have pro-
posed dedicated hardware designs for ESNs using field-
programmable gate arrays [12]–[15]. Therefore, the
reservoir-based 1D CNN can be implemented on field-
programmable gate arrays using these designs. Moreover,
physical reservoir implementation [16]–[20] has been stud-
ied to achieve further reduction in power, compared with
that achieved using the conventional semiconductor-based
approaches. For example, Tanaka et al. proposed the hard-
ware implementation of reservoir-based 2D convolution us-
ing a nanomaterial-based device [21], [22]; this implies that
nanomaterial-based physical reservoir implementation of the
reservoir-based 1D CNN is possible.
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