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Improved Source Localization Method of the Small-Aperture Array
Based on the Parasitic Fly’s Coupled Ears and MUSIC-Like
Algorithm

Hongbo LI†, Aijun LIU††a), Qiang YANG†, Zhe LYU††, Nonmembers, and Di YAO††, Member

SUMMARY To improve the direction-of-arrival estimation perfor-
mance of the small-aperture array, we propose a source localization method
inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The
Ormia can local its host cricket’s sound precisely despite the tremendous
incompatibility between the spacing of its ear and the sound wavelength. In
this paper, we first implement a biologically inspired coupled system based
on the coupled model of the Ormia’s ears and solve its responses by the
modal decomposition method. Then, we analyze the effect of the system on
the received signals of the array. Research shows that the system amplifies
the amplitude ratio and phase difference between the signals, equivalent to
creating a virtual array with a larger aperture. Finally, we apply theMUSIC-
like algorithm for DOA estimation to suppress the colored noise caused by
the system. Numerical results demonstrate that the proposed method can
improve the localization precision and resolution of the array.
key words: small-aperture array, biologically inspired coupled system,
modal decomposition method, MUSIC-like algorithm, virtual aperture ex-
pansion

1. Introduction

Source localization has long been of great research interest in
radar array signal processing. Most localization approaches
[1]–[3], like the Convention beamforming (CBF) and Multi-
ple signal classification (MUSIC), employ time differences
of arrivals for direction-of-arrival (DOA) estimation, and
their performance is limited by the array aperture. This
means large aperture is required to obtain accurate DOA es-
timation. However, large-aperture arrays are costly and even
be infeasible in many scenarios, so the small-aperture arrays
are indispensable.

This paper proposes a source localization method of the
small-aperture array. The method is inspired by a parasitic
fly named Ormia Ochracea. The Ormia can local its host
cricket precisely despite the tremendous incompatibility be-
tween the spacing of its ears (1.5mm) and the wavelength
of the host’s sound (70mm) [4]. This ability benefits from
the Ormia’s coupled ears which have been modeled as a me-
chanical coupled model [5], as shown in Fig. 1. The model
consists of two spring-damping pairs {(ki, ci), i = 1,2} with
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Fig. 1 Mechanical model of the Ormia’s ears.

a mass of m and two rigid bars. The rigid bars are connected
by a coupling spring k3 and damping c3.

Inspired by the mechanical model, a circuit model is
proposed and a biomimetic antenna array (BMAA) which
can amplify the time differences of arrivals is designed
[6], [7]. Then, the design schemes of the BMAA are ex-
tended by various circuit coupled networks, including T-
type network, π-type network, etc [8]–[10]. However, by
lack of research on the combination of mechanical coupled
model and signal processing algorithms, these papers have
not given the localization performance of the BMAA.

In this paper, we propose a improved source localiza-
tionmethod of the small-aperture array based on theOrmia’s
coupled ears andMUSIC-like algorithm. We first implement
a biologically inspired coupled (BIC) system by regarding
the coupled model of the Ormia fly’s ears as a two-input
two-output filter and applying the received signals of the ar-
ray as the filter’s inputs. Then, by the modal decomposition
method, we solve the responses of the BIC system and an-
alyze its influence on the received signals of the array. The
research shows that the BIC system can amplify the ampli-
tude ratio and phase difference between the signals, which is
equivalent to creating a virtual array with a larger aperture.
We also establish the signal model of the virtual array. For
the colored noise caused by the BIC system, we apply the
MUSIC-like algorithm for the DOA estimation to suppress
it. Numerical results show that, compared to the MUSIC
algorithm, the proposed method has higher localization pre-
cision and resolution, implying a virtual aperture expansion
of the array.

2. Biologically Inspired Coupled System

2.1 Implement of the BIC System

For equal spring-damping pairs, we set k = k1 = k2, c= c1 =
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Fig. 2 Complete view of the BIC system.

c2. According to the Newton’s second law, the equation of
motion for the coupled model proposed in [5] is[

m 0
0 m

]
Üy +

[
c+c3 c3

c3 c+c3

]
Ûy +

[
k+k3 k3

k3 k+k3

]
y = x

(1)

where x = [x1(t), x2(t)]T and y = [y1(t), y2(t)]T are the input
and response vectors of the coupledmodel, respectively. And
(·) denotes differentiation with respect to time t.

To implement the BIC system, we regard the coupled
model as a two-input two-output filter and apply the received
signals of the array as the filter’s inputs (see Fig. 2). Consider
a two-antenna array with d antenna spacing, x1(t) and x2(t)
are the received signals of the actual array. y1(t) and y2(t)
are the responses of the BIC system, which are equivalent
to the received signals of a virtual array with d ′ antenna
spacing. Under the far-field narrow-band uncorrelated signal
assumption, the received signal vector of the actual array is

x = A(θ)S(t) + e(t) (2)

where

• s(t) = [s1(t), · · · , sN (t)]T is the incoming signal vector,
with N as the number of sources

• A(θ) = [a(θ1), · · · ,a(θN )] is the array manifold, with
θn as the azimuth of the n-th source

• a(θn)= [exp(jωτn/2),exp(− jωτn/2)]T for the array
• τn = d sin θn/c, with d as the antenna spacing, c as the
speed of signal propagation

• e(t) is theAdditiveWhiteGaussianNoise (AWGN)with
zero mean and variance σ2

2.2 Responses of the BIC System

Then the matrix equation of the BIC system is

MÜy + CÛy +Ky = x (3)

where M, K, and C called the mass matrix, stiffness matrix
and damping matrix, respectively.

It is troublesome to solve the responses of the BIC
system since (3) is a coupled difference equation, so we first
decouple it by the modal decomposition method. It is known
that the mode shape has orthogonality concerning the mass
matrix and the stiffness matrix [11]. So for the proportional
damping system (C = αM + βK), the mode shape also has

orthogonality concerning the damping matrix.

I=ΦTMΦ,diag(ω2
i )=ΦTKΦ,diag(2ξiωi)=ΦTCΦ (4)

where Φ is the modal matrix; I is the unit matrix; ωi and
ξi are the undamped natural frequency and damping ratio of
the i-th mode, respectively. The BIC system has two degrees
of freedom, so 1 ≤ i ≤ 2, and the modal matrix is

Φ =
1
√

2m

[
1 1
−1 1

]
(5)

Based on the modal matrix, the physical responses y
can be transformed into modal responses η (y = Φη), then
(3) is rewritten as

MΦ Üη + CΦ Ûη +KΦη = x (6)

Premultiplying ΦT at both sides of (6) and simplifying
it according to (4), we can derive the independent modal
coordinate equations which are easier to solve

Üηi + 2ξiωi Ûηi + ω
2
i ηi = fi, i = 1,2 (7)

where [ f1; f2] = ΦTx.
Assuming that the incoming signal of the actual array

is exp( jωt), then the received signals of the array are x1(t) =
exp( j(ωt+ωτ/2)) and x2(t) = exp( j(ωt−ωτ/2)). Note that
the noise is ignored to simplify the solution process. We
solve (7) and derive the modal responses as

ηi(t) = Ai exp( j(ωt + ϕi)), i = 1,2 (8)

where Ai and ϕi are the magnitude and phase of the i-th
modal responses, respectively

A1 =

√
2/m sin(ωτ/2)

√
(ω2

1−ω
2)2+(2ω1ξ1ω)2

, ϕ1 = − arctan( 2ω1ξ1ω

ω2
1−ω

2 )

A2 =

√
2/m cos(ωτ/2)

√
(ω2

2−ω
2)2+(2ω2ξ2ω)2

, ϕ2 = − arctan( 2ω2ξ2ω

ω2
2−ω

2 ) + π/2

Accordingly, we can obtain the physical responses of
the BIC system as

y1(t) = [η2(t) + η1(t)]/
√

2m
y2(t) = [η2(t) − η1(t)]/

√
2m

(9)

Obviously, the physical responses are a composite of
the modal responses. Taking the phase of the first modal
response as the reference, the graphical explanation of the
synthesis process is shown in Fig. 3. Through the triangular
operations, we can get the amplitude ratio and phase differ-
ence of the responses

∆Ay =
√

sin2 ∆ϕη+(∆Aη+cos∆ϕη )
2

sin2 ∆ϕη+(∆Aη−cos∆ϕη )
2

∆ϕy = arctan( 2∆Aη sin∆ϕη

1−∆A2
η
)

(10)

where

• ∆Ay is the amplitude ratio between y1(t) and y2(t)
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Fig. 3 Process of response synthesis.

• ∆ϕy is the phase difference between y1(t) and y2(t)
• ∆Aη = A1/A2 is the amplitude ratio between η1 and η2
• ∆ϕη =ϕ1−ϕ2 is the phase difference between η1 and η2

2.3 Effect of the BIC System

To explain the effect of the BIC system, we analyze the value
of ∆Ay and ∆ϕy . If the system is uncoupled, the value of
c3 and k3 should be zero. This results in ∆Aη = tan(ωτ/2)
and ∆ϕη = π/2. Then we derive that ∆Ay = ∆Ax = 1 and
∆ϕy = ∆ϕx = ωτ. By ∆Ax and ∆ϕx we mean the amplitude
ratio and phase difference between x1(t) and x2(t).

However, for the coupled system, ∆Aη , tan(ωτ/2)
and ∆ϕη , π/2. And we have ∆Ay > ∆Ax and ∆ϕy > ∆ϕx ,
proving that the BIC system can amplify the amplitude ratio
and phase difference between the signals.

To describe this amplification quantitatively, we define
the amplitude gain GA and phase gain Gϕ as

GA = ∆Ay,Gϕ = ∆ϕy/ωτ (11)

Then, we regard the response vector y = [y1(t), y2(t)]T

as the received signals of a virtual array and establish its
signal model as

y = H[x] = H[A(θ)s(t)] + H[e(t)] (12)

where H[·] refers to the coupling (filtering) operation of the
BIC system to the signals.

Since the signal s(t) and noise e(t) are independent,
the coupling operation satisfies the distributive law. So we
divide it into the signal and noise parts for analysis.

1) Signal Part: As mentioned above, the BIC system
amplifies the amplitude ratio and phase difference between
the signals. This means changing the array manifold (or
creating a virtual array), so we have

H[A(θ)s(t)] = Ã(θ)s(t) (13)

where

• Ã(θ) = [ã(θ1), · · ·, ã(θN )] is the virtual array manifold
• ã(θ) = [GAexp( jωτ̃/2),exp(− jωτ̃/2)]T
• τ̃ = Gϕτ is the virtual time delay
Since τ = d sin θ/c and the unknown parameter is θ,

we reasonably define that the coupling operation does not
affect the incident angle. Then the virtual time delay as
τ̃ = d ′ sin θ/c and the virtual antenna spacing as d ′ = Gϕd.

2) Noise Part: As seen in (3), the BIC system is also a
linear system. So for the white noise, it will be converted by
the BIC system into colored noise.

H[e(t)] = ẽ(t) (14)

where ẽ(t) is the Colored Gaussian Noise.
Therefore, the final signal model of the virtual array is

y = H[x(t)] = Ã(θ)S(t) + ẽ(t) (15)

In localization algorithms, array aperture means local-
ization performance. The virtual array has a larger aperture
than the actual array (d ′> d), so in principle it can improve
the localization accuracy. However, the colored Gaussian
noise is detrimental to some algorithms and can degrade
their performance, such as CBF and MUSIC. In Sect. 3, to
suppress the colored noise, we use a MUSIC-like algorithm
to estimate the DOA.

3. MUSIC-Like Algorithm

The MUSIC-like algorithm is similar to MUSIC, but based
on the fourth-order cumulant of the received data, rather than
the second-order statistic on which the MUSIC algorithm is
based [12]. Compared with the second-order cumulant, the
fourth-order cumulant (FOC) has the advantage of suppress-
ingGaussian noise. According to the properties of cumulants
described in [13], the FOCs of signal y are

cum(yi,yj,y∗k,y
∗
l )

=
∑N

n=1
ãn(i)ãn( j)ã∗n(k)ã∗n(l)γ4s(n)

(16)

where

• i, j, k, l ∈ [1,M], with M = 2 is the number of antenna
• N is the number of sources
• ãn(i) is the i-th element of the array manifold for the

n-th source
• γ4s(n)= cum(sn(t), sn(t), s∗n(t), s∗n(t))=E |s |4 − |Es2 |2

− 2E |s2 |E |s2 | denotes the FOC of the n-th source

Apparently, (16) has M4 values for various i, j, k, l. By
setting cum(yi,yj,y∗k,y

∗
l
) as the [(i − 1)M + k]-th row and

[( j − 1)M + l]-th column of a matrix, we construct the FOC
matrix C4 as (see also [12], [14])

C4 = B(θ)CSBH(θ) (17)

where

• B(θ) = [b(θ1),b(θ2), · · · ,b(θN )]
• b(θ) = ã(θ) ⊗ ã∗(θ) = [G2

A,GA exp( jωτ̃),GA exp(− j
ωτ̃),1]T as the FOC array manifold, with ⊗ represents
the kronecker product

• CS = diag(γ4s(1), γ4s(2), · · · , γ4s(N)) is the FOC ma-
trix of the sources

Compared with the covariance matrix of the receive
signals R = A(θ)RSAH(θ) + σ2I, the FOC matrix C4 has
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eliminated the influence of Gaussian noise. Analogous to the
MUSIC algorithm, we perform eigenvalue decomposition on
C4 and obtain

C4 = UsΛsUH
s + UnΛnUH

n (18)

where

• Us = [u1, · · · ,uN ] is the FOC signal subspace
• Un = [uN+1, · · · ,uM2 ] is the FOC noise subspace
• Λs = diag(λ1, · · · , λN ) is the diagonalmatrix composed
of N large eigenvalues

• Λn = diag(λN+1, · · · , λM2 ) is the diagonal matrix com-
posed of M2−N small eigenvalues

Then based on the orthogonality between the FOC array
manifold b(θ) and the FOC noise subspace Un, the spatial
spectrum of the MUSIC-like algorithm is derived as

PMUSIC-like(θ) =
1

‖bH(θ)Un‖
2 (19)

Finally, the DOA estimation can be obtained by per-
forming a spectral peak search on the spatial spectrum.

4. Numerical Results

We compare the DOA estimation performance of our pro-
posed method and MUSIC algorithm under the standard
array. The scenarios used are as follows: Single signal
incoming from 45◦ with 5 kHz frequency; d = λ/20 or
d = λ/10 element distances; standard coupling parameter
referred from [5].

The precision and resolution results of DOA estimation
are demonstrated in Figs. 4 and 5. In Fig. 4, for a given num-
ber of snapshots, L = 500, we obtain the root mean square
error (RMSE) of the DOA estimation. The RMSE decreases
as the Signal-to-Noise Ratio (SNR) increases. Under the
same aperture and SNR, the RMSE of the proposed method
is smaller, means that the estimation error is reduced and
the localization precision is improved. We also combine the
BIC system and MUSIC algorithm for comparison (the pur-
ple curve) with d=λ/10. The high RMSE validates that the
performance of MUSIC algorithm degrades when combine
with the BIC system.

In Fig. 5, fixed SNR = 10, we plot the probability of
detection (Pd) for the proposed method and MUSIC algo-
rithm. We consider the detection successful if the estimation
error is less than 2◦. Under the same aperture and snapshot
number, the Pd of the proposed method is higher than that
of the MUSIC algorithm. Figures 4 and 5 confirm that the
combined use of BIC system andMUSIC-like algorithm can
improve the performance of DOA estimation. The principle
of this improvement is that the coupling operation amplifies
the phase difference between the received signals of the ac-
tual array, which is equivalent to a virtual aperture expansion
for the array. It is worth noting that this improvement is more
pronounced at small element spacing d.

Fig. 4 RMSE of the DOA estimation.

Fig. 5 Pd of the DOA estimation.

5. Conclusion

In this paper, we propose a improved source localization
method of the small-aperture array based on the Ormia fly’s
coupled ears andMUSIC-like algorithm. We first implement
the BIC system by regarding the coupled model of theOrmia
fly’s ears as a two-input two-output filter and applying the
received signals of the array as the filter’s inputs. Then,
we solve the responses of the BIC system by the modal
decomposition method and analyze the effect of the BIC
system on the the received signals. It is proved that the BIC
system can amplify the amplitude ratio and phase difference
between the signals, which is equivalent to creating a virtual
array with a larger aperture. We then derive the received
signal model of the virtual array. To suppress the colored
noise caused by the BIC system, we introduce the MUSIC-
like algorithm to estimate DOA.Numerical results show that,
the RMSE and Pd of the proposed method are greater than
those of the MUSIC algorithm. This means that the DOA
estimation performance of the array has improved by our
proposed method, which also means an enlargement of the
array aperture.
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